首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate the mechanism by which somatostatin lowers blood glucose concentration and insulin requirement following carbohydrate ingestion in insulin dependent diabetic patients (IDDM; n = 6), the amount of insulin required for the assimilation of a 50 g glucose load was determined by means of an automated glucose-controlled insulin infusion system with and without concomitant somatostatin infusion. During the 3 hour period following glucose loading plasma concentrations of glucagon and growth hormone were diminished by somatostatin, as were the rise in blood glucose and insulin requirement (4.0 +/- 1.2 U) when compared with the control study (11.3 +/- 1.5 U; p less than 0.01). With cessation of somatostatin blood glucose levels and insulin requirement rose during the following 2 hour observation period (7.5 +/- 1.2 U) but remained basal during the control study (0.7 +/- 0.6 U; p less than 0.0005). Thus the integrated amounts of insulin required for glucose hormone were temporarily suppressed by somatostatin. It is concluded that the diminished insulin requirement and delayed rise in blood glucose during somatostatin administration after an oral glucose load is not due to its "antidiabetic" action by suppressing glucagon and growth hormone release. Our findings favour inhibition of intestinal carbohydrate absorption as the determining cause for the "antidiabetic" action of somatostatin.  相似文献   

2.
实验性肥胖动物模型   总被引:5,自引:0,他引:5  
金硫葡萄糖(GTG)、汞硫葡萄糖均可用于制作下丘脑损伤性肥胖动物模型,而钠硫葡萄糖则可对抗GTG对下丘脑腹内侧核的破坏,故不宜使用。GTG肥胖鼠,小肠对葡萄糖(G)吸收率加快其原因可能与肥胖伴有血糖改变及胰岛素升高有关。整体实验四氧嘧啶糖尿病鼠小肠对G吸收率降低,用胰岛素治疗G吸收增加的现象,在离体小肠吸收G实验中未观察到,故肥胖高胰岛素可能通过改变血糖水平继发性影响G吸收。 谷氨酸一钠虽也可以引起大鼠腹股沟脂肪垫增长,但常伴活的过度及视网膜损害,故不宜用于制作肥胖模型。胰岛素小量多次注射可以刺激食欲使进食量增加,体重增长,肌肉增多。  相似文献   

3.
A novel mathematical model is presented to describe the dynamic behavior of plasma glucose and insulin on diabetic subjects. Though various models have been proposed to simulate the short-term (a variety of intravenous glucose or insulin injection) glucose-insulin dynamics, it is intended to construct a modified delay differential equations (DDEs) model based on the human glucose-insulin metabolic system. Five specific adjustable parameters inside the model are defined as the factors of the major physiological functions. Then several clinical data sets (56 subjects) which includes the information of food ingestion and exogenous insulin injection are verified and the model could practically reflect the dynamics and oscillation behavior on diabetic subjects by varying the adjustable parameters. Moreover, the corresponding parameters are fairly helpful to identify the patient's conditions of major physiological functions. This generic glucose-insulin dynamic model can be expected to develop such advanced therapy strategies for diabetics in the future.  相似文献   

4.
5.
Type 2 diabetes is a metabolic disease that profoundly affects energy homeostasis. The disease involves failure at several levels and subsystems and is characterized by insulin resistance in target cells and tissues (i.e. by impaired intracellular insulin signaling). We have previously used an iterative experimental-theoretical approach to unravel the early insulin signaling events in primary human adipocytes. That study, like most insulin signaling studies, is based on in vitro experimental examination of cells, and the in vivo relevance of such studies for human beings has not been systematically examined. Herein, we develop a hierarchical model of the adipose tissue, which links intracellular insulin control of glucose transport in human primary adipocytes with whole-body glucose homeostasis. An iterative approach between experiments and minimal modeling allowed us to conclude that it is not possible to scale up the experimentally determined glucose uptake by the isolated adipocytes to match the glucose uptake profile of the adipose tissue in vivo. However, a model that additionally includes insulin effects on blood flow in the adipose tissue and GLUT4 translocation due to cell handling can explain all data, but neither of these additions is sufficient independently. We also extend the minimal model to include hierarchical dynamic links to more detailed models (both to our own models and to those by others), which act as submodules that can be turned on or off. The resulting multilevel hierarchical model can merge detailed results on different subsystems into a coherent understanding of whole-body glucose homeostasis. This hierarchical modeling can potentially create bridges between other experimental model systems and the in vivo human situation and offers a framework for systematic evaluation of the physiological relevance of in vitro obtained molecular/cellular experimental data.  相似文献   

6.
Improved understanding of the physiology and pharmacokinetics of insulin and new therapeutic devices allow an increasingly rational approach to the treatment of diabetes with insulin. The complexity of the regimen necessary for successful control of blood glucose levels depends largely on a patient''s relative deficiency of endogenous insulin. Patients initially treated successfully with single or twice-a-day injections often, as the amount of endogenous insulin dwindles, progress to a complex regimen more closely mimicking normal patterns of secretion. Self-monitoring of blood glucose values and attention to many simple factors affecting absorption of insulin and glycemic behavior strongly enhance the success of all regimens. Patients and physicians must collaborate to plan and execute individualized therapeutic regimens using available tools to the best advantage.  相似文献   

7.
Eberle C  Ament C 《Bio Systems》2012,107(3):135-141
Today, diagnostic decisions about pre-diabetes or diabetes are made using static threshold rules for the measured plasma glucose. In order to develop an alternative diagnostic approach, dynamic models as the Minimal Model may be deployed. We present a novel method to analyze the identifiability of model parameters based on the interpretation of the empirical observability Gramian. This allows a unifying view of both, the observability of the system's states (with dynamics) and the identifiability of the system's parameters (without dynamics). We give an iterative algorithm, in order to find an optimized set of states and parameters to be estimated. For this set, estimation results using an Unscented Kalman Filter (UKF) are presented. Two parameters are of special interest for diagnostic purposes: the glucose effectiveness S(G) characterizes the ability of plasma glucose clearance, and the insulin sensitivity S(I) quantifies the impact from the plasma insulin to the interstitial insulin subsystem. Applying the identifiability analysis to the trajectories of the insulin glucose system during an intravenous glucose tolerance test (IVGTT) shows the following result: (1) if only plasma glucose G(t) is measured, plasma insulin I(t) and S(G) can be estimated, but not S(I). (2) If plasma insulin I(t) is captured additionally, identifiability is improved significantly such that up to four model parameters can be estimated including S(I). (3) The situation of the first case can be improved, if a controlled external dosage of insulin is applied. Then, parameters of the insulin subsystem can be identified approximately from measurement of plasma glucose G(t) only.  相似文献   

8.
In vivo vanadate and vanadyl have been shown to mimic the action of insulin and to be effective treatment for animal models of both Type I and Type II diabetes. The molecular mechanism of action of the vanadium salts on insulin sensitivity remains uncertain, and several potential sites proposed for the insulin-like effects are reviewed. In human trials, insulin sensitivity improved in patients with NIDDM, as well as in some patients with IDDM after two weeks of treatment with sodium metavanadate. This increase in insulin sensitivity was primarily due to an increase in non-oxidative glucose disposal, whereas oxidative glucose disposal and both basal and insulin stimulated suppression of hepatic glucose output (HGP) were unchanged. Clinically, oral vanadate was associated with a small decrease in insulin requirements in IDDM subjects. Of additional benefit, there was a decrease in total cholesterol levels in both IDDM and NIDDM subjects. Furthermore, there was an increase in the basal activities of MAP and S6 kinases to levels similar to the insulin-stimulated levels in controls, but there was little or no further stimulation with insulin was seen. Further understanding of the mechanism of vanadium action may ultimately be useful in the design of drugs that improve glucose tolerance.  相似文献   

9.
Large, naturally evolved biomolecular networks typically fulfil multiple functions. When modelling or redesigning such systems, functional subsystems are often analysed independently first, before subsequent integration into larger-scale computational models. In the design and analysis process, it is therefore important to quantitatively analyse and predict the dynamics of the interactions between integrated subsystems; in particular, how the incremental effect of integrating a subsystem into a network depends on the existing dynamics of that network. In this paper we present a framework for simulating the contribution of any given functional subsystem when integrated together with one or more other subsystems. This is achieved through a cascaded layering of a network into functional subsystems, where each layer is defined by an appropriate subset of the reactions. We exploit symmetries in our formulation to exhaustively quantify each subsystem’s incremental effects with minimal computational effort. When combining subsystems, their isolated behaviour may be amplified, attenuated, or be subject to more complicated effects. We propose the concept of mutual dynamics to quantify such nonlinear phenomena, thereby defining the incompatibility and cooperativity between all pairs of subsystems when integrated into any larger network. We exemplify our theoretical framework by analysing diverse behaviours in three dynamic models of signalling and metabolic pathways: the effect of crosstalk mechanisms on the dynamics of parallel signal transduction pathways; reciprocal side-effects between several integral feedback mechanisms and the subsystems they stabilise; and consequences of nonlinear interactions between elementary flux modes in glycolysis for metabolic engineering strategies. Our analysis shows that it is not sufficient to just specify subsystems and analyse their pairwise interactions; the environment in which the interaction takes place must also be explicitly defined. Our framework provides a natural representation of nonlinear interaction phenomena, and will therefore be an important tool for modelling large-scale evolved or synthetic biomolecular networks.  相似文献   

10.
Ingestion of guar gum decreases postprandial glycemia and insulinemia and improves sensitivity to insulin in diabetic patients and several animal models of diabetes. The aim of the present study was to compare the short-term and long-term effects of guar on plasma insulin and glucagon-like peptide 1 concentration in healthy rats. In the short-term experiments, the concomitant intragastric administration of glucose and guar reduced the early increment in plasma glucose, insulin and glucagon-like peptide 1 concentration otherwise induced by glucose alone. Comparable findings were made after twelve days of meal training exposing the rats to either a control or guar-enriched diet for fifteen minutes. Mean plasma glucose concentrations were lower while mean insulin concentrations were higher in the guar group than in the controls according to intragastric glucose tolerance tests conducted in overnight fasted rats maintained for 19 to 36 days on either the control or guar-enriched diet. The intestinal content of glucagon-like peptide 1 at the end of the experiments was also lower in the guar group. Changes in body weight over 62 days of observation were comparable in the control and guar rats. Thus, long-term intake of guar improves glucose tolerance and insulin response to glucose absorption, without improving insulin sensitivity, in healthy rats.  相似文献   

11.
Cytokine-inducers prevent insulin-dependent diabetes mellitus (IDDM) in animal models. We extended this therapy to non-insulin-dependent diabetes mellitus (NIDDM), because it was reported that diabetes of KK-Ay mice, a model for NIDDM, was recovered by allogenic bone-marrow transplantation that also prevented IDDM in animal models. An i.p. or i.v. injection of streptococcal preparation (OK 432) lowered fasting blood glucose (FBG) levels and markedly improved glucose tolerance test (GTT) in KK-Ay mice for more than 32 h regardless of the glucose loading routes (oral, i.v. or i.p.), while an i.v. injection of BCG improved FBG and GTT for more than 4 wks without body weight loss. The improvement of FBG and GTT with OK-432 was brought about in other NIDDM animals, GK rats and Wistar fatty rats. Among various cytokines possibly induced by OK-432 and BCG, IL-1α, TNFα and lymphotoxin significantly improved FBG and GTT in KK-Ay mice, whereas IL-2 and IFNγ did not. There were no differences between the OK-432-treated KK-Ay mice and control in histology of the pancreas, degree of insulin-induced decrease in blood glucose levels, and muscle glycogen synthase activities. As to insulin secretion, there is a tendency that the OK-432-treatment less than 1 week did not affect insulin levels during GTT, whereas the treatment more than 2 weeks increased the insulin levels. Thus, cytokine-inducers improved FBG and glucose tolerance of NIDDM animals probably via cytokines. The results imply a role of the cytokines in glucose tolerance of NIDDM, although precise immune and metabolic mechanisms remain to be elucidated.  相似文献   

12.
Diabetes mellitus is one of the leading diseases in the developed world. In order to better regulate blood glucose in a diabetic patient, improved modelling of insulin-glucose dynamics is a key factor in the treatment of diabetes mellitus. In the current work, the insulin-glucose dynamics in type II diabetes mellitus can be modelled by using a stochastic nonlinear state-space model. Estimating the parameters of such a model is difficult as only a few blood glucose and insulin measurements per day are available in a non-clinical setting. Therefore, developing a predictive model of the blood glucose of a person with type II diabetes mellitus is important when the glucose and insulin concentrations are only available at irregular intervals. To overcome these difficulties, we resort to online sequential Monte Carlo (SMC) estimation of states and parameters of the state-space model for type II diabetic patients under various levels of randomly missing clinical data. Our results show that this method is efficient in monitoring and estimating the dynamics of the peripheral glucose, insulin and incretins concentration when 10, 25 and 50 % of the simulated clinical data were randomly removed.  相似文献   

13.
Tolbutamide significantly decreased fasting plasma gastrin after 5 min of intravenous infusion in patients with atrophic gastritis, duodenal ulcer, or insulin-dependent diabetes mellitus (IDDM) as well as in healthy volunteers. Increased plasma insulin and decreased blood glucose were observed in patients with atrophic gastritis, duodenal ulcer and healthy volunteers, but not in patients with IDDM. Suppression of plasma gastrin in healthy volunteers was also observed following oral administration of tolbutamide. Despite the observed decrease in plasma gastrin, neither basal nor tetragastrin-stimulated acid output was changed for 30 min following tolbutamide infusion in healthy volunteers. Thus, our data suggest that tolbutamide inhibits gastrin release in man via mechanisms independent of changes in plasma insulin, blood glucose or acid secretion.  相似文献   

14.
The demonstrated role of the tight control of hyperglycaemia for the prevention of long-term diabetic complications has reoriented the goals of insulin supply toward the search for restoration of the effects of physiological insulin secretion rather than the simple survival of insulin deficient patients and the reduction in the number of daily insulin injections to be performed. Normal blood glucose control requires the availability of a fast-acting insulin therapy at meal time in order to reduce hyperglycaemic excursions and a basal insulin therapy able to stabilize blood glucose between meals. Reduction of induced hypoglycaemic risk represents the secondary objective beside the main goal of avoiding hyperglycaemia. Fast-acting analogues, by a faster dissociation of their hexameric conformation after their injection or infusion in subcutaneous tissue, reduce post-meal hyperglycaemia, while their shortened duration of action versus regular insulin minimizes late post-absorptive risk of hypoglycaemia. Long-acting analogues, by their precipitation in subcutaneous tissue or their slowly reversible binding to albumin, provide a benefit on blood glucose stability versus NPH or zinc insulins. Continuous insulin therapy using pumps offers both a better blood glucose stability than multiple daily injections and a broader flexibility in life mode. Using the peritoneal route by implantable pumps is a mean to improve blood glucose stability in poorly controlled patients in spite of optimized subcutaneous insulin therapy. The development of glucose sensors provides reinforced information on blood glucose, versus self-monitoring by capillary blood measurements, that contributes to a better adaptation of insulin therapy. First trials of connections between blood glucose data and insulin delivery open a perspective toward glucose-modulated insulin therapy, at least in periods outside meals, leading to first models of semi-automated artificial endocrine pancreas. The alternative of a cellular insulin supply by pancreas or islet transplantation looked promising during recent years, but lack of transplants and adverse events related to immune suppression limit their use to very specific cases where benefit/risk ratio is positive.  相似文献   

15.
The effect of acute changes in insulin concentrations in vivo on the absorption, transport and metabolism of glucose by rat small intestine in vitro was investigated. Within 2 min of the injection of normal anaesthetized rats with anti-insulin serum, lactate production and glucose metabolism were respectively diminished to 28% and 21% of normal and the conversion of glucose into lactate became quantitative. These changes correlated with the inhibition of two mucosal enzymes, namely the insulin-sensitive enzyme pyruvate dehydrogenase, and phosphofructokinase, which was shown by cross-over measurements to be the rate-limiting enzyme of glycolysis in mucosa. The proportion of glucose translocated unchanged from the luminal perfusate to the serosal medium was simultaneously increased from 45% to 80%. All the changes produced by insulin deficiency were completely reversed with 2 min when antiserum was neutralized by injection of insulin in vivo. The absorption and transport of 3-O-methylglucose were unaffected by insulin. It is concluded that glucose metabolism in rat small intestine is subject to short-term regulation by insulin in vivo and that glucose absorption and transport are regulated indirectly in response to changes in metabolism. Moreover, transport and metabolism compensate in such a way as to deliver the maximal 'effective' amount of glucose to the blood, whether as glucose itself or as lactate for hepatic gluconeogenesis.  相似文献   

16.
Chicharro D  Ledberg A 《PloS one》2012,7(3):e32466
Biological systems often consist of multiple interacting subsystems, the brain being a prominent example. To understand the functions of such systems it is important to analyze if and how the subsystems interact and to describe the effect of these interactions. In this work we investigate the extent to which the cause-and-effect framework is applicable to such interacting subsystems. We base our work on a standard notion of causal effects and define a new concept called natural causal effect. This new concept takes into account that when studying interactions in biological systems, one is often not interested in the effect of perturbations that alter the dynamics. The interest is instead in how the causal connections participate in the generation of the observed natural dynamics. We identify the constraints on the structure of the causal connections that determine the existence of natural causal effects. In particular, we show that the influence of the causal connections on the natural dynamics of the system often cannot be analyzed in terms of the causal effect of one subsystem on another. Only when the causing subsystem is autonomous with respect to the rest can this interpretation be made. We note that subsystems in the brain are often bidirectionally connected, which means that interactions rarely should be quantified in terms of cause-and-effect. We furthermore introduce a framework for how natural causal effects can be characterized when they exist. Our work also has important consequences for the interpretation of other approaches commonly applied to study causality in the brain. Specifically, we discuss how the notion of natural causal effects can be combined with Granger causality and Dynamic Causal Modeling (DCM). Our results are generic and the concept of natural causal effects is relevant in all areas where the effects of interactions between subsystems are of interest.  相似文献   

17.
In a study of retinopathy during one year of tight blood glucose control 45 type I (insulin dependent) diabetics without proliferative retinopathy were randomised to receive either continuous subcutaneous insulin infusion, multiple insulin injections, or conventional insulin treatment (controls). Near normoglycaemia was achieved with continuous infusion and multiple injections but not with conventional treatment. Blind evaluation of fluorescein angiograms performed three monthly showed progression of retinopathy in the control group, transient deterioration in the continuous infusion group, and no change in the multiple injection group. Half the patients receiving continuous infusion and multiple injections developed retinal cotton wool spots after three to six months. These changes regressed in all but four patients after 12 months. Control patients did not develop cotton wool spots. Patients who developed cotton wool spots are characterised by a larger decrement in glycosylated haemoglobin and blood glucose values, more frequent episodes of hypoglycaemia, a longer duration of diabetes, and more severe retinopathy at onset. A large and rapid fall in blood glucose concentration may promote transient deterioration of diabetic retinopathy.  相似文献   

18.
To determine the effect of glucose availability on glutamine metabolism, glutamine kinetics were assessed under conditions of hyperglycemia resulting from 1) intravenous infusion of 7.5% dextrose in healthy adults and 2) insulin deficiency in young adults with insulin-dependent diabetes mellitus (IDDM). Eight healthy adults and five young adults with IDDM were studied in the postabsorptive state by use of a primed continuous infusion of D-[U-(14)C]glucose, L-[5,5,5-(2)H(3)]leucine, and L-[3, 4-(13)C]glutamine. Whether resulting from insulin deficiency or dextrose infusion, the rise in plasma glucose was associated with increased glucose turnover (23.5 +/- 0.7 vs. 12.9 +/- 0.3 micromol. kg(-1). min(-1), P < 0.01 and 20.9 +/- 2.5 vs. 12.8 +/- 0.4 micromol. kg(-1). min(-1), P = 0.03, in health and IDDM, respectively). In both cases, high blood glucose failed to alter glutamine appearance rate (R(a)) into plasma [298 +/- 9 vs. 312 +/- 14 micromol. kg(-1). h(-1), not significant (NS) and 309 +/- 23 vs 296 +/- 26 micromol. kg(-1). h(-1), NS, in health and IDDM, respectively] and the estimated fraction of glutamine R(a) arising from de novo synthesis (210 +/- 7 vs. 217 +/- 10 micromol. kg(-1). h(-1), NS and 210 +/- 16 vs. 207 +/- 21 micromol. kg(-1). h(-1), NS, in health and IDDM, respectively). When compared with the euglycemic day, the apparent contribution of glucose to glutamine carbon skeleton increased when high plasma glucose resulted from intravenous dextrose infusion in healthy volunteers (10 +/- 0.8 vs. 4.8 +/- 0.3%, P < 0.01) but failed to do so when hyperglycemia resulted from insulin deficiency in IDDM. We conclude that 1) the contribution of glucose to the estimated rate of glutamine de novo synthesis does not increase when elevation of plasma glucose results from insulin deficiency, and 2) the transfer of carbon from glucose to glutamine may depend on insulin availability.  相似文献   

19.
According to the World Health Organization there are over 220 million people in the world with diabetes and 3.4 million people died in 2004 as a consequence of this pathology. Development of an artificial pancreas would allow to restore control of blood glucose by coupling an infusion pump to a continuous glucose sensor in the blood. The design of such a device requires the development and application of mathematical models which represent the gluco-regulatory system. Models developed by other research groups describe very well the gluco-regulatory system but have a large number of mathematical equations and require complex methodologies for the estimation of its parameters. In this work we propose a mathematical model to study the homeostasis of glucose and insulin in healthy rats. The proposed model consists of three differential equations and 8 parameters that describe the variation of: blood glucose concentration, blood insulin concentration and amount of glucose in the intestine. All parameters were obtained by setting functions to the values of glucose and insulin in blood obtained after oral glucose administration. In vivo and in silico validations were performed. Additionally, a qualitative analysis has been done to verify the aforementioned model. We have shown that this model has a single, biologically consistent equilibrium point. This model is a first step in the development of a mathematical model for the type I diabetic rat.  相似文献   

20.
OBJECTIVE: To compare the effectiveness of two intensified insulin regimens, i.e., pump delivery versus multiple daily injections in patients with type 2 diabetes not optimally controlled with conventional insulin therapy. RESEARCH DESIGN AND METHODS: Seventeen type 2 diabetes patients uncontrolled by two daily injections of regular plus NPH were randomly assigned in a cross-over fashion to either three daily injections of lispro plus NPH or pump device delivering lispro. HbA1c, 6 points capillary blood glucose, 24-hour continuous glucose monitoring system tracings and global satisfaction score were evaluated at the end of each 12-week treatment period. RESULTS: HbA1c decreased from 9.0+/-1.6% to 8.6+/-1.6% with multiple injections and 7.7+/-0.8% with pump device (p<0.03). Capillary blood glucose was lowered at all time-points with pump, but only at morning with multiple injections (p<0.01). Compared to conventional therapy, pump reduced hyperglycemic area under curve by 73% (p<0.01), but multiple injections by only 32% (p=0.08). Rate of hypoglycemia was not increased and patient's satisfaction was comparable with both intensive treatments. CONCLUSIONS: Pump therapy provides a better metabolic control than injection regimens, and seems to be safe and convenient in patients with type 2 diabetes who fail to respond to conventional insulin therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号