首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we develop a three-species intraguild predation model which incorporates refuges used by the resource and the intraguild prey, and focus on the effects of refuges on the three species coexistence. The invasion condition and parameter region for coexistence are obtained using invasion analysis. The new invasion condition requires that all boundary states with one missing species can be invaded by the missing species. Numerical simulations show that refuges have a major influence on species coexistence of intraguild predation system, and the results strongly depend on the types of refuges introduced into the model. Our study also shows that prey's refuges are detrimental to species coexistence except the resource using refuges. In contrast to previous research, we find that spatial structure may play an important role in effects of refuges on species coexistence of intraguild predation systems. Our results may shed new light on understanding the mechanisms and the persistence of multi-species predators-prey system.  相似文献   

2.
The effects of refuges on predator-prey interactions: a reconsideration   总被引:3,自引:0,他引:3  
Prey refuges are widely believed to prevent prey extinction and damp predator-prey oscillations. A review of the empirical evidence suggests that refuges are indeed capable of playing the former role. But the conditions under which they do so are not understood, nor is there any solid evidence for an effect on population fluctuations. The intuitive view that refuges act to stabilize equilibria and damp predator-prey oscillations is based in several theoretical studies of extremely simple models. Using a more realistic model, I show that several kinds of refuges can exert a locally destabilizing effect and create stable, large-amplitude oscillations which would damp out if no refuge was present. This finding contrasts sharply with the usual view. I argue that current evidence is tol weak, and the range of theoretically possible effects is too broad, to justify any simple characterization of refuge effects in nature. Manipulative empirical studies are an important first step toward correcting this situation, and I discuss some important factors to consider in their design.  相似文献   

3.
Many prey flee to refuges to escape from approaching predators, but little is known about how they select one among many refuges available. The problem of choice among alternative refuges has not been modeled previously, but a recent model that predicts flight initiation distance (FID = predator–prey distance when escape starts) for a prey fleeing to a refuge provides a basis for predicting which refuge should be chosen. Because fleeing is costly, prey should choose to flee to the refuge permitting the shortest FID. The model predicts that the more distant of two refuges can be favored if it is not too far and if the prey's trajectory to the farther refuge is more away from the predator than the direction to the nearer refuge. The difference in predicted FID between the farther and nearer refuges increases curvilinearly as the interpath angle for the farther refuge increases. The difference in predicted FID between the farther and nearer refuges increases linearly as the distance to the farther refuge increases. An isocline describing where nearer and farther refuges are equally favored shows a negative curvilinear relationship between interpath angle and prey distance to the farther refuge. In the region below the isocline, the farther refuge is favored, whereas above the isocline the prey should flee to the nearer refuge.  相似文献   

4.
Structural refuges within which prey can escape from predators can be an important limiting resource for the prey. In a manner that resembles the childhood game of musical chairs, many prey species rapidly retreat to shared, unguarded refuges whenever a predator threatens, and only when refuges are relatively abundant do all prey individuals actually escape. The key feature of this process is that the per capita prey mortality rate depends on the ratio of prey individuals to refuges. We introduce a new class of mortality functions with this feature and then demonstrate statistically that they describe field mortality data from a well-studied coral reef fish species, the Caribbean bridled goby Coryphopterus glaucofraenum, substantially better than do several mortality functions of more conventional form. J. F. Samhouri and R. R. Vance contributed equally to this work.  相似文献   

5.
We tested the hypothesis that prey refuges attract predators, leading to elevated predator activity in the vicinity of refuges. We used camera traps to determine whether the spatial activity of a predator, the ocelot (Leopardus pardalis), was biased toward refuge locations of its principal prey, the agouti (Dasyprocta punctata). We radio-tracked agoutis at night to locate active refuges and compared the activity of ocelots between these refuges and surrounding control grid locations. We found that ocelots visited the area near agouti refuges significantly more often and for longer periods of time than control locations, and that they actively investigated the refuge entrances. Both occupied and unoccupied refuges were visited, but the duration of inspection was longer at occupied refuges. As the ocelots could probably not see the agoutis within the refuges, olfaction likely cued foraging ocelots. Two refuges were repeatedly visited by the same ocelots on different days, suggesting spatial memory. Overall, our results suggest that predators can be attracted to prey refuges or refuging prey. The benefits to prey of staying nearby a refuge would thus be counterbalanced by higher likelihoods of predator encounter. This should stimulate prey to use multiple refuges alternatingly and to not enter or exit refuges at times of high predator activity.  相似文献   

6.
本文假设感染的食饵有恢复率和对捕食者有收获,研究了一个对部分食饵和全部捕食者具有寄生虫病感染的捕食模型.用定性理论证明了边界和正平衡点的稳定性.结论表明恢复率和收获率对正平衡点的稳定性有影响.  相似文献   

7.
刘志广 《生态学报》2018,38(8):2958-2964
建立了一个显式含有空间庇护所的两斑块Leslie-Gower捕食者-食饵系统。假设只有食饵种群在斑块间以常数迁移率迁移,且在每个斑块上食饵间的迁移比局部捕食者-食饵相互作用发生的时间尺度要快。利用两个时间尺度,可以构建用来描述所有斑块总的食饵和捕食者密度的综合系统。数学分析表明,在一定条件下,存在唯一的正平衡点,并且此平衡点全局稳定。进一步,捕食者的数量随着食饵庇护所数量增加而降低;在一定条件下,食饵的数量随着食饵庇护所数量增加先增加后降低,在足够强的庇护所强度下,两物种出现灭绝。对比以往研究,利用显式含有和隐含空间庇护所的数学模型所得结论不一致,这意味着在研究庇护所对捕食系统种群动态影响时,空间结构可能起着重要作用。  相似文献   

8.
Ecological theory suggests that the impact of predation can be strongly modified by the existence of regions of the environment in which prey are less accessible to predators, which underscores the need for empirical studies examining the factors influencing the availability and importance of such prey refuges. Our study tested whether benthic microhabitats with high flows provide suspension-feeding larval black flies (Simulium␣vittatum) with a spatial refuge in which the negative impact of predatory flatworms (Dugesia dorotocephala) is reduced. We conducted a short-term field experiment in Chester Creek (southeastern Pennsylvania, United States) to examine how the number of black fly larvae inhabiting tile substrates responded to manipulated variations in flatworm abundance and current speed. The abundance of flatworms declined with increasing current speed, thereby creating the potential for sites with high flows to provide larvae with a refuge from these predators. Multiple regression analysis revealed that the final abundance of larvae exhibited a significant negative relationship to flatworm abundance and a significant positive relationship to current speed. After adjusting for variations in elapsed time and initial larval abundance, flow and predators explained 38% of the variation in the rate of change in larval abundance. The positive correlation between larval abundance and flow had two components: a positive, direct effect of flow on larvae, which arises because these food-limited consumers prefer to reside within sites with faster flows where they can feed at higher rates; and a negative effect of flow on predators, and of predators on larvae, which combine to yield a positive indirect effect of flow on larvae. This indirect effect demonstrates the existence of flow-mediated refuges (i.e., microhabitats in which the impact of predation is reduced due to high flows), although the effect accounts for a small proportion of total variation in larval abundance. A consideration of biomechanical relationships suggests that microhabitats with high flows are likely to create prey refuges in a wide range of freshwater and marine benthic environments. In particular, predators will often experience greater dislodgement forces than prey because of their larger size and because they project farther above the bed where current speeds are faster. Moreover, the ability to resist a given dislodgement force may be greater for many prey, especially those that are sessile or semi- sessile. Received: 31 March 1997 / Accepted: 25 October 1997  相似文献   

9.
In this paper, we propose a general ratio-dependent prey-predator model with disease in predator subject to the strong Allee effect in prey. We obtain the complete dynamics of both models: (a) full model with Allee effect; (b) full model without Allee effect. Model (a) may have more than one interior equilibrium point, but model (b) has only one interior equilibrium point. Numerical results reveal that the coexistence of all the populations at the endemic state is possible for both the models. But for the model with Allee effect, the coexistence can be destroyed by an increased supply of alternative food for the predators. It can also be proved that for the full model with Allee effect, the disease can be suppressed under certain parametric conditions. Also by comparing models (a) and (b), we conclude that Allee effect can create or destroy the interior attractor. Finally, we have studied the disease free-submodel (prey and susceptible predator model) with and without Allee effect. The comparative study between these two submodels leads to the following conclusions: 1) In the presence of Allee effect, the number of interior equilibrium points can change from zero to two whereas the submodel without Allee effect has unique interior equilibrium point; 2) Both with and without Allee effect, initial conditions play an important role on the survival and extinction of prey as well as its corresponding predator; 3) In the presence of Allee effect, bi-stability occurs with stable or periodic coexistence of prey and susceptible predator and the extinction of prey and susceptible predator; 4) Allee effect can generate or destroy the interior equilibrium points.  相似文献   

10.
1. The effectivity of elevated clay turbidity and low-oxygen concentration in the metalimnion as refuges for chaoborid larvae against fish predation was studied in experimental water columns.
2. When 70–80 nephelometric turbidity unit clay turbidity was combined with 3–4 mg L−1 oxygen concentration, prey capture rate by fish (golden orfe Leuciscus idus ) was reduced by 74% compared with the control treatment with no refuges. Oxygen and turbidity refuges alone did not significantly reduce the feeding rate.
3. All fish in the control treatment dwelled in the metalimnion, but 36% of the fish in the low-oxygen treatment and 23% of the fish in the turbidity treatment stayed in the epilimnion. In the combined treatment, 54% of the fish were in the epilimnion.
4. The results demonstrated that a combination of moderately elevated turbidity and lowered oxygen concentration in the metalimnion is an effective protection against fish predation, while turbidity or oxygen refuge alone are much less effective.
5. In the treatment with the combined refuge, oxygen concentration limited the time fish could spend in the metalimnion and turbidity affected the detection of prey through changes in reactive distance.
6. Because of the combined effects of turbidity and oxygen refuges, planktivorous fish and phantom midge larvae may co-occur in clay-turbid lakes in high densities. Such situation is problematic for biomanipulation, which aims to enhance the grazing rate of zooplankton through reduction of planktivorous fish.  相似文献   

11.
Refuges have been shown to be important mediators of predator–prey interactions, and in particular, have been proposed as a potential mechanism allowing herbivore populations to reach outbreak levels. However, very little research on the role of refuges has been conducted in systems dominated by generalist predators. We investigated the existence of refuges from predation for the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) at multiple scales. This species invaded North America and in spite of previous studies demonstrating strong suppression by generalist natural enemies, its populations periodically cause significant economic losses. Using naturally occurring populations of soybean aphid and its natural enemies, we tested for the presence of A. glycines spatial and dynamic refuges at the within-field, single plant, and within-plant scale. At the within-field level, we found only weak and transient spatial patterns in aphid populations suggesting the lack of spatial refuges at this scale. Similarly, at the plant level we found no individual colonies that escaped predation and aphid suppression was 9- to 28-fold greater in comparison with caged controls regardless of initial aphid density. When high aphid populations were exposed to predation they were rapidly reduced to levels close to the average field density and showed reduced per capita growth rates, indicating an absence of dilution of predation risk at increased aphid density. Finally, we found a significant shift in the distribution of aphids to the lower portions of the plant in the presence of generalist predators, suggesting a partial refuge from predation at the within-plant scale. Overall, we found the naturally occurring community of generalist predators to exert strong top-down suppression of soybean aphid populations at multiple scales, and no evidence that the presence of refuges at the scales studied can lead to outbreak populations. The partial refuge from predation at the within-plant scale revealed in our study may have important consequences for the within-season population dynamics of A. glycines, since it may be associated with low plant quality tradeoffs, and therefore warrants further research.  相似文献   

12.
In Rosenzweig-MacArthur models of predator-prey dynamics, Allee effects in prey usually destabilize interior equilibria and can suppress or enhance limit cycles typical of the paradox of enrichment. We re-evaluate these conclusions through a complete classification of a wide range of Allee effects in prey and predator's functional response shapes. We show that abrupt and deterministic system collapses not preceded by fluctuating predator-prey dynamics occur for sufficiently steep type III functional responses and strong Allee effects (with unstable lower equilibrium in prey dynamics). This phenomenon arises as type III functional responses greatly reduce cyclic dynamics and strong Allee effects promote deterministic collapses. These collapses occur with decreasing predator mortality and/or increasing susceptibility of the prey to fall below the threshold Allee density (e.g. due to increased carrying capacity or the Allee threshold itself). On the other hand, weak Allee effects (without unstable equilibrium in prey dynamics) enlarge the range of carrying capacities for which the cycles occur if predators exhibit decelerating functional responses. We discuss the results in the light of conservation strategies, eradication of alien species, and successful introduction of biocontrol agents.  相似文献   

13.
PERSISTENCE OF A THREE INTERACTING PREY-PREDATOR MODEL WITH REFUGES   总被引:1,自引:0,他引:1  
IIntroductionWeknowthataveryimportantconceptInmathematicalecologyIsperslstenceorpermanence.Themodelingofthreeormorespedeshasbeendiscussedbysomeauthors.FreedmanandWaltman[‘·’JdlscussedtheperslstenceofthreeInteractingKolmogorovtypemodelsformedbyprey-predatorandthreecompectltlvepopulations.HutsonandLaw[’Jstudledthesimilarmodeltoo.ItIsshownthataKolmogorovthree-spedessystemwithvariouscasescanbepersistent.TheecologymodelsInwhichthepreyspedeshasdlffuslonbehaviorsorrefugeshavebeendi…  相似文献   

14.
Sudden catastrophic events like fires, hurricanes, tsunamis, landslides and deforestation increase population densities in habitat fragments, as fleeing animals encroach into these refuges. Such sudden overcrowding will trigger transient fluctuations in population size in the refuges, which may expose refuge populations to an increased risk of extinction. Until recently, detailed information about the operation of density dependence in stage-structured populations, and tools for quantifying the effects of transient dynamics, have not been available, so that exploring the extinction risk of such transient fluctuations has been intractable. Here, we use such recently developed tools to show that extinction triggered by overcrowding can threaten populations in refuges. Apart from situations where density dependence acts on survival, our results indicate that short-lived species may be more at risk than longer-lived species. Because dynamics in local populations may be critical for the preservation of metapopulations and rare species, we argue that this aspect warrants further attention from conservation biologists.  相似文献   

15.
We consider a predator-prey model in a two-patch environment and assume that migration between patches is faster than prey growth, predator mortality and predator-prey interactions. Prey (resp. predator) migration rates are considered to be predator (resp. prey) density-dependent. Prey leave a patch at a migration rate proportional to the local predator density. Predators leave a patch at a migration rate inversely proportional to local prey population density. Taking advantage of the two different time scales, we use aggregation methods to obtain a reduced (aggregated) model governing the total prey and predator densities. First, we show that for a large class of density-dependent migration rules for predators and prey there exists a unique and stable equilibrium for migration. Second, a numerical bifurcation analysis is presented. We show that bifurcation diagrams obtained from the complete and aggregated models are consistent with each other for reasonable values of the ratio between the two time scales, fast for migration and slow for local demography. Our results show that, under some particular conditions, the density dependence of migrations can generate a limit cycle. Also a co-dim two Bautin bifurcation point is observed in some range of migration parameters and this implies that bistability of an equilibrium and limit cycle is possible.  相似文献   

16.
Localized hypoxic habitats were created in Delta Marsh, Manitoba, Canada to determine the potential of regions of moderate hypoxia to act as refuges for forage fishes from piscine predators. Minnow traps and giving‐up density (GUD) plates (plexiglas plates covered with trout crumble and fine gravel) were used to assess habitat use and perceived habitat quality for forage fishes, respectively, while passive integrated transponder tags provided data on habitat use by predator species to assess the level of predation risk. Data were collected both before and after a hypoxia manipulation (2–3 mg l?1 dissolved oxygen, DO) to create a before–after control–effect style experiment. Fathead minnows Pimephales promelas were more abundant and consumed more food from GUD plates in hypoxic bays after the DO manipulation, indicating hypoxic locations were perceived as higher quality, lower‐risk habitats. The frequency of predator visits was not consistently affected. The duration of visits, and therefore the total time spent in these habitats, however, was significantly shorter. These predator data, combined with the prey information, are consistent with the hypothesis that hypoxic regions function as predator refuges. The refuge effect is not the result of predator exclusion, however; instead predators are rendered less capable of foraging and pose less of a threat in hypoxic locations.  相似文献   

17.
This study examines the effects of resource distribution on colonisation, intra- and interspecific aggregation, and the occurrence of low-density, competition refuges for tropical dung beetles. In field experiments from central Peru, using dung pats (resource patches) of different volumes, the numbers of interacting species and total beetle biomass at individual pats increased with increasing pat volume. In two of three separate experiments (including an experiment that also varied patch density), this represented a decrease in the biomass of beetles per unit volume (biomass-density) at larger patches. The numbers of interacting tunneller species and tunneller biomass-density were also related to the distance between pats (patch density) in one of two experiments with constant numbers of pats. Closely positioned pats had generally fewer interacting species and a lower biomass-density of beetles. For the most abundant Dichotomius species, interspecific associations increased as distances increased between dung pats. The numbers of interacting species and biomass-density declined linearly under the combined effects of increasing patch density and local patch abundance in 25 m2 plots. In experimentally placed grids with large numbers of pats, colonisation of pats at the edge of the grids was generally higher than at the centre of the grids for tunnellers and Eurysternus spp. but not for ball rollers; however, at least tunnellers did not readjust to avoid patches with high densities of competitors. These results indicate that an aggregated distribution of dung and natural variability in patch size contribute to species coexistence by creating low-density refuges for weaker competitors.  相似文献   

18.
Spatial heterogeneity of the environment has long been recognized as a major factor in ecological dynamics. Its role in predator–prey systems has been of particular interest, where it can affect interactions in two qualitatively different ways: by providing (1) refuges for the prey or (2) obstacles that interfere with the movements of both prey and predators. There have been relatively fewer studies of obstacles than refuges, especially studies on their effect on functional responses. By analogy with reaction–diffusion models for chemical systems in heterogeneous environments, we predict that obstacles are likely to reduce the encounter rate between individuals, leading to a lower attack rate (predator–prey encounters) and a lower interference rate (predator–predator encounters). Here, we test these predictions under controlled conditions using collembolans (springtails) as prey and mites as predators in microcosms. The effect of obstacle density on the functional response was investigated at the scales of individual behavior and of the population. As expected, we found that increasing obstacle density reduces the attack rate and predator interference. Our results show that obstacles, like refuges, can reduce the predation rate because obstacles decrease the attack rate. However, while refuges can increase predator dependence, we suggest that obstacles can decrease it by reducing the rate of encounters between predators. Because of their opposite effect on predator dependence, obstacles and refuges could modify in different ways the stability of predator–prey communities.  相似文献   

19.
Dynamics of predator-prey systems under the influence of cooperative hunting among predators and the fear thus imposed on the prey population is of great importance from ecological point of view. The role of hunting cooperation and the fear effect in the predator-prey system is gaining considerable attention by the researchers recently. But the study on combined effect of hunting cooperation and fear in the predator-prey system is not yet studied. In the present paper, we investigate the impact of hunting cooperation among predators and predator induced fear in prey population by using the classical predator-prey model. We consider that predator populations cooperate during hunting. We also consider that hunting cooperation induces fear among prey, which has far richer and complex dynamics. We observe that without hunting cooperation, the unique coexistence equilibrium point is globally asymptotically stable. However, an increase in the hunting cooperation induced fear may destabilize the system and produce periodic solution via Hopf-bifurcation. The stability of the Hopf-bifurcating periodic solution is obtained by computing the Lyapunov coefficient. The limit cycles thus obtained may be supercritical or subcritical. We also observe that the system undergoes the Bogdanov-Takens bifurcation in two-parameter space. Further, we observe that the system exhibits backward bifurcation between predator-free equilibrium and coexisting equilibrium. The system also exhibits two different types of bi-stabilities due to subcritical Hopf-bifurcation (between interior equilibrium and stable limit cycle) and backward bifurcation (between predator-free and interior equilibrium points). Further, we observe strong demographic Allee phenomenon in the system. To visualize the dynamical behavior of the system, extensive numerical experiments are performed by using MATLAB and MATCONT softwares.  相似文献   

20.
Prey refuges are expected to affect population dynamics, but direct experimental tests of this hypothesis are scarce. Larvae of western flower thrips Frankliniella occidentalis use the web produced by spider mites as a refuge from predation by the predatory mite Neoseiulus cucumeris. Thrips incur a cost of using the refuge through reduced food quality within the web due to spider mite herbivory, resulting in a reduction of thrips developmental rate. These individual costs and benefits of refuge use were incorporated in a stage-structured predator-prey model developed for this system. The model predicted higher thrips numbers in presence than in absence of the refuge during the initial phase. A greenhouse experiment was carried out to test this prediction: the dynamics of thrips and their predators was followed on plants damaged by spider mites, either with or without web. Thrips densities in presence of predators were higher on plants with web than on unwebbed plants after 3 weeks. Experimental data fitted model predictions, indicating that individual-level measurements of refuge costs and benefits can be extrapolated to the level of interacting populations. Model-derived calculations of thrips population growth rate enable the estimation of the minimum predator density at which thrips benefit from using the web as a refuge. The model also predicted a minor effect of the refuge on the prey density at equilibrium, indicating that the effect of refuges on population dynamics hinges on the temporal scale considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号