共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Eunju Kwon Dong Young Kim Carol A Gross John D Gross Kyeong Kyu Kim 《Protein science : a publication of the Protein Society》2010,19(11):2252-2259
Escherichia coli spheroplast protein y (EcSpy) is a small periplasmic protein that is homologous with CpxP, an inhibitor of the extracytoplasmic stress reponse. Stress conditions such as spheroplast formation induce the expression of Spy via the Cpx or the Bae two‐component systems in E. coli, though the function of Spy is unknown. Here, we report the crystal structure of EcSpy, which reveals a long kinked hairpin‐like structure of four α‐helices that form an antiparallel dimer. The dimer contains a curved oval shape with a highly positively charged concave surface that may function as a ligand binding site. Sequence analysis reveals that Spy is highly conserved over the Enterobacteriaceae family. Notably, three conserved regions that contain identical residues and two LTxxQ motifs are placed at the horizontal end of the dimer structure, stablizing the overall fold. CpxP also contains the conserved sequence motifs and has a predicted secondary structure similar to Spy, suggesting that Spy and CpxP likely share the same fold. 相似文献
5.
BACKGROUND: The reaction mechanism of methylglyoxal synthase (MGS) is believed to be similar to that of triosephosphate isomerase (TIM). Both enzymes utilise dihydroxyacetone phosphate (DHAP) to form an enediol(ate) phosphate intermediate as the first step of their reaction pathways. However, the second catalytic step in the MGS reaction pathway is characterized by the elimination of phosphate and collapse of the enediol(ate) to form methylglyoxal instead of reprotonation to form the isomer glyceraldehyde 3-phosphate. RESULTS: The crystal structure of MGS bound to formate and substoichiometric amounts of phosphate in the space group P6522 has been determined at 1.9 A resolution. This structure shows that the enzyme is a homohexamer composed of interacting five-stranded beta/alpha proteins, rather than the hallmark alpha/beta barrel structure of TIM. The conserved residues His19, Asp71, and His98 in each of the three monomers in the asymmetric unit bind to a formate ion that is present in the crystallization conditions. Differences in the three monomers in the asymmetric unit are localized at the mouth of the active site and can be ascribed to the presence or absence of a bound phosphate ion. CONCLUSIONS: In agreement with site-directed mutagenesis and mechanistic enzymology, the structure suggests that Asp71 acts as the catalytic base. Further, Asp20 and Asp101 are involved in intersubunit salt bridges. These salt bridges may provide a pathway for transmitting allosteric information. 相似文献
6.
Dong X Kato-Murayama M Muramatsu T Mori H Shirouzu M Bessho Y Yokoyama S 《Protein science : a publication of the Protein Society》2007,16(3):528-534
Leucyl/phenylalanyl-tRNA-protein transferase (L/F-transferase) is an N-end rule pathway enzyme, which catalyzes the transfer of Leu and Phe from aminoacyl-tRNAs to exposed N-terminal Arg or Lys residues of acceptor proteins. Here, we report the 1.6 A resolution crystal structure of L/F-transferase (JW0868) from Escherichia coli, the first three-dimensional structure of an L/F-transferase. The L/F-transferase adopts a monomeric structure consisting of two domains that form a bilobate molecule. The N-terminal domain forms a small lobe with a novel fold. The large C-terminal domain has a highly conserved fold, which is observed in the GCN5-related N-acetyltransferase (GNAT) family. Most of the conserved residues of L/F-transferase reside in the central cavity, which exists at the interface between the N-terminal and C-terminal domains. A comparison of the structures of L/F-transferase and the bacterial peptidoglycan synthase FemX, indicated a structural homology in the C-terminal domain, and a similar domain interface region. Although the peptidyltransferase function is shared between the two proteins, the enzymatic mechanism would differ. The conserved residues in the central cavity of L/F-transferase suggest that this region is important for the enzyme catalysis. 相似文献
7.
L-Arabinose isomerase, EC 5.3.1.4, catalyzes the conversion of L-arabinose to L-ribulose, the first step in the catabolism of L-arabinose by Escherichia coli B/r. Patrick and Lee (1969) J. Biol. Chem. 244, 4277--4283) demonstrated that native L-arabinose isomerase is composed of six identical subunits of approximately Mr = 60,000. In this paper we describe an electron microscopy study of the arrangement of the six identical subunits. The isomerase is seen in two distinctly different orientations. The first has three subunits visible, with a 3-fold axis of symmetry, corresponding to a face-on view of two stacked, eclipsed trimers. The second orientation is rectangular in shape with 2-fold symmetry; suggesting a side-on view of the stacked trimers. The six identical subunits are thus arranged with D3 symmetry as in a trigonal prism. Measurements were made on the maximum profile of the three 2-fold axes of symmetry of the face-on orientations, and of both the long and short dimensions of the side-on orientation. The best estimate for the maximum profile of the 2-fold axes of symmetry of the face-on view is 106 +/- 8 A, using glutamine synthetase as an internal size standard. Measurements from micrographs of the isomerase alone, using an external magnification calibration, give the following results: for the maximum profile of the three 2-fold axes of symmetry of the face-on view, 132 +/- 7 A; for the long axis of the side-on view, 136 +/- 10 A; and for the short axis, 105 +/- 6 A. These measurements are consisting with the interpretation of the profiles as representing two different orientations of the L-arabinose isomerase. 相似文献
8.
The glucitol operon (gutAEBDMRQ) of Escherichia coli encodes a phosphoenolpyruvate:sugar phosphotransferase system that metabolizes the hexitol D-glucitol (sorbitol). The functions for all but the last gene, gutQ, have been previously assigned. The high sequence similarity between GutQ and KdsD, a D-arabinose 5-phosphate isomerase (API) from the 3-deoxy-D-manno-octulosonate (KDO)-lipopolysaccharide (LPS) biosynthetic pathway, suggested a putative activity, but its role within the context of the gut operon remained unclear. Accordingly, the enzyme was cloned, overexpressed, and characterized. Recombinant GutQ was shown to indeed be a second copy of API from the E. coli K-12 genome with biochemical properties similar to those of KdsD, catalyzing the reversible aldol-ketol isomerization between D-ribulose 5-phosphate (Ru5P) and D-arabinose 5-phosphate (A5P). Genomic disruptions of each API gene were constructed in E. coli K-12. TCM11[(deltakdsD)] was capable of sustaining essential LPS synthesis at wild-type levels, indicating that GutQ functions as an API inside the cell. The gut operon remained inducible in TCM7[(deltagutQ)], suggesting that GutQ is not directly involved in d-glucitol catabolism. The conditional mutant TCM15[(deltagutQdeltakdsD)] was dependent on exogenous A5P both for LPS synthesis/growth and for upregulation of the gut operon. The phenotype was suppressed by complementation in trans with a plasmid encoding a functional copy of GutQ or by increasing the amount of A5P in the medium. As there is no obvious obligatory role for GutQ in the metabolism of d-glucitol and there is no readily apparent link between D-glucitol metabolism and LPS biosynthesis, it is suggested that A5P is not only a building block for KDO biosynthesis but also may be a regulatory molecule involved in expression of the gut operon. 相似文献
9.
Escherichia coli 5-carboxymethyl-2-hydroxymuconate (CHM) isomerase was purified from an overexpressing cell line. The enzyme has been crystallized from ammonium sulphate in two different crystal forms. One of these has been analysed and found to be orthorhombic I222 or I2(1)2(1)2(1) with cell dimensions a = 88 A, b = 89 A, c = 121 A. The asymmetric unit contains two dimers (Vm = 2.11 A3/dalton). The crystals diffract to beyond 3.0 A resolution and are stable to irradiation with X-rays. Data have been collected to 3.0 A resolution and a search for potential heavy-metal derivatives is in progress. 相似文献
10.
A gene encoding for arabinose 5-phosphate isomerase (API), which catalyzes the interconversion of d-ribulose 5-phosphate (Ru5P) and d-arabinose 5-phosphate (A5P), has been identified from the genome of Escherichia coli K-12. API is the first enzyme in the biosynthesis of 3-deoxy-d-manno-octulosonate (KDO), a sugar moiety located in the lipopolysaccharide layer of most Gram-negative bacteria. The API gene yrbH is located next to the recently identified specific KDO 8-P phosphatase gene, yrbI. The 328-amino acid open reading frame yrbH was cloned, overexpressed, and characterized. The purified recombinant enzyme is a tetramer and is sensitive to inhibition by zinc cations. API has optimal activity at pH 8.4 and catalytic residues with estimated pKa values of 6.55 +/- 0.04 and 10.34 +/- 0.07. The enzyme is specific for A5P and Ru5P, with apparent Km values of 0.61 +/- 0.06 mm for A5P and 0.35 +/- 0.08 mm for Ru5P. The apparent kcat in the A5P to Ru5P direction is 157 +/- 4 s-1, and in the Ru5P to A5P direction it is 255 +/- 16 s-1. The value of Keq (Ru5P/A5P) is 0.50 +/- 0.06. Homology searches of the E. coli genome suggest yrbH may be one of multiple genes that encode proteins with API activity. 相似文献
11.
Acarbose is a naturally occurring pseudo-tetrasaccharide. It has been used in conjunction with other drugs in the treatment of diabetes where it acts as an inhibitor of intestinal glucosidases. To probe the interactions of acarbose with other carbohydrate recognition enzymes, the crystal structure of E. coli maltodextrin phosphorylase (MalP) complexed with acarbose has been determined at 2.95 A resolution and refined to crystallographic R-values of R (Rfree) = 0.241 (0.293), respectively. Acarbose adopts a conformation that is close to its major minimum free energy conformation in the MalP-acarbose structure. The acarviosine moiety of acarbose occupies sub-sites +1 and +2 and the disaccharide sub-sites +3 and +4. (The site of phosphorolysis is between sub-sites -1 and +1.) This is the first identification of sub-sites +3 and +4 of MalP. Interactions of the glucosyl residues in sub-sites +2 and +4 are dominated by carbohydrate stacking interactions with tyrosine residues. These tyrosines (Tyr280 and Tyr613, respectively, in the rabbit muscle phosphorylase numbering scheme) are conserved in all species of phosphorylase. A glycerol molecule from the cryoprotectant occupies sub-site -1. The identification of four oligosaccharide sub-sites, that extend from the interior of the phosphorylase close to the catalytic site to the exterior surface of MalP, provides a structural rationalization of the substrate selectivity of MalP for a pentasaccharide substrate. Crystallographic binding studies of acarbose with amylases, glucoamylases, and glycosyltranferases and NMR studies of acarbose in solution have shown that acarbose can adopt two different conformations. This flexibility allows acarbose to target a number of different enzymes. The two alternative conformations of acarbose when bound to different carbohydrate enzymes are discussed. 相似文献
12.
13.
FKBP22, a protein expressed by Escherichia coli, possesses PPIase (peptidyl-prolyl cis-trans isomerase) activity, binds FK506 (an immunosuppressive drug), and shares homology with Legionella Mip (a virulence factor) and its related proteins. To understand the domain structure and the folding-unfolding mechanism of Mip-like proteins, we investigated a recombinant E. coli FKBP22 (His-FKBP22) as a model protein. Limited proteolysis indicated that His-FKBP22 harbors an N-terminal domain (NTD), a C-terminal domain (CTD), and a long flexible region linking the two domains. His-FKBP22, NTD(+) (NTD with the entire flexible region), and CTD(+) (CTD with a truncated flexible region) were unfolded by a two-state mechanism in the presence of urea. Urea induced the swelling of dimeric His-FKBP22 molecules at the pretransition state but dissociated it at the early transition state. In contrast, guanidine hydrochloride (GdnCl)-induced equilibrium unfolding of His-FKBP22 or NTD(+) and CTD(+) seemed to follow three-step and two-step mechanisms, respectively. Interestingly, the intermediate formed during the unfolding of His-FKBP22 with GdnCl was not a molten globule but was thought to be composed of the partially unfolded dimeric as well as various multimeric His-FKBP22 molecules. Dimeric His-FKBP22 did not dissociate gradually with increasing concentrations of GdnCl. Very low GdnCl concentrations also had little effect on the molecular dimensions of His-FKBP22. Unfolding with either denaturant was found to be reversible, as refolding of the unfolded His-FKBP22 completely, or nearly completely, restored the structure and function of the protein. Additionally, denaturation of His-FKBP22 appeared to begin at the CTD(+). 相似文献
14.
Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli 总被引:2,自引:0,他引:2
McCarthy AA Haebel PW Törrönen A Rybin V Baker EN Metcalf P 《Nature structural biology》2000,7(3):196-199
DsbC is one of five Escherichia coli proteins required for disulfide bond formation and is thought to function as a disulfide bond isomerase during oxidative protein folding in the periplasm. DsbC is a 2 x 23 kDa homodimer and has both protein disulfide isomerase and chaperone activity. We report the 1.9 A resolution crystal structure of oxidized DsbC where both Cys-X-X-Cys active sites form disulfide bonds. The molecule consists of separate thioredoxin-like domains joined via hinged linker helices to an N-terminal dimerization domain. The hinges allow relative movement of the active sites, and a broad uncharged cleft between them may be involved in peptide binding and DsbC foldase activities. 相似文献
15.
The crystal structure of xylose isomerase [E.C. 5.3.1.5] from Streptomyces olivochromogenes has been determined to 3.0 A resolution. The crystals belong to space group P22(1)2(1) with unit cell parameters a = 98.7, b = 93.9, c = 87.7. The asymmetric unit contains half of a tetrameric molecule of 222 symmetry. The two-fold axis relating the two molecules in the asymmetric unit is close to where a crystallographic two-fold would be if the space group were I222. This causes the diffraction pattern to have strong I222 pseudo-symmetry, so all data were collected in this pseudo-space group. Since the sequence of this enzyme has not been reported, a polyalanine backbone has been fitted to the electron density. Xylose isomerase has two domains: the N-terminal domain is an eight-stranded alpha/beta barrel of 299 residues. The C-terminal domain is a large loop of 50 residues which is involved in intermolecular contacts. Comparison of xylose isomerase with the archetypical alpha/beta barrel protein, triose phosphate isomerase, reveals that the proteins overlap best when the third (alpha beta) strand of xylose isomerase is superimposed on the first (alpha beta) strand of triose phosphate isomerase. This same overlap has also been found between the muconate lactonising enzyme and triose phosphate isomerase [Goldman et al. (1987) J. Mol. Biol., in press]. 相似文献
16.
X-ray crystal structure of D-xylose isomerase at 4-A resolution 总被引:10,自引:0,他引:10
H L Carrell B H Rubin T J Hurley J P Glusker 《The Journal of biological chemistry》1984,259(5):3230-3236
The structure of D-xylose isomerase from Streptomyces rubiginosus has been determined at 4-A resolution using multiple isomorphous phasing techniques. The folding of the polypeptide chain has been established and consists of two structural domains. The larger domain consists of eight beta-strand alpha-helix (beta alpha) units arranged in a configuration similar to that found for triose phosphate isomerase, 2-keto-3-deoxy-6-phosphogluconate aldolase, and pyruvate kinase. The smaller domain forms a loop away from the larger domain but overlapping the larger domain of another subunit so that a tightly bound dimer is formed. The tetramer then consists of two such dimers. The location of the active site in the enzyme has been tentatively identified from studies using a crystal grown from a solution containing the inhibitor xylitol. 相似文献
17.
Nakai T Mizutani H Miyahara I Hirotsu K Takeda S Jhee KH Yoshimura T Esaki N 《Journal of biochemistry》2000,128(1):29-38
4-Amino-4-deoxychorismate lyase (ADCL) is a member of the fold-type IV of PLP dependent enzymes that converts 4-amino-4-deoxychorismate (ADC) to p-aminobenzoate and pyruvate. The crystal structure of ADCL from Escherichia coli has been solved using MIR phases in combination with density modification. The structure has been refined to an R-factor of 20.6% at 2.2 A resolution. The enzyme is a homo dimer with a crystallographic twofold axis, and the polypeptide chain is folded into small and large domains with an interdomain loop. The coenzyme, pyridoxal 5'-phosphate, resides at the domain interface, its re-face facing toward the protein. Although the main chain folding of the active site is homologous to those of D-amino acid and L-branched-chain amino acid aminotransferases, no residues in the active site are conserved among them except for Arg59, Lys159, and Glu193, which directly interact with the coenzyme and play critical roles in the catalytic functions. ADC was modeled into the active site of the unliganded enzyme on the basis of the X-ray structures of the unliganded and liganded forms in the D-amino acid and L-branched-chain amino acid aminotransferases. According to this model, the carboxylates of ADC are recognized by Asn256, Arg107, and Lys97, and the cyclohexadiene moiety makes van der Waals contact with the side chain of Leu258. ADC forms a Schiff base with PLP to release the catalytic residue Lys159, which forms a hydrogen bond with Thr38. The neutral amino group of Lys159 eliminates the a-proton of ADC to give a quinonoid intermediate to release a pyruvate in accord with the proton transfer from Thr38 to the olefin moiety of ADC. 相似文献
18.
19.
Zhang RG Andersson CE Skarina T Evdokimova E Edwards AM Joachimiak A Savchenko A Mowbray SL 《Journal of molecular biology》2003,332(5):1083-1094
Ribose-5-phosphate isomerases (EC 5.3.1.6) interconvert ribose 5-phosphate and ribulose 5-phosphate. This reaction permits the synthesis of ribose from other sugars, as well as the recycling of sugars from nucleotide breakdown. Two unrelated types of enzyme can catalyze the reaction. The most common, RpiA, is present in almost all organisms (including Escherichia coli), and is highly conserved. The second type, RpiB, is present in some bacterial and eukaryotic species and is well conserved. In E.coli, RpiB is sometimes referred to as AlsB, because it can take part in the metabolism of the rare sugar, allose, as well as the much more common ribose sugars. We report here the structure of RpiB/AlsB from E.coli, solved by multi-wavelength anomalous diffraction (MAD) phasing, and refined to 2.2A resolution. RpiB is the first structure to be solved from pfam02502 (the RpiB/LacAB family). It exhibits a Rossmann-type alphabetaalpha-sandwich fold that is common to many nucleotide-binding proteins, as well as other proteins with different functions. This structure is quite distinct from that of the previously solved RpiA; although both are, to some extent, based on the Rossmann fold, their tertiary and quaternary structures are very different. The four molecules in the RpiB asymmetric unit represent a dimer of dimers. Active-site residues were identified at the interface between the subunits, such that each active site has contributions from both subunits. Kinetic studies indicate that RpiB is nearly as efficient as RpiA, despite its completely different catalytic machinery. The sequence and structural results further suggest that the two homologous components of LacAB (galactose-6-phosphate isomerase) will compose a bi-functional enzyme; the second activity is unknown. 相似文献
20.
Walters MJ Srikannathasan V McEwan AR Naismith JH Fierke CA Toone EJ 《Bioorganic & medicinal chemistry》2008,16(2):710-720
2-Keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases catalyze an identical reaction differing in substrate specificity in only the configuration of a single stereocenter. However, the proteins show little sequence homology at the amino acid level. Here we investigate the determinants of substrate selectivity of these enzymes. The Escherichia coli KDPGal aldolase gene, cloned into a T7 expression vector and overexpressed in E. coli, catalyzes retro-aldol cleavage of the natural substrate, KDPGal, with values of k(cat)/K(M) and k(cat) of 1.9x10(4)M(-1)s(-1) and 4s(-1), respectively. In the synthetic direction, KDPGal aldolase efficiently catalyzes an aldol addition using a limited number of aldehyde substrates, including d-glyceraldehyde-3-phosphate (natural substrate), d-glyceraldehyde, glycolaldehyde, and 2-pyridinecarboxaldehyde. A preparative scale reaction between 2-pyridinecarboxaldehyde and pyruvate catalyzed by KDPGal aldolase produced the aldol adduct of the R stereochemistry in >99.7% ee, a result complementary to that observed using the related KDPG aldolase. The native crystal structure has been solved to a resolution of 2.4A and displays the same (alpha/beta)(8) topology, as KDPG aldolase. We have also determined a 2.1A structure of a Schiff base complex between the enzyme and its substrate. This model predicts that a single amino acid change, T161 in KDPG aldolase to V154 in KDPGal aldolase, plays an important role in determining the stereochemical course of enzyme catalysis and this prediction was borne out by site-directed mutagenesis studies. However, additional changes in the enzyme sequence are required to prepare an enzyme with both high catalytic efficiency and altered stereochemistry. 相似文献