首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 735 毫秒
1.
Signal peptides of gram-positive exoproteins generally carry a higher net positive charge at their amino termini (N regions) and have longer hydrophobic cores (h regions) and carboxy termini (C regions) than do signal peptides of Escherichia coli envelope proteins. To determine if these differences are functionally significant, the ability of Bacillus subtilis to secrete four different E. coli envelope proteins was tested. A pulse-chase analysis demonstrated that the periplasmic maltose-binding protein (MBP), ribose-binding protein (RBP), alkaline phosphatase (PhoA), and outer membrane protein OmpA were only inefficiently secreted. Inefficient secretion could be ascribed largely to properties of the homologous signal peptides, since replacing them with the B. amyloliquefaciens alkaline protease signal peptide resulted in significant increases in both the rate and extent of export. The relative efficiency with which the native precursors were secreted (OmpA >> RBP > MBP > PhoA) was most closely correlated with the overall hydrophobicity of their h regions. This correlation was strengthened by the observation that the B. amyloliquefaciens levansucrase signal peptide, whose h region has an overall hydrophobicity similar to that of E. coli signal peptides, was able to direct secretion of only modest levels of MBP and OmpA. These results imply that there are differences between the secretion machineries of B. subtilis and E. coli and demonstrate that the outer membrane protein OmpA can be translocated across the cytoplasmic membrane of B. subtilis.  相似文献   

2.
以大肠-枯草穿梭载体p MA5质粒为基本骨架,以来源于嗜热脂肪地芽孢杆菌Geobacillus stearothermophilus NUB3621的耐高温α-淀粉酶基因为目标基因,利用POE-PCR法,成功构建针对淀粉酶的信号肽筛选载体。从枯草芽孢杆菌168基因组中扩增得到46个信号肽,利用POE-PCR法,使46个信号肽分别与线性化的筛选载体形成对应的multimer产物,直接转化枯草芽孢杆菌1A751,得到含不同信号肽的重组菌株。发酵结果显示,除了5个与淀粉酶适配性很低的信号肽,其它信号肽均有不同的引导淀粉酶细胞外分泌的能力,其中bgls引导淀粉酶细胞外分泌的能力最强,上清酶活的峰值达1 393.3 U/m L。  相似文献   

3.
Previous studies have demonstrated that signal peptides bind to the signal recognition particle (SRP) primarily via hydrophobic interactions with the 54-kDa protein subunit. The crystal structure of the conserved SRP ribonucleoprotein core, however, raised the surprising possibility that electrostatic interactions between basic amino acids in signal peptides and the phosphate backbone of SRP RNA may also play a role in signal sequence recognition. To test this possibility we examined the degree to which basic amino acids in a signal peptide influence the targeting of two Escherichia coli proteins, maltose binding protein and OmpA. Whereas both proteins are normally targeted to the inner membrane by SecB, we found that replacement of their native signal peptides with another moderately hydrophobic but unusually basic signal peptide (DeltaEspP) rerouted them into the SRP pathway. Reduction in either the net positive charge or the hydrophobicity of the DeltaEspP signal peptide decreased the effectiveness of SRP recognition. A high degree of hydrophobicity, however, compensated for the loss of basic residues and restored SRP binding. Taken together, the data suggest that the formation of salt bridges between SRP RNA and basic amino acids facilitates the binding of a distinct subset of signal peptides whose hydrophobicity falls slightly below a threshold level.  相似文献   

4.
The B. subtilis alpha-amylase promoter and signal peptide are functional in E. coli cells. DNA fragments coding for signal peptides with different lengths (28, 31, 33 and 41 amino acids from the translation initiator Met) were prepared and fused with the E. coli beta-lactamase structural gene. In B. subtilis cells, the sequences of 31, 33 and 41 amino acids were able to secrete beta-lactamase into the surrounding media, but the 28 amino acid sequence was not. In contrast, all of the four sequences were able to export beta-lactamase into the periplasmic space of E. coli cells. Thus, the recognition of the B. subtilis alpha-amylase signal peptide in E. coli cells seems to be different from that in B. subtilis cells.  相似文献   

5.
Kim J  Rusch S  Luirink J  Kendall DA 《FEBS letters》2001,505(2):245-248
In Escherichia coli, protein export from the cytoplasm may occur via the signal recognition particle (SRP)-dependent pathway or the Sec-dependent pathway. Membrane proteins utilize the SRP-dependent route, whereas many secretory proteins use the cytoplasmic Sec machinery. To examine the possibility that signal peptide hydrophobicity governs which targeting route is utilized, we used a series of PhoA signal sequence mutants which vary only by incremental hydrophobicity changes. We show that depletion of SRP, but not trigger factor, affects all the mutants examined. These results suggest secretory proteins with a variety of signal sequences, as well as membrane proteins, require SRP for export.  相似文献   

6.
The Escherichia coli cytoplasmic protein thioredoxin 1 can be efficiently exported to the periplasmic space by the signal sequence of the DsbA protein (DsbAss) but not by the signal sequence of alkaline phosphatase (PhoA) or maltose binding protein (MBP). Using mutations of the signal recognition particle (SRP) pathway, we found that DsbAss directs thioredoxin 1 to the SRP export pathway. When DsbAss is fused to MBP, MBP also is directed to the SRP pathway. We show directly that the DsbAss-promoted export of MBP is largely cotranslational, in contrast to the mode of MBP export when the native signal sequence is utilized. However, both the export of thioredoxin 1 by DsbAss and the export of DsbA itself are quite sensitive to even the slight inhibition of SecA. These results suggest that SecA may be essential for both the slow posttranslational pathway and the SRP-dependent cotranslational pathway. Finally, probably because of its rapid folding in the cytoplasm, thioredoxin provides, along with gene fusion approaches, a sensitive assay system for signal sequences that utilize the SRP pathway.  相似文献   

7.
Regulated expression of AmyQ alpha-amylase of Bacillus amyloliquefaciens was used to examine the capacity of the protein secretion apparatus of B. subtilis. One B. subtilis cell was found to secrete maximally 10 fg of AmyQ per h. The signal peptidase SipT limits the rate of processing of the signal peptide. Another limit is set by PrsA lipoprotein. The wild-type level of PrsA was found to be 2 x 10(4) molecules per cell. Decreasing the cellular level of PrsA did not decrease the capacity of the protein translocation or signal peptide processing steps but dramatically affected secretion in a posttranslocational step. There was a linear correlation between the number of cellular PrsA molecules and the number of secreted AmyQ molecules over a wide range of prsA and amyQ expression levels. Significantly, even when amyQ was expressed at low levels, overproduction of PrsA enhanced its secretion. The finding is consistent with a reversible interaction between PrsA and AmyQ. The high cellular level of PrsA suggests a chaperone-like function. PrsA was also found to be essential for the viability of B. subtilis. Drastic depletion of PrsA resulted in altered cellular morphology and ultimately in cell death.  相似文献   

8.
Translocation, processing and secretion of YvaY, a Bacillus subtilis protein of unknown function, were characterised both in B. subtilis and in Escherichia coli. In its natural host B. subtilis, YvaY was transiently synthesised at the end of the exponential growth phase. It was efficiently secreted into the culture supernatant in spite of a calculated membrane spanning domain in the mature part of the protein. In E. coli, despite the high conservation of Sec-dependent transport components, processing of preYvaY was strongly impaired. To uncover which elements of E. coli and B. subtilis translocation systems are responsible for the observed substrate specificity, components of the B. subtilis Sec-system were co-expressed besides yvaY in E. coli. Expression of B. subtilis secA or secYEG genes did not affect processing, but expression of B. subtilis signal peptidase genes significantly enhanced processing of preYvaY in E. coli. While the major signal peptidases SipS or SipT had a strong stimulatory effect on preYvaY processing, the minor signal peptidases SipU, SipV or SipW had a far less stimulatory effect in E. coli. These results reveal that targeting and translocation of preYvaY is mediated by the E. coli Sec proteins but processing of preYvaY is not performed by E. coli signal peptidase LepB. Thus, differences in substrate specificities of E. coli LepB and the B. subtilis Sip proteins provide the bottleneck for export of YvaY in E. coli. Significant slower processing of preYvaY in absence of SecB indicated that SecB mediates targeting of the B. subtilis precursor.  相似文献   

9.
The role of positively charged residues at the N termini of signal peptides in protein export has been studied in Bacillus subtilis. Bacillus signal peptides (alkaline protease [Apr] and neutral protease [Npr] from Bacillus amyloliquefaciens) were altered and fused to mature levansucrase (Lvs). The effects of the various alterations on the export of Lvs in B. subtilis were determined. The replacement of positively charged residues with neutral residues in both Apr and Npr signal peptides resulted in a slight defect in the export of Lvs from B. subtilis. Introduction of a negatively charged residue (aspartic acid) at the N terminus of Npr signal peptide blocked the export of Lvs. However, Apr signal peptide with a net charge of -3 (three aspartic acid residues) was still functional.  相似文献   

10.
Considerable evidence indicates that the Escherichia coli signal recognition particle (SRP) selectively targets proteins that contain highly hydrophobic signal peptides to the SecYEG complex cotranslationally. Presecretory proteins that contain only moderately hydrophobic signal peptides typically interact with trigger factor (TF) and are targeted post-translationally. Here we describe a striking exception to this rule that has emerged from the analysis of an unusual 55-amino acid signal peptide associated with the E. coli autotransporter EspP. The EspP signal peptide consists of a C-terminal domain that resembles a classical signal peptide plus an N-terminal extension that is conserved in other autotransporter signal peptides. Although a previous study showed that proteins containing the C-terminal domain of the EspP signal peptide are targeted cotranslationally by SRP, we found that proteins containing the full-length signal peptide were targeted post-translationally via a novel TF-independent mechanism. Mutation of an invariant asparagine residue in the N-terminal extension, however, restored cotranslational targeting. Remarkably, proteins containing extremely hydrophobic derivatives of the EspP signal peptide were also targeted post-translationally. These and other results suggest that the N-terminal extension alters the accessibility of the signal peptide to SRP and TF and promotes post-translational export by reducing the efficiency of the interaction between the signal peptide and the SecYEG complex. Based on data, we propose that the N-terminal extension mediates an interaction with an unidentified cytoplasmic factor or induces the formation of an unusual signal peptide conformation prior to the onset of protein translocation.  相似文献   

11.
H Smith  S Bron  J Van Ee    G Venema 《Journal of bacteriology》1987,169(7):3321-3328
To study the diversity and efficiency of signal peptides for secreted proteins in gram-positive bacteria, two plasmid vectors were constructed which were used to probe for export signal-coding regions in Bacillus subtilis. The vectors contained genes coding for extracellular proteins (the alpha-amylase gene from Bacillus licheniformis and the beta-lactamase gene from Escherichia coli) which lacked a functional signal sequence. By shotgun cloning of restriction fragments from B. subtilis chromosomal DNA, a great variety of different export-coding regions were selected. These regions were functional both in B. subtilis and in E. coli. In a number of cases where protein export had been restored, intracellular precursor proteins of increased size could be detected, which upon translocation across the cellular membrane were processed to mature products. The high frequency with which export signal-coding regions were obtained suggests that, in addition to natural signal sequences, many randomly cloned sequences can function as export signal.  相似文献   

12.
Ray N  Oates J  Turner RJ  Robinson C 《FEBS letters》2003,534(1-3):156-160
The DmsD protein is essential for the biogenesis of DMSO reductase in Escherichia coli, and binds the signal peptide of the DmsA subunit, a Tat substrate. This suggests a role as a guidance factor to target pre-DmsA to the translocase. Here, we have analysed the export of fusion proteins in which the DmsA and TorA signal peptides are fused to green fluorescent protein. Both chimeras are efficiently exported to the periplasm in wild-type E. coli cells and we show that their export efficiencies are essentially identical in a mutant lacking DmsD. An authentic Tat substrate, TMAO reductase, is also efficiently exported in the dmsD mutant. The data indicate that DmsD carries out a critical role in DMSO reductase biogenesis/assembly but is not required for the functioning of the DmsA signal peptide.  相似文献   

13.
To study the effect of inserted peptides on the secretion and processing of exported proteins in Bacillus subtilis and Escherichia coli, pBR322-derived DNA fragments coding for small peptides were inserted between the DNA coding for the 31 amino acid B. subtilis alpha-amylase signal peptide and that coding for the mature part of the extracellular thermostable alpha-amylase of B. stearothermophilus. Most of the inserted peptides (21 to 65 amino acids) decreased the production of the enzyme in B. subtilis and E. coli, the effect of each peptide being similar in the two strains. In contrast, with one peptide (a 21 amino acid sequence encoded by the extra DNA in pTUBE638), the production of alpha-amylase was enhanced more than 1.7-fold in B. subtilis in comparison with that of the parent strain. The molecular masses of the thermostable alpha-amylases in the periplasm of the E. coli transformants varied for each peptide insert, whereas those in the culture supernatants of the B. subtilis transformants had molecular masses similar to that of the mature enzyme. Based on the NH2-terminal amino acid sequence of the hybrid protein from pTUBE638, it was shown that in E. coli, the NH2-terminally extended thermostable alpha-amylase was translocated and remained in the periplasm after the 31 amino acid signal sequence was removed. In the case of B. subtilis, after the removal of a 34-amino acid signal sequence, the hybrid protein was secreted and processed to the mature form.  相似文献   

14.
In Escherichia coli, components of a signal recognition particle (SRP) and its receptor have been identified which appear to be essential for efficient translocation of several proteins. In this study we use cross-linking to demonstrate that E. coli SRP interacts with a variety of nascent presecretory proteins and integral inner membrane proteins. Evidence is presented that the interaction is correlated with the hydrophobicity of the core region of the signal sequence and thereby with its ability to promote transport in vivo. A second E. coli component, which is identified as trigger factor, can be efficiently cross-linked to all tested nascent chains derived from both secreted and cytosolic proteins. We propose that SRP and trigger factor act as secretion-specific and general molecular chaperone respectively, early in protein synthesis.  相似文献   

15.
Gram-positive sporulating Bacillus subtilis secretes high levels of protein. Its complete genome sequence, published in 1997, encodes 4,106 proteins. Bioinformatic searches have predicted that about half of all B. subtilis proteins are related to the cell membrane through export to the extracellular medium, insertion, and attachment. Key features of the B. subtilis protein secretion machinery are the absence of an Escherichia coli SecB homolog and the presence of an SRP (signal recognition particle) that is structurally rather similar to human SRP. In addition, B. subtilis contains five type I signal peptidases (SipS, T, U, V, and W). Our in vitro assay system indicated that co-operation between the SRP-protein targeting system to the cell membrane and the Sec protein translocation machinery across the cytoplasmic membrane constitutes the major protein secretion pathway in B. subtilis. Furthermore, the function of the SRP-Sec pathway in protein localization to the cell membrane and spore was analyzed.  相似文献   

16.
[目的]本试验旨在筛选引导表达外源木聚糖酶基因高效分泌的信号肽,为枯草芽胞杆菌木聚糖酶高效分泌表达系统提供元件.[方法]构建信号肽筛选载体,载体是以含壮观霉素抗性基因的大肠-枯草穿梭载体为基本骨架,目标蛋白为耐碱性木聚糖酶,可在麦芽糖启动子Pglv诱导下表达.从枯草芽胞杆菌A1747基因组中扩增获得24个Sec途径信号肽,并将其全部链接到至筛选载体上,并在枯草芽胞杆菌WB700中实现表达分泌.重组菌在3%麦芽糖诱导下培养24h后用DNS法测定上清酶活.[结果]成功构建信号肽筛选载体pGPSX及24个表达载体,实现木聚糖酶表达分泌.且不同信号肽对于引导外源木聚糖酶分泌能力不同,其中YnfF信号肽引导分泌目标蛋白效率最高,上清酶活为37.2IU/mL.[结论]试验证明在枯草杆菌中对外源蛋白进行信号肽筛选是提高其分泌的有效途径,并获得了针对木聚糖酶高效分泌信号肽YnfF.  相似文献   

17.
Bacillus subtilis cells expressing a hybrid protein (Lvsss-Cat) consisting of the B. amyloliquefaciens levansucrase signal peptide fused to B. pumilus chloramphenicol acetyltransferase (Cat) are unable to export Cat protein into the growth medium. A series of tripartite protein fusions was constructed by inserting various lengths of the Cat sequences between the levansucrase signal peptide and staphylococcal protein A or Escherichia coli alkaline phosphatase. Biochemical characterization of the various Cat protein fusions revealed that multiple regions in the Cat protein were causing the export defect.  相似文献   

18.
Genetic and biochemical studies have shown that the product of the Escherichia coli secY gene is an integral membrane protein with a central role in protein secretion. We found the Bacillus subtilis secY homologue within the spc-alpha ribosomal protein operon at the same position occupied by E. coli secY. B. subtilis secY coded for a hypothetical product 41% identical to E. coli SecY, a protein thought to contain 10 membrane-spanning segments and 11 hydrophilic regions, six of which are exposed to the cytoplasm and five to the periplasm. We predicted similar segments in B. subtilis SecY, and the primary sequences of the second and third cytoplasmic regions and the first, second, fourth, fifth, seventh, and tenth membrane segments were particularly conserved, sharing greater than 50% identity with E. coli SecY. We propose that the conserved cytoplasmic regions interact with similar cytoplasmic secretion factors in both organisms and that the conserved membrane-spanning segments actively participate in protein export. Our results suggest that despite the evolutionary differences reflected in cell wall architecture, Gram-negative and Gram-positive bacteria possess a similar protein export apparatus.  相似文献   

19.
Signal peptides direct the export of secretory proteins from the cytoplasm. After processing by signal peptidase, they are degraded in the membrane and cytoplasm. The resulting fragments can have signaling functions. These observations suggest important roles for signal peptide peptidases. The present studies show that the Gram-positive eubacterium Bacillus subtilis contains two genes for proteins, denoted SppA and TepA, with similarity to the signal peptide peptidase A of Escherichia coli. Notably, TepA also shows similarity to ClpP proteases. SppA of B. subtilis was only required for efficient processing of pre-proteins under conditions of hyper-secretion. In contrast, TepA depletion had a strong effect on pre-protein translocation across the membrane and subsequent processing, not only under conditions of hyper-secretion. Unlike SppA, which is a typical membrane protein, TepA appears to have a cytosolic localization, which is consistent with the observation that TepA is involved in early stages of the secretion process. Our observations demonstrate that SppA and TepA have a role in protein secretion in B. subtilis. Based on their similarity to known proteases, it seems likely that SppA and TepA are specifically required for the degradation of proteins or (signal) peptides that are inhibitory to protein translocation.  相似文献   

20.
The availability of the complete genome sequence of Bacillus subtilis has allowed the prediction of all exported proteins of this Gram-positive eubacterium. Recently, approximately 180 secretory and 114 lipoprotein signal peptides were predicted to direct protein export from the cytoplasm. Whereas most exported proteins appear to use the Sec pathway, 69 of these proteins could potentially use the Tat pathway, as their signal peptides contain RR- or KR-motifs. In the present studies, proteomic techniques were applied to verify how many extracellular B. subtilis proteins follow the Tat pathway. Strikingly, the extracellular accumulation of 13 proteins with potential RR/KR-signal peptides was Tat-independent, showing that their RR/KR-motifs are not recognized by the Tat machinery. In fact, only the phosphodiesterase PhoD was shown to be secreted in a strictly Tat-dependent manner. Sodium azide-inhibition of SecA strongly affected the extracellular appearance of de novo synthesized proteins, including the lipase LipA and two other proteins with predicted RR/KR-signal peptides. The SecA-dependent export of pre-LipA is particularly remarkable, because its RR-signal peptide conforms well to stringent criteria for the prediction of Tat-dependent export in Escherichia coli. Taken together, our observations show that the Tat pathway makes a highly selective contribution to the extracellular proteome of B. subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号