首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ADP-ribosylation) and genomic stability.   总被引:5,自引:0,他引:5  
Poly(ADP-ribose) polymerases (PARPs) catalyze the synthesis of ADP-ribose polymers and attach them to specific target proteins. To date, 6 members of this protein family in humans have been characterized. The best-known PARP, PARP-1, is located within the nucleus and has a major function in DNA repair but also in the execution of cell death pathways. Other PARP enzymes appear to carry out highly specific functions. Most prominently, the tankyrases modify telomere-binding proteins and thereby regulate telomere maintenance. Since only a single enzyme, poly(ADP-ribose) glycohydrolase (PARG), has been identified, which degrades poly(ADP-ribose), it is expected that this protein has important roles in PARP-mediated regulatory processes. This review summarizes recent observations indicating that poly(ADP-ribosylation) represents a major mechanism to regulate genomic stability both when DNA is damaged by exogenous agents and during cell division.  相似文献   

2.
The world according to PARP   总被引:19,自引:0,他引:19  
An immediate cellular response to DNA damage is the synthesis of poly(ADP-ribose) by the enzyme poly(ADP-ribose) polymerase (PARP). This nuclear enzyme and the unique post-translational modification it catalyzes have long been considered to function exclusively in cellular surveillance of genotoxic stress. The recent identification of multiple members of a PARP family might force a revision of this concept. The novel primary structures and subcellular localizations for some of these PARPs suggests new and unexpected roles for poly(ADP-ribosyl)ation in telomere replication and cellular transport.  相似文献   

3.
Macro domains constitute a protein module family found associated with specific histones and proteins involved in chromatin metabolism. In addition, a small number of animal RNA viruses, such as corona- and toroviruses, alphaviruses, and hepatitis E virus, encode macro domains for which, however, structural and functional information is extremely limited. Here, we characterized the macro domains from hepatitis E virus, Semliki Forest virus, and severe acute respiratory syndrome coronavirus (SARS-CoV). The crystal structure of the SARS-CoV macro domain was determined at 1.8-Angstroms resolution in complex with ADP-ribose. Information derived from structural, mutational, and sequence analyses suggests a close phylogenetic and, most probably, functional relationship between viral and cellular macro domain homologs. The data revealed that viral macro domains have relatively poor ADP-ribose 1"-phosphohydrolase activities (which were previously proposed to be their biologically relevant function) but bind efficiently free and poly(ADP-ribose) polymerase 1-bound poly(ADP-ribose) in vitro. Collectively, these results suggest to further evaluate the role of viral macro domains in host response to viral infection.  相似文献   

4.
Poly(ADP-ribose) glycohydrolase (PARG) is responsible for the catabolism of poly(ADP-ribose) synthesized by poly(ADP-ribose) polymerase (PARP-1) and other PARP-1-like enzymes. In this work, we report that PARG is cleaved during etoposide-, staurosporine-, and Fas-induced apoptosis in human cells. This cleavage is concomitant with PARP-1 processing and generates two C-terminal fragments of 85 and 74 kDa. In vitro cleavage assays using apoptotic cell extracts showed that a protease of the caspase family is responsible for PARG processing. A complete inhibition of this cleavage was achieved at nanomolar concentrations of the caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde, suggesting the involvement of caspase-3-like proteases. Consistently, recombinant caspase-3 efficiently cleaved PARG in vitro, suggesting the involvement of this protease in PARG processing in vivo. Furthermore, caspase-3-deficient MCF-7 cells did not show any PARG cleavage in response to staurosporine treatment. The cleavage sites identified by site-directed mutagenesis are DEID(256) downward arrow V and the unconventional site MDVD(307) downward arrow N. Kinetic studies have shown similar maximal velocity (V(max)) and affinity (K(m)) for both full-length PARG and its apoptotic fragments, suggesting that caspase-3 may affect PARG function without altering its enzymatic activity. The early cleavage of both PARP-1 and PARG by caspases during apoptosis suggests an important function for poly(ADP-ribose) metabolism regulation during this cell death process.  相似文献   

5.
In spermiogenesis, spermatid differentiation is marked by dramatic changes in chromatin density and composition. The extreme condensation of the spermatid nucleus is characterized by an exchange of histones to transition proteins and then to protamines as the major nuclear proteins. Alterations in DNA topology that occur in this process have been shown to require the controlled formation of DNA strand breaks. Poly(ADP-ribosyl)ation is a posttranslational modification of proteins mediated by a family of poly(ADP-ribose) polymerase (PARP) proteins, and two family members, PARP-1 and PARP-2, are activated by DNA strand breaks that are directly detected by the DNA-binding domains of these enzymes. Here, we show for the first time that poly(ADP-ribose) formation, mediated by poly(ADP-ribose) polymerases (PARP-1 and presumably PARP-2), occurs in spermatids of steps 11–14, steps that immediately precede the most pronounced phase of chromatin condensation in spermiogenesis. High levels of ADP-ribose polymer were observed in spermatid steps 12–13 in which the highest rates of chromatin nucleoprotein exchanges take place. We also detected -H2AX, indicating the presence of DNA double-strand breaks during the same steps. Thus, we hypothesize that transient ADP-ribose polymer formation may facilitate DNA strand break management during the chromatin remodeling steps of sperm cell maturation.M.L. Meyer-Ficca and H. Scherthan contributed equally to this work  相似文献   

6.
Poly(ADP-ribosylation) is a post-translational modification of nuclear proteins typical of most eukaryotic cells. This process participates in DNA replication and repair and is mainly regulated by two enzymes, poly(ADP-ribose) polymerase, which is responsible for the synthesis of polymers of ADP-ribose, and poly(ADP-ribose) glycohydrolase, which performs polymer degradation. The aim of this work was to investigate in the cockroach Periplaneta americana L. (Blattaria: Blattidae) the behaviour of poly(ADP-ribosylation). In particular, we addressed: (i) the possible modulation of poly(ADP-ribosylation) during the embryonic development; (ii) the expression of poly(ADP-ribose) polymerase and glycohydrolase in different tissues; and (iii) the role of poly(ADP-ribosylation) during spermatogenesis. In this work we demonstrated that: (i) as revealed by specific biochemical assays, active poly(ADP-ribose) polymerase and glycohydrolase are present exclusively in P. americana embryos at early stages of development; (ii) an activity carrying out poly(ADP-ribose) synthesis was found in extracts from testes; and (iii) the synthesis of poly(ADP-ribose) occurs preferentially in differentiating spermatids/spermatozoa. Collectively, our results indicate that the poly(ADP-ribosylation) process in P. americana, which is a hemimetabolous insect, displays catalytical and structural features similar to those described in the holometabolous insects and in mammalian cells. Furthermore, this process appears to be modulated during embryonic development and spermatogenesis.  相似文献   

7.
The importance of poly(ADP-ribose) metabolism in the maintenance of genomic integrity following genotoxic stress has long been firmly established. Poly(ADP-ribose) polymerase-1 (PARP-1) and its catabolic counterpart, poly(ADP-ribose) glycohydrolase (PARG) play major roles in the modulation of cell responses to genotoxic stress. Recent discoveries of a number of other enzymes with poly(ADP-ribose) polymerase activity have established poly(ADP-ribosyl)ation as a general biological mechanism in higher eukaryotic cells that not only promotes cellular recovery from genotoxic stress and eliminates severely damaged cells from the organism, but also ensures accurate transmission of genetic information during cell division. Additionally, emerging data suggest the involvement of poly(ADP-ribosyl)ation in the regulation of intracellular trafficking, memory formation and other cellular functions. In this brief review on PARP and PARG enzymes, emphasis is placed on PARP-1, the best understood member of the PARP family and on the relationship of poly(ADP-ribosyl)ation to cancer and other diseases of aging.  相似文献   

8.
Characterization of human poly(ADP-ribose) polymerase with autoantibodies   总被引:7,自引:0,他引:7  
The addition of poly(ADP-ribose) chains to nuclear proteins has been reported to affect DNA repair and DNA synthesis in mammalian cells. The enzyme that mediates this reaction, poly(ADP-ribose) polymerase, requires DNA for catalytic activity and is activated by DNA with strand breaks. Because the catalytic activity of poly(ADP-ribose) polymerase does not necessarily reflect enzyme quantity, little is known about the total cellular poly(ADP-ribose) polymerase content and the rate of its synthesis and degradation. In the present experiments, specific human autoantibodies to poly(ADP-ribose) polymerase and a sensitive immunoblotting technique were used to determine the cellular content of poly(ADP-ribose) polymerase in human lymphocytes. Resting peripheral blood lymphocytes contained 0.5 X 10(6) enzyme copies per cell. After stimulation of the cells by phytohemagglutinin, the poly(ADP-ribose) polymerase content increased before DNA synthesis. During balanced growth, the T lymphoblastoid cell line CEM contained approximately 2 X 10(6) poly(ADP-ribose) polymerase molecules per cell. This value did not vary by more than 2-fold during the cell growth cycle. Similarly, mRNA encoding poly(ADP-ribose) polymerase was detectable throughout S phase. Poly(ADP-ribose) polymerase turned over at a rate equivalent to the average of total cellular proteins. Neither the cellular content nor the turnover rate of poly(ADP-ribose) polymerase changed after the introduction of DNA strand breaks by gamma irradiation. These results show that in lymphoblasts poly(ADP-ribose) polymerase is an abundant nuclear protein that turns over relatively slowly and suggest that most of the enzyme may exist in a catalytically inactive state.  相似文献   

9.
10.
The inter- and intracellular localization of poly(adenosine diphosphate-ribose)(poly(ADP-ribose] synthetase was investigated using an indirect immunofluorescence technique and a specific antibody against the enzyme purified from calf thymus. In various bovine tissues, including liver, heart, pancrease, thyroid, spleen, adrenal, and skeletal muscle, the specific immunofluorescence of poly(ADP-ribose) synthetase was localized exclusively in the nucleus. Immunostaining was inhibited by preabsorption of the antibody with purified calf thymus poly(ADP-ribose) synthetase. Nuclear immunofluorescence appeared to be more prominent in the marginal area than in the central region in most nuclei. This staining pattern is similar to that of naturally occurring poly(ADP-ribose). In bovine peripheral blood the immunofluorescence of poly(ADP-ribose) synthetase was detected in nuclei of lymphocytes, but not in granulocytes, in agreement with the finding that the enzymatic activity of poly(ADP-ribose) synthetase was barely detectable in nuclei isolated from granulocytes.  相似文献   

11.
Poly(ADP-ribose) is a biopolymer synthesized by poly(ADP-ribose) polymerases. Recent findings suggest the possibility for modulation of cellular functions including cell death and mitosis by poly(ADP-ribose). Derivatization of poly(ADP-ribose) may be useful for investigating the effects of poly(ADP-ribose) on various cellular processes. We prepared poly(etheno ADP-ribose) (poly(epsilonADP-ribose)) by converting the adenine moiety of poly(ADP-ribose) to 1-N(6)-etheno adenine residues. Poly(epsilonADP-ribose) is shown to be highly resistant to digestion by poly(ADP-ribose) glycohydrolase (Parg). On the other hand, poly(epsilonADP-ribose) could be readily digested by phosphodiesterase. Furthermore, poly(epsilonADP-ribose) inhibited Parg activity to hydrolyse ribose-ribose bonds of poly(ADP-ribose). This study suggests the possibility that poly(epsilonADP-ribose) might be a useful tool for studying the poly(ADP-ribose) dynamics and function of Parg. This study also implies that modification of the adenine moiety of poly(ADP-ribose) abrogates the susceptibility to digestion by Parg.  相似文献   

12.
Quantitative studies of inhibitors of ADP-ribosylation in vitro and in vivo   总被引:16,自引:0,他引:16  
The ADP-ribosyl moiety of NAD+ is consumed in reactions catalyzed by three classes of enzymes: poly(ADP-ribose) polymerase, protein mono(ADP-ribosyl)transferases, and NAD+ glycohydrolases. In this study, we have evaluated the selectivity of compounds originally identified as inhibitors of poly(ADP-ribose) polymerase on members of the three classes of enzymes. The 50% inhibitory concentration (IC50) of more than 20 compounds was determined in vitro for both poly(ADP-ribose) polymerase and mono(ADP-ribosyl)transferase A in an assay containing 300 microM NAD+. Of the compounds tested, benzamide was the most potent inhibitor of poly(ADP-ribose) polymerase with an IC50 of 3.3 microM. The IC50 for benzamide for mono(ADP-ribosyl)transferase A was 4.1 mM, and similar values were observed for four additional cellular mono(ADP-ribosyl)transferases. The IC50 for NAD+ glycohydrolase for benzamide was approximately 40 mM. For seven of the best inhibitors, inhibition of poly(ADP-ribose) polymerase in intact C3H1OT1/2 cells was studied as a function of the inhibitor concentration of the culture medium, and the concentration for 50% inhibition (culture medium IC50) was determined. Culture medium IC50 values for benzamide and its derivatives were very similar to in vitro IC50 values. For other inhibitors, such as nicotinamide, 5-methyl-nicotinamide, and 5-bromodeoxyuridine, culture medium IC50 values were 3-5-fold higher than in vitro IC50 values. These results suggest that micromolar levels of the benzamides in the culture medium should allow selective inhibition of poly(ADP-ribose) metabolism in intact cells. Furthermore, comparative quantitative inhibition studies should prove useful for assigning the biological effects of these inhibitors as an effect on either poly(ADP-ribose) or mono(ADP-ribose) metabolism.  相似文献   

13.
Poly(ADP-ribose) is routinely detected by the use of radioactive polymers formed from labeled substrates. In this report a simple and time-saving method for the biotinylation and the detection of poly(ADP-ribose) on blots is described. The polymer modified by light-induced reaction with photobiotin was colorimetrically detected and quantified, using streptavidine-alkaline phosphatase conjugates. The separation of poly(ADP-ribose) chains on polyacrylamide gels was not affected by the biotinylation of the polymers. When biotinylated poly(ADP-ribose) was used to detect the poly(ADP-ribose) binding capability of proteins in ligand blots, the results were comparable to those obtained with poly([32P]ADP-ribose). Experiments with histones and rat liver nuclear proteins demonstrate that in studies on poly(ADP-ribose)-protein interaction, this method is applicable to the detection of poly(ADP-ribose) binding proteins.  相似文献   

14.
The possible involvement of poly(ADP-ribose) polymerase [PARP; E.C. 2.4.2.30] in the adaptive response to low-g conditions was studied in cultured adult rat hepatocytes exposed to simulated microgravity produced by the random positioning machine (RPM-3D-clinostat). Four different poly(ADP-ribose) polymerases (PARPs) have been identified recently. The best-studied member of this family is PARP-1, a highly conserved, multimodular 113 kDa protein. In multicellular organisms PARPs catalyze poly(ADP-ribose) synthesis from NAD+ to a number of structural and catalytic proteins. Moreover, PARP-1 can control its protein and DNA interactions by catalyzing its automodification with poly(ADP-ribose) molecules that can include up to 200 ADP-ribose residues and several branching points; by these polymers, PARP-1 may nocovalently interact with other proteins and alter their functions. PARP-1 binds to DNA and is activated by free ends interacting with several other DNA damage checkpoint proteins. Thus, PARPs may target specific signal network proteins via poly(ADP-ribose) and regulate their domain functions. Poly(ADP-ribosyl)ation plays a central role in genome stability and is involved in DNA replication and repair, gene expression, cell differentiation and transformation. We have shown that a loss of PARP-1 activity is a critical event in the early molecular steps of the hepatocarcinogenesis process. Moreover, a prompt increase in this enzymatic activity is linked not only to the presence of DNA free ends but is linked also to the start of DNA synthesis. More recently, we have reported that PARP-1 is involved in hormone-mediated gene expression in vitro and in vivo during rat liver regeneration.  相似文献   

15.
We have found that two nuclear enzymes, i.e. poly(ADP-ribose) polymerase (EC 2.4.2.30) and poly(ADP-ribose) glycohydrolase, may cooperate to function as a histone shuttle mechanism on DNA. The mechanism involves four distinct reaction intermediates that were analyzed in a reconstituted in vitro system. In the first step, the enzyme poly(ADP-ribose) polymerase is activated in the presence of histone-DNA complexes and converts itself into a protein carrying multiple ADP-ribose polymers. These polymers attract histones that dissociate from the DNA as a histone-polymer-polymerase complex. The DNA assumes the electrophoretic mobility of free DNA and becomes susceptible to nuclease digestion (second step). In the third step, poly(ADP-ribose) glycohydrolase degrades ADP-ribose polymers and thereby eliminates the binding sites for histones. In the fourth step, histones reassociate with DNA, and the histone-DNA complexes exhibit the electrophoretic mobilities and nuclease susceptibilities of the original complexes prior to dissociation. Our results are compatible with the view that the poly(ADP-ribosylation) system acts as a catalyst of nucleosomal unfolding of chromatin in DNA excision repair.  相似文献   

16.
The biological function of poly(ADP-ribose) polymerase in DNA repair, cell-cycle regulation and cellular differentiation has yet to be defined. Isolation of cells which are deficient in poly(ADP-ribose) synthesis would greatly facilitate the determination of the biological role of this enzyme. A method is described for isolating Chinese hamster ovary (CHO) cells deficient in the poly(ADP-ribose) polymerase activity by direct screening of colonies for enzyme activity. Colonies with decreased production of poly(ADP-ribose) are recovered from nylon replicas for further analysis. Using this method we have isolated a series of CHO cells which have 50% or less poly(ADP-ribose) polymerase activity. These mutants have normal generation times and are 20% more sensitive to the effects of DNA (m)ethylating agents than the parental cell. However, these mutants display normal sensitivity to gamma-rays.  相似文献   

17.
Regulating the topological state of DNA is a vital function of the enzyme DNA topoisomerase I. However, when acting on damaged DNA, topoisomerase I may get trapped in a covalent complex with nicked DNA (stalled topoisomerase I), that, if unrepaired, may lead to genomic instability or cell death. Here we show that ADP-ribose polymers target specific domains of topoisomerase I and reprogram the enzyme to remove itself from cleaved DNA and close the resulting gap. Two members of the poly(ADP-ribose) polymerase family, PARP-1 and 2, act as poly(ADP-ribose) carriers to stalled topoisomerase I sites and induce efficient repair of enzyme-associated DNA strand breaks. Thus, by counteracting topoisomerase I-induced DNA damage, PARP-1 and PARP-2 act as positive regulators of genomic stability in eukaryotic cells.  相似文献   

18.
Poly(ADP-ribosyl)ation is a posttranslational modification that alters the functions of the acceptor proteins and is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes. Following DNA damage, activated poly(ADP-ribose) polymerase-1 (PARP-1) catalyzes the elongation and branching of poly(ADP-ribose) (pADPr) covalently attached to nuclear target proteins. Although the biological role of poly(ADP-ribosyl)ation has not yet been defined, it has been implicated in many important cellular processes such as DNA repair and replication, modulation of chromatin structure, and apoptosis. The transient nature and modulation of poly(ADP-ribosyl)ation depend on the activity of a unique cytoplasmic enzyme called poly(ADP-ribose) glycohydrolase which hydrolyzes pADPr bound to acceptor proteins in free ADP-ribose residues. While the PARP homologues have been recently reviewed, there are relatively scarce data about PARG in the literature. Here we summarize the latest advances in the PARG field, addressing the question of its putative nucleo-cytoplasmic shuttling that could enable the tight regulation of pADPr metabolism. This would contribute to the elucidation of the biological significance of poly(ADP-ribosyl)ation.  相似文献   

19.
Calf thymus histones (individually isolated or mixtures) and high mobility group proteins were ADP-ribosylated in vitro using [32P]NAD+ and immobilized purified poly(ADP-ribose) polymerase. The modified histones were then subjected to V8 protease or alpha-chymotrypsin digestion and the resulting peptides were separated by electrophoresis on acetic acid-urea-Triton gels. It was found that in vitro ADP-ribosylated histones were much more resistant to proteases than unmodified histones. A similar approach was applied to histones modified by the endogenous poly(ADP-ribose) polymerase in permeabilized NS-1 mouse myeloma cells in culture. In this case, the proteases could not discriminate between modified and unmodified histones and putative mono(ADP-ribosyl)ated peptides appeared in a digestion frame corresponding to that of bulk peptides. These differences are most probably due to the specificity or number of ADP-ribose groups added to the histones by the endogenous or exogenous poly(ADP-ribose) polymerase. Thus, depending on the size of poly(ADP-ribose) attached to nuclear proteins, these modified proteins might display different degrees of resistance to proteolysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号