首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
3.
p38 mitogen-activated protein kinase alpha (MAPKalpha) belongs to the MAPK subfamily, which plays a pivotal role in cell signal transduction, where it mediates responses to cell stresses and, to a lesser extent, growth factors. Although its cellular function has been under intense scrutiny since its initial discovery, little progress has been made in understanding its kinetic mechanism. A contributory factor has been the lack of a fast and rigorous method for the purification of activated p38 MAPKalpha in sufficient quantity and purity for biophysical studies. Here we present a method for the preparation of milligram quantities of activated p38 MAPKalpha, specifically phosphorylated on Thr180 and Tyr182. Purification of the inactive (unphosphorylated) p38 MAPKalpha is facilitated by an N-terminal hexahistidine tag. Removal of this tag from His6-p38 MAPKalpha, prior to its activation, is essential to ensure preparation of high yields of homogeneous, dually phosphorylated enzyme. Activation is achieved on incubation with a glutathione S-transferase (GST) fusion of the constitutively active mutant of the upstream activator, MKK6b (GST-MKK6b S207E T211E), in the presence of MgATP2-. Notably, we show that specific formation of activated p38 MAPKalpha can be quantified by following the formation of the bis-phosphorylated tryptic peptide, 173-HTDDEMT*GY*VATR-186, using [gamma-32P]adenosine triphosphate (ATP) as the phosphate source and reverse-phase high-performance liquid chromatography (HPLC) to separate the phosphopeptides. This approach offers the only means to specifically determine both stoichiometry and specificity of p38 MAPKalpha phosphorylation.  相似文献   

4.
While studying the effect of steroids on the growth of the yeast Saccharomyces cerevisiae, we found that pregnenolone was converted into the acetate ester. This reaction was identified as a transfer of the acetyl group from acetyl-CoA to the 3beta-hydroxyl group of pregnenolone. The corresponding enzyme, acetyl-CoA:pregnenolone acetyltransferase (APAT) is specific for Delta5- or Delta4-3beta-hydroxysteroids and short-chain acyl-CoAs. The apparent Km for pregnenolone is approximately 0.5 microm. The protein associated with APAT activity was partially purified and finally isolated from an SDS/polyacrylamide gel. Tryptic peptides were generated and N-terminally sequenced. Two peptide sequences allowed the identification of an open reading frame (YGR177c, in the S. cerevisiae genome database) translating into a 62-kDa protein of hitherto unknown function. This protein encoded by a gene known as ATF2 displays 37% identity with an alcohol acetyltransferase encoded by the yeast gene ATF1. Disruption of ATF2 led to the complete elimination of APAT activity and consequently abolished the esterification of pregnenolone. In addition, a toxic effect of pregnenolone linked to the disruption of ATF2 was observed. Pregnenolone toxicity is more pronounced when the atf2-Delta mutation is introduced in a yeast strain devoid of the ATP-binding cassette transporters, PDR5 and SNQ2. Our results suggest that Atf2p (APAT) plays an active role in the detoxification of 3beta-hydroxysteroids in association with the efflux pumps Pdr5p and Snq2p.  相似文献   

5.
Tumour necrosis factor (TNF) is considered to be a major factor in chronic synovial inflammation and is an inducer of mitogen-activated protein kinase (MAPK) signalling. In the present study we investigated the ability of TNF to activate MAPKs in the synovial membrane in vivo. We studied human TNF transgenic mice--an in vivo model of TNF-induced arthritis--to examine phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun amino terminal kinase (JNK) and p38MAPKalpha in the inflamed joints by means of immunoblot and immunohistochemistry. In addition, the effects of systemic blockade of TNF, IL-1 and receptor activator of nuclear factor-kappaB (RANK) ligand on the activation of MAPKs were assessed. In vivo, overexpression of TNF induced activation of p38MAPKalpha and ERK in the synovial membrane, whereas activation of JNK was less pronounced and rarely observed on immunohistochemical analysis. Activated p38MAPKalpha was predominantly found in synovial macrophages, whereas ERK activation was present in both synovial macrophages and fibroblasts. T and B lymphocytes did not exhibit major activation of any of the three MAPKs. Systemic blockade of TNF reduced activation of p38MAPKalpha and ERK, whereas inhibition of IL-1 only affected p38MAPKalpha and blockade of RANK ligand did not result in any decrease in MAPK activation in the synovial membrane. These data indicate that TNF preferentially activates p38MAPKalpha and ERK in synovial membrane exposed to TNF. This not only suggests that targeted inhibition of p38MAPKalpha and ERK is a feasible strategy for blocking TNF-mediated effects on joints, but it also shows that even currently available methods to block TNF effectively reduce activation of these two MAPKs.  相似文献   

6.
1. The kinetic properties of two genetic variants of human erythrocyte adenylate kinase were studied at limiting concentrations of both ADP and MgADP(-) in the forward direction and at limiting concentrations of both AMP and MgATP(2-) in the reverse direction. 2. Primary reciprocal plots rule out the possibility of a Ping Pong mechanism for both forms of the enzyme. 3. Analysis of the kinetic data by an appropriate computer program gave the following K(m) values for the type 1 enzyme: AMP, 0.33mm+/-0.1; MgATP(2-), 0.95mm+/-0.13; ADP, 0.12mm+/-0.03; MgADP(-), 0.22mm+/-0.04. Values for the type 2 enzyme were: AMP, 0.27mm+/-0.03; MgATP(2-), 0.40mm+/-0.05; ADP, 0.08mm+/-0.07; MgADP(-), 0.20mm+/-0.04. 4. Product inhibition studies were done by studying the reverse reaction. With ADP as product inhibitor competitive inhibition patterns were obtained with AMP and/or MgATP(2-) as variable substrate. Similar results were obtained for product inhibition by MgADP(-) with AMP as variable substrate. The results are consistent with a Rapid Equilibrium Random mechanism. 5. Secondary plots of slope versus product concentration were linear. The data were fitted to the appropriate equation and analysed by computer to give values for the product inhibition constants. 6. Differences between the values of certain kinetic constants for the two forms of the enzyme were observed.  相似文献   

7.
The kinetic mechanism of phosphofructokinase has been determined at pH 8 for native enzyme and pH 6.8 for an enzyme desensitized to allosteric modulation by diethylpyrocarbonate modification. In both cases, the mechanism is predominantly steady state ordered with MgATP binding first in the direction of fructose 6-phosphate (F6P) phosphorylation and rapid equilibrium random in the direction of MgADP phosphorylation. This is a unique kinetic mechanism for a phosphofructokinase. Product inhibition by MgADP is competitive versus MgATP and noncompetitive versus F6P while fructose 1,6-bisphosphate (FBP) is competitive versus fructose 6-phosphate and uncompetitive versus MgATP. The uncompetitive pattern obtained versus F6P is indicative of a dead-end E.MgATP.FBP complex. Fructose 6-phosphate is noncompetitive versus either FBP or MgADP. Dead-end inhibition by arabinose 5-phosphate or 2,5-anhydro-D-mannitol 6-phosphate is uncompetitive versus MgATP corroborating the ordered addition of MgATP prior to F6P. In the direction of MgADP phosphorylation, inhibition by anhydromannitol 1,6-bisphosphate is noncompetitive versus MgADP, while Mg-adenosine 5'(beta, gamma-methylene)triphosphate is noncompetitive versus FBP. Anhydromannitol 6-phosphate is a slow substrate, while anhydroglucitol 6-phosphate is not. This suggests that the enzyme exhibits beta-anomeric specificity.  相似文献   

8.
cdk2.cyclin E and cdk5.p25 are two members of the cyclin-dependent kinase family that are potential therapeutic targets for oncology and Alzheimer's disease, respectively. In this study we have investigated the mechanism for these enzymes. Kinases catalyze the transfer of phosphate from ATP to a protein acceptor, thus utilizing two substrates, ATP and the target protein. For a two-substrate reaction, possible kinetic mechanisms include: ping-pong, sequential random, or sequential ordered. To determine the kinetic mechanism of cdk2.GST-cyclin E and cdk5.GST-p25, kinase activity was measured in experiments in which concentrations of peptide and ATP substrates were varied in the presence of dead-end inhibitors. A peptide identical to the peptide substrate, but with a substitution of valine for the phosphoacceptor threonine, competed with substrate with a K(i) value of 0.6 mm. An aminopyrimidine, PNU 112455A, was identified in a screen for inhibitors of cdk2. Nonlinear least squares and Lineweaver-Burk analyses demonstrated that the inhibitor PNU 112455A was competitive with ATP with a K(i) value of 2 microm. In addition, a co-crystal of PNU 112455A with cdk2 showed that the inhibitor binds in the ATP binding pocket of the enzyme. Analysis of the inhibitor data demonstrated that both kinases use a sequential random mechanism, in which either ATP or peptide may bind first to the enzyme active site. For both kinases, the binding of the second substrate was shown to be anticooperative, in that the binding of the first substrate decreases the affinity of the second substrate. For cdk2.GST-cyclin E the kinetic parameters were determined to be K(m, ATP) = 3.6 +/- 1.0 microm, K(m, peptide) = 4.6 +/- 1.4 microm, and the anticooperativity factor, alpha = 130 +/- 44. For cdk5.GST-p25, the K(m, ATP) = 3.2 +/- 0.7 microm, K(m, peptide) = 1.6 +/- 0.3 microm, and alpha = 7.2 +/- 1.8.  相似文献   

9.
10.
11.
The mechanism by which different mitogen activated protein kinases (MAPKs) distinguish between different substrates is poorly understood. For example, p38 and SAPK4 are two closely related p38 MAPKs that both phosphorylate ATF2 and MBP. However, p38 phosphorylates MAPKAPK-2 and -3, whereas SAPK4 does not. In this study, we have used mutagenesis to determine the regions of p38 required for substrate selection. Alanine scanning mutagenesis identified one region of p38 that was required for its ability to phosphorylate MAPKAPK-2 and -3, but that did not significantly affect its binding to these substrates. Chimeras of p38 and SAPK4 identified a second region of p38 that affected the ability of p38 to both bind and phosphorylate MAPKAPK-2 and -3. Hence, we show for the first time that MAPKs contain two distinct regions for recognizing and phosphorylating protein substrates.  相似文献   

12.
Cloning and over-expression of human glucose 6-phosphate dehydrogenase (Glc6P dehydrogenase) has for the first time allowed a detailed kinetic study of a preparation that is genetically homogeneous and in which all the protein molecules are of identical age. The steady-state kinetics of the recombinant enzyme, studied by fluorimetric initial-rate measurements, gave converging linear Lineweaver-Burk plots as expected for a ternary-complex mechanism. Patterns of product and dead-end inhibition indicated that the enzyme can bind NADP+ and Glc6P separately to form binary complexes, suggesting a random-order mechanism. The Kd value for the binding of NADP+ measured by titration of protein fluorescence is 8.0 microm, close to the value of 6.8 microm calculated from the kinetic data on the assumption of a rapid-equilibrium random-order mechanism. Strong evidence for this mechanism and against either of the compulsory-order possibilities is provided by repeating the kinetic analysis with each of the natural substrates replaced in turn by structural analogues. A full kinetic analysis was carried out with deaminoNADP+ and with deoxyglucose 6-phosphate as the alternative substrates. In each case the calculated dissociation constant upon switching a substrate in a random-order mechanism (e.g. that for NADP+ upon changing the sugar phosphate) was indeed constant within experimental error as expected. The calculated rate constants for binding of the leading substrate in a compulsory-order mechanism, however, did not remain constant when the putative second substrate was changed. Previous workers, using enzyme from pooled blood, have variously proposed either compulsory-order or random-order mechanisms. Our study appears to provide unambiguous evidence for the latter pattern of substrate binding.  相似文献   

13.
14.
R Qamar  M Y Yoon  P F Cook 《Biochemistry》1992,31(41):9986-9992
In order to define the overall kinetic mechanism of adenosine 3',5'-monophosphate dependent protein kinase catalytic subunit and also to elaborate the kinetic mechanism in the direction of peptide phosphorylation, we have determined its kinetic mechanism in the direction of MgADP phosphorylation. Studies of initial velocity as a function of uncomplexed Mg2+ (Mgf) in the absence and presence of dead-end inhibitors were used to define the kinetic mechanism. Data are consistent with the overall kinetic mechanism in the direction of MgADP phosphorylation being random with both the pathways allowed, i.e., the pathway in which MgADP binds to the enzyme prior to phosphorylated peptide and the pathway in which phosphorylated peptide binds to enzyme prior to MgADP. In addition, depending on the concentration of Mgf, one or the other pathway predominates. At low (0.5 mM) Mgf, the mechanism is steady-state ordered with the pathway in which phosphorylated peptide binds first being preferred; at high (10 mM) Mgf, the kinetic mechanism is equilibrium ordered, and the pathway in which MgADP binds first is preferred. This change in mechanism to equilibrium ordered at higher concentration of Mgf is due to an increase in affinity of the enzyme for MgADP and a decrease in affinity for the phosphorylated peptide. The Haldane relationship gives a Keq of 2 +/- 1 x 10(3) at pH 7.2, in agreement with the values obtained from 31P NMR (1.6 +/- 0.8 x 10(3)) and direct determination of reactant concentrations at equilibrium (3.5 +/- 0.6 x 10(3)).  相似文献   

15.
An iso-random Bi Bi mechanism has been proposed for adenylate kinase. In this mechanism, one of the enzyme forms can bind the substrates MgATP and AMP, whereas the other form can bind the products MgADP and ADP. In a catalytic cycle, the conformational changes of the free enzyme and the ternary complexes are the rate-limiting steps. The AP(5)A inhibition equations derived from this mechanism show theoretically that AP(5)A acts as a competitive inhibitor for the forward reaction and a mixed noncompetitive inhibitor for the backward reaction.  相似文献   

16.
Purified adenosine kinase from L1210 cells displayed substrate inhibition by high concentrations of adenosine (Ado), ATP, and MgCl2. When incubated with ATP and MgCl2, the enzyme was phosphorylated, and the phosphorylated kinase transferred phosphate to adenosine in the absence of ATP and MgCl2. Substrate binding, isotope exchange, and kinetic studies suggested that the enzyme catalyzes the reaction by means of a two-site ping-pong mechanism with the phosphorylated enzyme as an obligatory intermediate. Among many possible pathways within this mechanism probably a random-bi ordered-bi route is the preferred sequence in which the two substrates, adenosine and MgATP, bind in a random order to form the ternary complex MgATP . E . Ado followed by the sequential dissociation of MgADP and AMP. Dissociation constants of various enzyme-substrate and enzyme-product complexes and the first-order rate constant of the rate-limiting step were estimated.  相似文献   

17.
18.
Kinetic properties of cerebral pyruvate kinase   总被引:2,自引:1,他引:1       下载免费PDF全文
Partly purified guinea-pig brain pyruvate kinase is not activated by fructose 1,6-diphosphate and gives hyperbolic substrate-saturation curves with phosphoenolpyruvate. It is therefore different from the L-type pyruvate kinase of mammalian liver. Inhibition by MgATP(2-) was competitive for MgADP(-) but not for phosphoenolpyruvate, and the enzyme is therefore different from the M-type pyruvate kinase, which is said to be competitively inhibited by MgATP(2-) with respect to both substrates. The K(i)(MgATP(2-)) value of approx. 8mm for the brain enzyme is higher than the values (about 2mm) reported for the muscle enzyme. Stimulation of enzymic activity was observed at low (1-2mm) concentrations of MgATP(2-). Substrate kinetic constants were K(m) (MgADP(-))=0.47mm, K(m) (phosphoenolpyruvate)=0.08mm. Free Mg(2+) at very high concentrations (over 10mm) was inhibitory (K(i)=20-32mm). Neither ADP(3-) nor 5'-AMP(2-) inhibited the activity. The brain enzyme was concluded to be different from both the M-type and the L-type of other mammalian organs such as muscle and liver.  相似文献   

19.
Phosphomevalonate kinase catalyzes an essential step in the so-called mevalonate pathway, which appears to be the sole pathway for the biosynthesis of sterols and other isoprenoids in mammals and archea. Despite the well documented importance of this pathway in the cause and prevention of human disease and that it is the biosynthetic root of an enormous diverse class of metabolites, the mechanism of phosphomevalonate kinase from any organism is not yet well characterized. The first structure of a phosphomevalonate kinase from Streptococcus pneumoniae was solved recently. The enzyme exhibits an atypical P-loop that is a conserved defining feature of the GHMP kinase superfamily. In this study, the kinetic mechanism of the S. pneumoniae enzyme is characterized in the forward and reverse directions using a combination of classical initial-rate methods including alternate substrate inhibition using ADPbetaS. The inhibition patterns strongly support that in either direction the substrates bind randomly to the enzyme prior to chemistry, a random sequential bi-bi mechanism. The kinetic constants are as follows: k(cat(forward)) = 3.4 s(-1), K(i(ATP)) = 137 microm, K(m(ATP)) = 74 microm, K(i(pmev)) = 7.7 microm, K(m(pmev)) = 4.2 microm; k(cat(reverse)) = 3.9 s(-1), K(i(ADP)) = 410 microm, K(m(ADP)) = 350 microm, K(i(ppmev)) = 14 microm, K(m(ppmev)) = 12 microm, where pmev and ppmev represent phosphomevalonate and diphosphomevalonate, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号