首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lestage DJ  Yu M  Urban MW 《Biomacromolecules》2005,6(3):1561-1572
Methyl methacrylate (MMA) and n-butyl acrylate (nBA) were copolymerized into stable colloidal particles in the presence of micelle forming sodium dioctyl sulfosuccinate (SDOSS) and liposome forming 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) in aqueous media that serve as thermodynamically stable loci for lipophilic monomers and nanostructured templates. These studies show for the first time that hollow colloidal particles may coalesce to form polymeric films and the combination of SDOSS and DLPC dispersing agents provides a stimuli-responsive environment during film formation through which individual surface stabilizing components can be driven to the film-air (F-A) or film-substrate (F-S) interface. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) of p-MMA/nBA colloidal dispersions revealed preferential and enhanced mobility of SDOSS and DLPC lipid rafts to the F-A and F-S interfaces in response to thermal, ionic, and enzymatic stimuli.  相似文献   

2.
Bae WS  Urban MW 《Biomacromolecules》2006,7(4):1156-1161
Recently, we reported that it is possible to utilize sugars as stabilizing agents for colloidal particles. This study shows that when n-dodecyl beta-D-maltoside (DDM) is utilized as a dispersing and stabilizing agent in the synthesis and stabilization of poly[methyl methacrylate-co-(n-butyl acrylate)] (p-MMA/nBA) colloidal particles, stable colloidal dispersions can be formed. Since understanding of sugar-protein interactions have numerous practical and scientific implications, these studies examine DDM-stabilized p-MMA/nBA colloidal particles and their specific binding properties with concanavalin A (Con A). By use of spectroscopic analysis, unique binding characteristics that are a function of DDM concentration, time, and the concentration of Con A are detected. When DDM-stabilized p-MMA/nBA particles are allowed to coalesce, DDM is released from the particle surfaces and, under suitable conditions, selectively stratifies in the areas of the excess of interfacial energy near the film-air (F-A) interface, thus providing sites for attracting Con A via alpha-glucose-OH hydrogen bonding. Consequently, adsorption of Con A at the F-A interfaces occur and the degree of adsorption is controlled by the amount of DDM at the F-A interface.  相似文献   

3.
Zhang SN  Li ZJ  Cai MS 《Carbohydrate research》2004,339(8):1419-1420
N-Sugar-substituted phthalimides and tetrachlorophthalimide derivatives can be prepared in good yields under essentially neutral conditions. Mixing a sugar azide, NaI, Me3SiCl, phthalic or substituted phthalic anhydride and tetrabutylammonium iodide as catalyst in acetonitrile at rt or 60 degrees C, afforded 12 imides in 83-95% yields.  相似文献   

4.
The kinetics of release of four intracellular enzymes from different yeast cell locations using the Differential Product Release (DPR) method has been investigated. The method uses a combination of physical, chemical and biological agents such as lytic enzymes, an osmotic support and a spheroplast stabilizer. Using the DPR technique a wall enzyme, invertase, was released with a very high specific activity in the first step from a breadmaking strain ofS. cerevisiae. Maximum release could be obtained in this step when the incubation time was extended from 60 min to 100 min. Two cytosol enzymes, α-D-glucosidase and alcohol dehydrogenase were released in the second step. Fumarase was released in the third step almost instantaneously after disruption of the mitochondria which reduces considerably, by ca. 1 hour, the total incubation time of DPR. This paper investigates the kinetics of enzyme release during the 3 steps of DPR.  相似文献   

5.
Summary Iodoacetic acid or N-ethylmaleimide included in cell suspensions during measurements of sorbose exit from yeast cells caused sorbose efflux to occur at a uniform rate in contrast to the usual two-phase exit. Cells pretreated with these agents were still capable of sugar uptake, but the entire efflux now occurred at the usual initial rate. Microscopically, the vacuoles of treated cells were observed to be altered or disrupted. Vacuolar effects occurred before methylene blue was able to penetrate the external cell membrane and stain the cells. Vacuoleless cells also allowed a single rate of sorbose efflux. The selective effect upon intracellular membranes is interpreted as a disruption of the boundaries of an internal sugar compartment with the result that sugar exits from the cell at a rate controlled only by the external membrane.  相似文献   

6.
Here we describe new methodology that allows for direct microcontact printing of octadecyltrichlorosilane onto glass coverslips followed by backfilling with an ethylene glycol terminated trichloroalkane silane; this produces patterns with regions that promote and prevent protein adsorption and allow for control of cell growth.  相似文献   

7.
Water-in-oil (W/O) emulsions using crop oils and stabilized by surface modified silica nanoparticles and polymeric surfactants appear to be a promising approach for storing and delivering microorganisms to aqueous environments. In these systems cells are contained within the internal phase of the emulsion. We examined two types of silica nanoparticles for stabilizing Chlorella vulgaris in W/O emulsions and release kinetics upon delivery to water. C. vulgaris was selected because of its potential for nutritional and industrial applications. We also examined the effects of silica nanoparticles on the release of a model solute NaCl. Surface modification of the nanoparticles and concentration of nanoparticles in the continuous phase had significant effects on the release of NaCl while only surface modification had an effect on the release of cells. Increasing the hydrophobicity of the nanoparticles significantly reduced the level of cell release and rate of solute release suggesting emulsion properties could be tailored to achieve the controlled release of cells and solute upon delivery.  相似文献   

8.
Some new phosphorylating reagents have been developed. They were classified into two types; one reacts selectively to the cis-glycol of ribonucleoside and the other has the selective reactivity to the primary alcohol of nucleoside. The application of these selective phosphorylation reactions to the synthesis of oligonucleotides is described.  相似文献   

9.
A selective assay for quantification of N,N-dimethylvalproylglycinamide (DM-VGD) and N,N-diethylvalproylglycinamide (DE-VGD) in dog plasma utilizing reversed-phase high-performance liquid chromatography and UV detection has been developed. These compounds are derivatives of the potential anticonvulsant drug, valproylglycinamide, which is currently undergoing clinical trials. The method is based on extraction of dog plasma with activated charcoal, separation of the charcoal pallet and extracting it with methanol, evaporation of the solvent and injecting the reconstituted residue onto the column. The active charcoal adsorption method is reliable and reproducible, and it provides a chromatogram free of interfering endogenous plasma compounds. The assay was validated and provided a limit of quantification of 2.3 mmol/l for DE-VGD and 5.3 mmol/l for DM-VGD. Mean recovery of these compounds from plasma averages 75%. This analytical method is suitable for the quantitative determination of DM-VGD and DE-VGD in plasma and it has been applied to a pharmacokinetic study of these compounds in a dog.  相似文献   

10.
Plasmodium sporozoites, the causative agents of malaria, release circumsporozoite (CS) protein into medium when under conditions simulating those that the parasites encounter in the bloodstream of the vertebrate host. CS protein of the rodent parasite, Plasmodium berghei, is released as the lower molecular weight form, Pb44. This release is substratum- and antibody-independent. Previous studies show that CS protein is released at the trailing, posterior end of motile sporozoites. Video and electron microscopic studies now demonstrate that CS protein is released at the apical end of cytochalasin b-immobilized sporozoites. We propose that CS protein released from the apical end, the leading end of gliding sporozoites, adheres to the sporozoite surface and is translocated posteriorly by a cytochalasin-sensitive and apparently actin-mediated surface motor, which drives gliding motility. This model explains the mechanism of both the circumsporozoite precipitation (CSP) reaction and formation of the CS protein trail by gliding sporozoites.  相似文献   

11.
Investigations were carried out concerning the considerate and selective separation of intact, product including recombinant E. coli cells from culture broths by adsorption. Adsorbents were synthesized on basis of porous glass “SIRAN” (Schott, Mainz) by chemical surface modification in order to adapt surface charge density and hydrophobicity to the surface behavior of the hosts. It is possible to accumulate up to 58?mg dry biomass per gram carrier by using the fixed bed circulation technique and by simultaneous dosage of small amounts of polycationic reagent Polyethyleneimine (PEI). The method is especially useful for the separation of shear stress sensible microorganisms. Preferred release of the recombinant product staphylokinase (SAK) from the cytoplasmatic space of the adsorbed cells was done by permeabilization of the cells and elution of the column with suitable agents. Thus, product enrichment was achieved simultaneously with the clearence of host cell proteins and other cell components or fragments.  相似文献   

12.
Intracellular products, not secreted from the microbial cell, are released by breaking the cell envelope consisting of cytoplasmic membrane and an outer cell wall. Hydrodynamic cavitation has been reported to cause microbial cell disruption. By manipulating the operating variables involved, a wide range of intensity of cavitation can be achieved resulting in a varying extent of disruption. The effect of the process variables including cavitation number, initial cell concentration of the suspension and the number of passes across the cavitation zone on the release of enzymes from various locations of the Brewers' yeast was studied. The release profile of the enzymes studied include alpha-glucosidase (periplasmic), invertase (cell wall bound), alcohol dehydrogenase (ADH; cytoplasmic) and glucose-6-phosphate dehydrogenase (G6PDH; cytoplasmic). An optimum cavitation number Cv of 0.13 for maximum disruption was observed across the range Cv 0.09-0.99. The optimum cell concentration was found to be 0.5% (w/v, wet wt) when varying over the range 0.1%-5%. The sustained effect of cavitation on the yeast cell wall when re-circulating the suspension across the cavitation zone was found to release the cell wall bound enzyme invertase (86%) to a greater extent than the enzymes from other locations of the cell (e.g. periplasmic alpha-glucosidase at 17%). Localised damage to the cell wall could be observed using transmission electron microscopy (TEM) of cells subjected to less intense cavitation conditions. Absence of the release of cytoplasmic enzymes to a significant extent, absence of micronisation as observed by TEM and presence of a lower number of proteins bands in the culture supernatant on SDS-PAGE analysis following hydrodynamic cavitation compared to disruption by high-pressure homogenisation confirmed the selective release offered by hydrodynamic cavitation.  相似文献   

13.
The adsorption abilities of the perfluorocarbon emulsion stabilized by Proxanol 268 were investigated in vitro and in vivo. In vitro, the saturation point for the blood plasma proteins was nearly reached after five minutes of incubation of the emulsion with human/rabbit blood plasma and was stable for all incubation periods studied. The decrease in volume ratio (emulsion/plasma) was accompanied by the increase in the adsorptive capacity of the emulsion with maximal values at 1/10 (3.2 and 1.5 mg of proteins per 1 ml of the emulsion, for human and rabbit blood plasma, respectively) that was unchanged at lower ratios. In vivo, in rabbits, intravenously injected with the emulsion, the proteins with molecular masses of 12, 25, 32, 44, 55, 70, and 200 kDa were adsorbed by the emulsion (as in vitro) if it was used 6 hours or less before testing. More delayed testing (6 h) revealed elimination of proteins with molecular masses of 25 and 44 kDa and an additional pool of adsorpted new ones of 27, 50, and 150 kDa. Specific adsorptive capacity of the emulsion enhanced gradually after emulsion injection and reached its maximum (3.5-5 mg of proteins per 1 ml of the emulsion) after 24 hours.  相似文献   

14.
The adsorption abilities of the perfluorocarbon emulsion stabilized by Proxanol 268 were investigated in vitro and in vivo. In vitro, the saturation point for the blood plasma proteins was nearly reached after five minutes of incubation of the emulsion with human/rabbit blood plasma and was stable for all incubation periods studied. The decrease in volume ratio (emulsion/plasma) was accompanied by the increase in the adsorptive capacity of the emulsion with maximal values at 1/10 (3.2 and 1.5 mg of proteins per 1 mL of the emulsion, for human and rabbit blood plasma, respectively) that was unchanged at lower ratios. In vivo, in rabbits intravenously injected with the emulsion, the proteins with molecular masses of 12, 25, 32, 44, 55, 70, and 200 kDa were adsorbed by the emulsion (as in vitro) if it was used 6 h or less before testing. More delayed testing (6 h) revealed elimination of proteins with molecular masses of 25 and 44 kDa and an additional pool of adsorbed new ones of 27, 50, and 150 kDa. Specific adsorptive capacity of the emulsion enhanced gradually after emulsion injection and reached its maximum (3.5–5 mg of proteins per 1 mL of the emulsion) after 24 h.  相似文献   

15.
The highly charged domain Z(basic) can be used as a fusion partner to enhance adsorption of target proteins to cation exchanging resins at high pH-values. In this paper, we describe a strategy for purification of target proteins fused to Z(basic) at a constant physiological pH using cation exchange chromatography in an expanded bed mode. We show that two proteins, Klenow DNA polymerase and the viral protease 3C, can be efficiently purified from unclarified Escherichia coli homogenates in a single step with a selectivity analogous to what is normally achieved by affinity chromatography. The strategy also includes an integrated site-specific removal of the Z(basic) purification handle to yield a free target protein.  相似文献   

16.
C6 cell tubulin is indistinguishable from hog brain tubulin with respect to its molecular weight, amino acid composition, and colchicine-binding activity. Moreover, microtubule assembly systems from both sources form the same structures: rings, ribbons, tubules, and drug-induced polymers. There is, nevertheless, a difference between the cultured cell and brain systems which lies in the nature of their microtubule-associated accessory proteins. C6 microtubule preparations exhibit few rings at 0 degrees C, have low polymerization yield, and have a low content of accessory proteins. The addition of brain accessory proteins enhances the numbers of rings, and the yield of microtubules, to levels comparable with those of brain preparations. The polymerizing ability of C6 microtubule protein decays much faster than that of brain, but it can be restored by the addition of brain accessory protein. The results suggest that C6 accessory proteins are more labile than their brain counterparts.  相似文献   

17.
Levan, fructo-oligosaccharides and fructosyl derivatives were formed from sucrose using recombinant levansucrase from Rahnella aquatilis. Levan formation was optimal at 30 °C resulting 57 % of the theoretical yield. The more suitable substrate concentration for levan formation was 200 g sucrose/L. Oligosaccharides was accumulated selectively at high substrate concentration. The increase of levan and oligosaccharides formation was not achieved by adding water-miscible organic solvents. Alkyl fructosides were synthesized from various alcohols as fructosyl acceptors by R. aquatilis levansucrase. © Rapid Science Ltd. 1998  相似文献   

18.
Extracts of Methanosarcina barkeri reduced methanol and CO2 to CH4 in the presence of H2 and converted methanol stoichiometrically into CH4 and CO2 in the absence of H2. In dialyzed cell-free extracts these reactions were stimulated by 2-mercaptoethanesulfonic acid (coenzyme M) and some derivatives (acetyl and formylcoenzyme M and the oxidized form of coenzyme M), which could be converted to coenzyme M by enzyme systems present in the extracts. Methylcoenzyme M could not be used in these systems.  相似文献   

19.
20.
Cell adsorption and selective desorption for separation of microbial cells were conducted by using chitosan-immobilized silica (CIS). When chitosan was immobilized onto silica surfaces with glutaraldehyde, bacterial cells adsorbed well and retained viability. Testing of the adsorption and desorption ability of CIS using various microbes such as Escherichia coli, Aeromonas hydrophila, Pseudomonas aeruginosa, Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Lactobacillus casei, Streptococcus mutans, Streptococcus sobrinus, Streptococcus salivarius, Saccharomyces cerevisiae, Saccharomyces ludwigii, and Schizosaccharomyces pombe revealed that most microbes could be adsorbed and selectively desorbed under different conditions. In particular, recovery was improved when L-cysteine was added. A mixture of two bacterial strains adsorbed onto CIS could also be successfully separated by use of specific solutions for each strain. Most of the desorbed cells were alive. Thus, quantitative and selective fractionation of cells is readily achievable by employing chitosan, a known antibacterial material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号