首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiotensin II (ANG II) promotes neointimal growth in the balloon-injured rat carotid artery. However, the mechanism by which ANG II stimulates neointimal growth during vascular injury is not known. In cultured vascular smooth muscle cells, ANG II activates Akt through cytosolic phospholipase A2 (cPLA2)-dependent phospholipase D2 (PLD2). This study was conducted to determine whether ANG II-induced neointimal thickening is mediated via cPLA2- and PLD2-activated Akt in balloon-injured rat carotid arteries. ANG II-stimulated neointimal growth was inhibited by exposure of the injured carotid arteries to an adenovirus containing a dominant negative Akt mutant (intima-to-media ratio from 3.01 +/- 0.31 to 1.44 +/- 0.14, P < 0.01) or a retrovirus containing cPLA2 small interfering RNA (siRNA; intima-to-media ratio from 3.01 +/- 0.31 to 1.16 +/- 0.36, P < 0.001) or PLD2 siRNA (intima-to-media ratio from 3.01 +/- 0.31 to 1.33 +/- 0.11, P < 0.001). The effect of cPLA2 and PLD2 siRNA to reduce the ANG II-induced increase in neointimal thickening was associated with reduced expression of cPLA2 and PLD2 as determined by immunohistochemical analysis in injured carotid arteries. Western blot analysis showed that Akt phosphorylation that was increased by ANG II was inhibited in injured carotid arteries 2 days after exposure to cPLA2 or PLD2 siRNA or in injured arteries isolated after exposure to these agents for 30 min and then placed in tissue culture media for 24 h in the presence of these agents. These data suggest that the ANG II-induced neointimal growth is mediated by the activation of Akt through a mechanism dependent on cPLA2 and PLD2 activation in balloon-injured rat carotid arteries.  相似文献   

2.
In this issue of Molecular Cell, Yanagiya et al. (2012) describe a regulatory mechanism that couples the abundance of the translational repressor 4E-BP1 with its target eIF4E via proteasomal degradation of 4E-BP1, thus maintaining translation in cells depleted of eIF4E.  相似文献   

3.
Human myeloid differentiation is accompanied by a decrease in cell proliferation. Because the translation rate is an important determinant of cell proliferation, we have investigated translation initiation during human myeloid cell differentiation using the HL-60 promyelocytic leukemia cell line and the U-937 monoblastic cell line. A decrease in the translation rate is observed when the cells are induced to differentiate along the monocytic/macrophage pathway or along the granulocytic pathway. The inhibition in protein synthesis correlates with specific regulation of two repressors of translation initiation, 4E-BP1 and 4E-BP2. Induction of HL-60 and U-937 cell differentiation into monocytes/macrophages by IFN-gamma or PMA results in a dephosphorylation and consequent activation of 4E-BP1. Dephosphorylation of 4E-BP1 was also observed when U-937 cells were induced to differentiate into monocytes/macrophages following treatment with retinoic acid or DMSO. In contrast, treatment of HL-60 cells with retinoic acid or DMSO, which results in a granulocytic differentiation of these cells, decreases 4E-BP1 amount without affecting its phosphorylation and strongly increases 4E-BP2 amount. Taken together, these data provide evidence for differential regulation of the translational machinery during human myeloid differentiation, specific to the monocytic/macrophage pathway or to the granulocytic pathway.  相似文献   

4.
5.
6.
The mammalian target of rapamycin (mTOR) integrates nutrient and mitogen signals to regulate cell growth (increased cell mass and cell size) and cell division. The immunosuppressive drug rapamycin inhibits cell cycle progression via inhibition of mTOR; however, the signaling pathways by which mTOR regulates cell cycle progression have remained poorly defined. Here we demonstrate that restoration of mTOR signaling (by using a rapamycin-resistant mutant of mTOR) rescues rapamycin-inhibited G(1)-phase progression, and restoration of signaling along the mTOR-dependent S6K1 or 4E-BP1/eukaryotic translation initiation factor 4E (eIF4E) pathways provides partial rescue. Furthermore, interfering RNA-mediated reduction of S6K1 expression or overexpression of mTOR-insensitive 4E-BP1 isoforms that block eIF4E activity inhibit G(1)-phase progression individually and additively. Thus, the activities of both the S6K1 and 4E-BP1/eIF4E pathways are required for and independently mediate mTOR-dependent G(1)-phase progression. In addition, overexpression of constitutively active mutants of S6K1 or wild-type eIF4E accelerates serum-stimulated G(1)-phase progression, and stable expression of wild-type S6K1 confers a proliferative advantage in low-serum-containing media, suggesting that the activity of each of these pathways is limiting for cell proliferation. These data demonstrate that, as for the regulation of cell growth and cell size, the S6K1 and 4E-BP1/eIF4E pathways each represent critical mediators of mTOR-dependent cell cycle control.  相似文献   

7.
The immunosuppressant drug rapamycin blocks progression of the cell cycle at the G1 phase in mammalian cells and yeast. Here we show that rapamycin inhibits cap-dependent, but not cap-independent, translation in NIH 3T3 cells. Cap-dependent translation is also specifically reduced in extracts from rapamycin-treated cells, as determined by in vitro translation experiments. This inhibition is causally related to the dephosphorylation and consequent activation of 4E-BP1, a protein recently identified as a repressor of the cap-binding protein, eIF-4E, function. These effects of rapamycin are specific as FK506, a structural analogue of rapamycin, had no effect on either cap-dependent translation or 4E-BP1 phosphorylation. The rapamycin-FK506 binding protein complex is the effector of the inhibition of 4E-BP1 phosphorylation as excess of FK506 over rapamycin reversed the rapamycin-mediated inhibition of 4E-BP1 phosphorylation. Thus, inactivation of eIF-4E is, at least in part, responsible for inhibition of cap-dependent translation in rapamycin-treated cells. Furthermore, these results suggest that 4E-BP1 phosphorylation is mediated by the FRAP/TOR signalling pathway.  相似文献   

8.
9.
10.
11.
The essential function of eIF4E-binding protein 1 (4E-BP1) in translation initiation has been well established; however, the role of 4E-BP1 in normal cell cycle progression is coming to attention. Here, we revealed the role of 4E-BP1 on mitotic regulation and chromosomal DNA dynamics during mitosis. First, we have observed the co-localization of the phosphorylated 4E-BP1 at T37/46 with Polo-like kinase 1 (PLK1) at the centrosomes during. Depression of 4E-BP1 by small interfering RNA in HepG2 or HeLa cells resulted in an increased outcome of polyploidy and aberrant mitosis, including chromosomal DNA misaligned and multi-polar spindles or multiple centrosomes. We observed that 4E-BP1 interacted with PLK1 directly in vitro and in vivo in mitotic cells, and the C-terminal aa 77–118 of 4E-BP1 mediates its interaction with PLK1. PLK1 can phosphorylate 4E-BP1 in vitro. Furthermore, the depletion of 4E-BP1 sensitized HepG2 and HeLa cells to the microtubule disruption agent paclitaxel. These results demonstrate that 4E-BP1, beyond its role in translation regulation, can function as a regulator of mitosis via interacting with PLK1, and possibly plays a role in genomic stability maintaining.  相似文献   

12.
The essential function of eIF4E-binding protein 1 (4E-BP1) in translation initiation has been well established; however, the role of 4E-BP1 in normal cell cycle progression is coming to attention. Here, we revealed the role of 4E-BP1 on mitotic regulation and chromosomal DNA dynamics during mitosis. First, we have observed the co-localization of the phosphorylated 4E-BP1 at T37/46 with Polo-like kinase 1 (PLK1) at the centrosomes during. Depression of 4E-BP1 by small interfering RNA in HepG2 or HeLa cells resulted in an increased outcome of polyploidy and aberrant mitosis, including chromosomal DNA misaligned and multi-polar spindles or multiple centrosomes. We observed that 4E-BP1 interacted with PLK1 directly in vitro and in vivo in mitotic cells, and the C-terminal aa 77–118 of 4E-BP1 mediates its interaction with PLK1. PLK1 can phosphorylate 4E-BP1 in vitro. Furthermore, the depletion of 4E-BP1 sensitized HepG2 and HeLa cells to the microtubule disruption agent paclitaxel. These results demonstrate that 4E-BP1, beyond its role in translation regulation, can function as a regulator of mitosis via interacting with PLK1, and possibly plays a role in genomic stability maintaining.  相似文献   

13.
14.
低氧暴露对骨骼肌蛋白质合成/分解的影响受到广泛关注,但该过程中相关调控通路的研究仍十分有限。本研究拟通过蛋白质相对积累量来研究合成和分解通路的变化。将骨骼肌细胞置于低氧环境中培养,分别在0 h、6 h、12 h和24 h收集细胞,并进行检测。免疫荧光观察肌球蛋白(myosin),翻译表面感应检测蛋白质合成,Western印迹法测试蛋白质合成相关基因(ERK1/2、p-ERK1/2、mTOR、p-mTOR、4E-BP1、p-4E-BP1)、蛋白质分解相关基因(泛素、FoxO1、p-FoxO1、MuRF1和Atrogin-1)表达量。结果发现,随着低氧干预时间延长,肌纤维直径和骨骼肌细胞中蛋白质相对积累量随时间逐渐减小(P<0.01)。与0 h相比,6 h p-4E-BP1/4E-BP1和Atrogin-1的表达显著上调(P<0.05),p-mTOR表达显著高于0 h(P<0.01);6 h和24 h p-mTOR/mTOR的比值显著大于0 h(P<0.05),而p-FoxO1/FoxO1的比值随时间逐渐减小(P<0.01)。上述结果表明,低氧干预能够使骨骼肌细胞直径减少、骨骼肌细胞蛋白质积累减少,并且低氧打破骨骼肌细胞蛋白质合成和分解的平衡,可能是通过调节mTOR/4E-BP1通路活性和FoxO1/Atrogin-1通路的活性实现的。  相似文献   

15.
Chronic elevation of circulating ANG II is associated with cardiac remodeling in patients with hypertension and heart failure. The underlying mechanisms, however, are not completely defined. Herein, we studied ANG II-induced molecular and cellular events in the rat heart as well as their links to the redox state. We also addressed the potential contribution of aldosterone (ALDO) on ANG II-induced cardiac remodeling. In ANG II-treated rats, and compared with controls, we found: 1) the expression of proinflammatory/profibrogenic mediators was significantly increased in the perivascular space and at the sites of microscopic injury in both ventricles; 2) macrophages and myofibroblasts were primary repairing cells at these sites, together with increased fibrillar collagen volume; 3) apoptotic macrophages and myofibroblasts were evident at the same sites; 4) NADPH oxidase (gp91phox) was significantly enhanced at these regions and primarily expressed by macrophages, whereas superoxide dismutase and catalase levels remained unchanged; 5) plasma 8-isoprostane levels were significantly increased; and 6) blood pressure was significantly elevated. Losartan treatment completely prevented cardiac oxidative stress as well as molecular/cellular responses and normalized blood pressure. Spironolactone treatment partially suppressed the cardiac inflammatory/fibrogenic responses and redox state. Thus chronic elevation of circulating ANG II is accompanied by a proinflammatory/profibrogenic phenotype involving vascular and myocardial remodeling in both ventricles. Enhanced reactive oxygen species production at these sites and increased plasma 8-isoprostane indicate the involvement of oxidative stress in ANG II-induced cardiac injury. ALDO contributes, in part, to ANG II-induced cardiac molecular and cellular responses.  相似文献   

16.
Docosahexaenoic acid (DHA), a PUFA of the n-3 family, inhibited the growth of FM3A mouse mammary cancer cells by arresting their progression from the late-G(1) to the S phase of the cell cycle. DHA upregulated p27(Kip1) levels by inhibiting phosphorylation of mitogen-activated protein (MAP) kinases, i.e., ERK1/ERK2. Indeed, inhibition of ERK1/ERK2 phosphorylation by DHA, U0126 [chemical MAPK extracellularly signal-regulated kinase kinase (MEK) inhibitor], and MEK(SA) (cells expressing dominant negative constructs of MEK) resulted in the accumulation of p27(Kip1). MAP kinase (MAPK) inhibition by DHA did not increase p27(Kip1) mRNA levels. Rather, this fatty acid stabilized p27(Kip1) contents and inhibited MAPK-dependent proteasomal degradation of this protein. DHA also diminished cyclin E phosphorylation, cyclin-dependent kinase-2 (CDK2) activity, and phosphorylation of retinoblastoma protein in these cells. Our study shows that DHA arrests cell growth by modulating the phosphorylation of cell cycle-related proteins.  相似文献   

17.
18.
A lesion of the subfornical organ (SFO) may reduce sodium depletion-induced salt appetite, which is largely dependent on ANG II, and yet ANG II infusions directly into SFO do not provoke salt appetite. Two experiments were designed to address this apparent contradiction. In experiment 1 sustained infusions of ANG II into SFO did not produce a sustained elevation of blood pressure, and neither a reduction of blood pressure alone with minoxidil and captopril nor a reduction of both blood pressure and volume with furosemide and captopril enhanced salt appetite. Infusions of ANG II in the organum vasculosum laminae terminalis (OVLT) did evoke salt appetite without raising blood pressure. In experiment 2 knife cuts of the afferent and efferent fibers of the rostroventral pole of the SFO abolished water intake during an infusion of ANG II into the femoral vein but failed to reduce salt appetite during an infusion of ANG II into the OVLT. We conclude that 1) hypertension does not account for the failure of infusions of ANG II in the SFO to generate salt appetite and 2) the OVLT does not depend on its connectivity with the SFO to generate salt appetite during ANG II infusions.  相似文献   

19.
High-affinity binding of angiotensin II (ANG II) to the ANG II type 1 receptor (AT1R) results in the activation of ERK1/2 mitogen-activated protein kinases (MAPK). However, the precise mechanism of ANG II-induced ERK1/2 activation has not been fully characterized. Here, we investigated the signaling events leading to ANG II-induced ERK1/2 activation using a c-Src/Yes/Fyn tyrosine kinase-deficient mouse embryonic fibroblast (MEF) cell line stably transfected with the AT1R (SYF/AT1). ERK1/2 activation was reduced by 50% within these cells compared with wild-type controls (WT/AT1). The remaining 50% of intracellular ERK1/2 activation was dependent upon heterotrimeric G protein and protein kinase C zeta (PKC) activation. Therefore, ANG II-induced ERK1/2 activation occurs via two independent mechanisms. We next investigated whether a loss of either c-Src/Yes/Fyn or PKC signaling affected ERK1/2 nuclear translocation and cell proliferation in response to ANG II. ANG II-induced cell proliferation was markedly reduced in SYF/AT1 cells compared with WT/AT1 cells (P < 0.01), but interestingly, ERK2 nuclear translocation was normal. ANG II-induced nuclear translocation of ERK2 was blocked via pretreatment of WT/AT1 cells with a PKC pseudosubstrate. ANG II-induced cell proliferation was significantly reduced in PKC pseudosubstrate-treated WT/AT1 cells (P < 0.01) and was completely blocked in SYF/AT1 cells treated with this same compound. Thus ANG II-induced cell proliferation appears to be regulated by both ERK1/2-driven nuclear and cytoplasmic events. In response to ANG II, the ability of ERK1/2 to remain within the cytoplasm or translocate into the nucleus is controlled by c-Src/Yes/Fyn or heterotrimeric G protein/PKC signaling, respectively. Src family tyrosine kinases; angiotensin II  相似文献   

20.
Angiotensin II (Ang II) can stimulate Toll-like receptor 4 (TLR4) expression in mesangial cells (MCs), but the role of TLR4 in the Ang II-induced apoptosis and the effect of candesartan on TLR4 expression remain unclear. Here, we report that Ang II-induced MC apoptosis in a time-dependent manner and up-regulated TLR4/MyD88 expression, and that the intracellular ROS was subsequently increased. We also show that candesartan attenuated the Ang II-induced MC apoptosis, and that this protective effect was dependent on decreased TLR4/MyD88 expression as well as reduced intracellular ROS formation. Furthermore, Ang II increased the apoptosis inducing factor protein level, while candesartan markedly reduced this increase. These results demonstrate that TLR4/MyD88 pathway was involved in the Ang II promoted MC apoptosis, which was related to TLR4/MyD88 mediated oxidative stress. These data also suggest that candesartan exerted anti-apoptotic effect as an antioxidant by modulating this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号