首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dinoflagellates Amphidinium carterae and Amphidinium corpulentum have been previously characterized as having Δ8(14)-nuclear unsaturated 4α-methyl-5α-cholest-8(14)-en-3β-ol (C28:1) and 4α-methyl-5α-ergosta-8(14),24(28)-dien-3β-ol (amphisterol; C29:2) as predominant sterols, where they comprise approximately 80% of the total sterol composition. These two sterols have hence been considered as possible major sterol biomarkers for the genus. Here, we have examined the sterols of four recently identified species of Amphidinium (Amphidinium fijiense, Amphidinium magnum, Amphidinium theodori, and Amphidinium tomasii) that are closely related to Amphidinium operculatum as part of what is termed the Operculatum Clade to show that each species has its sterol composition dominated by the common dinoflagellate sterol cholesterol (cholest-5-en-3β-ol; C27:1), which is found in many other dinoflagellate genera, rather than Δ8(14) sterols. While the Δ8(14) sterols 4α-methyl-5α-cholest-8(14)-en-3β-ol and 4α,23,24-trimethyl-5α-cholest-8(14),22E-dien-3β-ol (C30:2) were present as minor sterols along with another common dinoflagellate sterol, 4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol (dinosterol; C30:1), in some of these four species, amphisterol was not conclusively observed. From a chemotaxonomic perspective, while this does reinforce the genus Amphidinium's ability to produce Δ8(14) sterols, albeit here as minor sterols, these results demonstrate that caution should be used when considering Δ8(14) sterols, especially amphisterol, as Amphidinium-specific biomarkers within these species where cholesterol is the predominant sterol.  相似文献   

2.
The heterotrophic dinoflagellate Crypthecodinium cohnii contained the 4α-methyl sterols, dinosterol, dehydrodinosterol (4α,23,24-trimethylcholesta-5,22-dien-3β-ol) and the tentatively identified 4α,24-dimethyl-cholestan-3β-ol and 4α,24-dimethylcholest-5-en-3β-ol. The major 4-demethyl sterol was cholesta-5,7-dien-3β-ol which was accompanied by a smaller amount of cholesterol and traces of several other C27,C28 and C29 sterols. In addition, a 3-oxo-steroid fraction was isolated and the major component identified as dinosterone (4α,23,24-trimethylcholest-22-en-3-one). The possible biosynthetic relationships of these compounds are discussed.  相似文献   

3.
Lanthanide-induced shifts (LIS) with Eu (dpm)3 and aromatic solvent induced shifts (ASIS) with C4H4, C5H5N1 and C6F6 of PMR signals were examined for a series of C-4-methylated steroids and tetracyclic triterpenoids having a hydroxyl, carbonyl or acetoxyl group at position C-3. The magnitude and/or direction of the LIS (or ASIS) of corresponding protons were extensively influenced by the nature of the C-3-functional groups. The possible geometries of Eu (dpm)3-substrate complexes were also discussed on the basis of the LIS data. The above two techniques in the PMR spectroscopy provided the confirmatory evidence for the structural and stereochemical determination of steroids and triterpenoids.  相似文献   

4.
M. Iqbal  P. Balaram 《Biopolymers》1982,21(7):1427-1433
Peptide NH chemical shifts and their temperature dependences have been monitored as a function of concentration for the decapeptide, Boc-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aib-OMe in CDCl3 (0.001–0.06M) and (CD3)2SO (0.001–0.03M). The chemical shifts and temperature coefficients for all nine NH groups show no significant concentration dependence in (CD3)2SO. Seven NH groups yield low values of temperature coefficients over the entire range, while one yields an intermediate value. In CDCl3, the Aib(1) NH group shows a large concentration dependence of both chemical shift and temperature coefficient, in contrast to the other eight NH groups. The data suggest that in (CD3)2SO, the peptide adopts a 310 helical conformation and is monomeric over the entire concentration range. In CDCl3, the 310 helical peptide associates at a concentration of 0.01M, with the Aib(1) NH involved in an intermolecular hydrogen bond. Association does not disrupt the intramolecular hydrogen-bonding pattern in the decapeptide.  相似文献   

5.
A conformational analysis of protected glutamate homo-oligopeptides Z-[Glu(OEt)]n-OEt (n = 2–7) was carried out in chloroform solution using high-resolution 1H-nmr spectroscopy. At dilute peptide concentrations, the backbone NH and α-CH resonances are well resolved and can be assigned by combining extensive homonuclear decoupling experiments with data for co-oligopeptide derivatives. The structure of these peptides in solution was then assessed using information from chemical shifts, coupling constants, temperature coefficients, and titration of each oligomer with trifluoroacetic acid (TFA). The di- and tripeptides are found to be in disordered forms in deuterochloroform (CDCl3) and CDCl3/TFA mixtures. The tetrapeptide exhibits a folded structure with intramolecular hydrogen bonding at Glu2 in CDCl3 and undergoes a transition to increasingly disordered forms as TFA is added. The pentamer to heptamer show a folded structure with a strong intramolecular hydrogen bond at Glu2 and a weaker hydrogen bond at Glu3, which are disrupted as these peptides go to random coils at high TFA/CDCl3 ratios. In addition, the N-terminal portions of these glutamate peptides appear to be involved in side chain–main chain interactions. The results support the hypothesis that protected linear homo-oligopeptides may possess two or more segments of conformation with intramolecular folding preferred near the N-terminal portion.  相似文献   

6.
Stepwise solution syntheses are described of the homo-oligomers Z-(Thr)n-NHCH3 (n=1–4, I 1–4), Z-{[Gal(Ac)4β]Thr}n-NHCH3(n=1–5, II 1–5) and Z-[(Galβ)Thr]n-NHCH3 (n=1−5, III 1–5). Members of the III 1–5 series were obtained by de-acetylation of the corresponding oligomers of the II 1–5 series. The conformational preferences of the terminally protected homo-peptides of the three series were investigated by FT-IR absorption spectroscopy both in the solid state and in CDCl3 solution, at various concentrations. Proton NMR measurements in CDCl3 and in DMSO-d6 were also carried out and the effect of temperature variation on the chemical shifts of amide protons was determined in DMSO-d6 (range 298–335 K) and in CDCl3 (range 298–320 K). CD spectra were recorded in water and in TFE. Solubility problems prevented measurements in CDCl3 solution for Z-(Thr)4-NHCH3 and for the entire III 1–5 series. The existence of unordered structures in the carbohydrate-free oligomers and of more or less extended, organized structures in the glycosylated derivatives is indicated by the NMR and IR measurements. The sugar moieties apparently show a structure-inducing effect on the peptide chain. ©1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
When Chlorella sorokiniana was grown in the presence of 4 ppm AY-9944 total sterol production was unaltered in comparison to control cultures. However, inhibition of sterol biosynthesis was shown by the accumulation of a number of sterols which were considered to be intermediates in sterol biosynthesis. The sterols which were found in treated cultures were identified as cyclolaudenol, 4α,14α-dimethyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 4α,14α-dimethyl -5α-ergosta-8,25-dien-3β-ol, 14α-methyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 24-methylpollinastanol, 14α-methyl-5α-ergost-8-en-3β-ol, 5α-ergost -8(14)-enol, 5α-ergost-8-enol, 5α-ergosta-8(14),22-dienol, 5α-ergosta-8,22-dienol, 5α-ergosta-8,14-dienol, and 5α-ergosta-7,22-dienol, in addition to the normally occurring sterols which are ergosterol, 5α-ergost-7-enol, and ergosta-5,7-dienol.The occurrence of these sterols in the treated culture indicates that AY-9944 is an effective inhibitor of the Δ8 → Δ7 isomerase and Δ14-reductase, and also inhibits introduction of the Δ22-double bond. The occurrence of 14α-dimethyl-5α-ergosta-8,25-dien-3β-ol and 14α-methyl-9β,19-cyclo-5α-ergost -25-en-3β-ol is reported for the first time in living organisms. The presence of 25-methylene sterols suggests that they, and not 24-methylene derivatives, are intermediates in the biosynthesis of sterols in C. sorokiniana.  相似文献   

8.
Brain sterols from chick embryos (11 and 18 days of incubation) and mature rats, previously injected with [2-14C]mevalonate, were analysed. Acetate derivatives of the sterols were chromatographed on Silica Gel:Celite:AgNO3 columns. Sterol fractions were assayed for radioactivity and the amounts determined by gas chromatography. Sterol structures were elucidated by gas chromatography-mass spectrometry. The method used allowed the identification of some sterols representing no more than 0-01 per cent of the total mixture. The following brain sterols were identified: cholesterol, cholestanol, cholest-5,24-dien-3β-ol (desmosterol); 4,4′-dimethyl-cholest-8-en-3β-ol, 4α-methyl-cholest-8-en-3β-ol, cholest-8-en-3β-ol, 4,4′-dimethyl-choIest-8,24-dien-3β-ol, 4α-methyl-cholest-8,24-dien-3β-ol, cholest-8,24-dien-3β-ol and cholest-7,24-dien-3β-ol. Small amounts of other sterols including polyhydroxy sterols, were also detected. There were no qualitative differences in the sterols detected in developing and mature brain. In the developing chick brain, cholesterol represented approximately 90 per cent of the total sterols. In the mature rat brain, cholesterol accounted for 98 per cent of the sterols. The adult rat brain, as well as the embryonic chick brain, demonstrated the capacity to incorporate mevalonate into cholesterol precursors and cholestanol. The sterols retaining the double bond in the lateral chain, that is, those of the Δ8,24 series with 29, 28 and 27 carbon atoms and desmosterol, were highly labelled compared with the other identified intermediates. The possibility, supported by our data, that a preferential biosynthetic route for cholesterol exists in brain, is discussed.  相似文献   

9.
Cultures and field samples of the toxic dinoflagellate Gymnodinium catenatum Graham from Tasmania, Australia, were analyzed for pigment, fatty acid, and sterol composition. Gymnodinium catenatum contained the characteristic pigments of photosynthetic dinoflagellates, including chlorophyll a, chlorophyll c2, and the carotenoids peridinin, dinoxanthin, diadinoxanthin, diatoxanthin, and β,β-carotene. In midlogarithmic and early stationary phase cultures, the chlorophyll a content ranged 50–72 pg · cell?1, total lipids 956–2084 pg · cell?1, total fatty acids 426–804 pg · cell?1, and total sterols 8–20 pg · cell?1. The major fatty acids (in order of decreasing abundance) were 16:0, 22:6(n-3), and 20:5(n-3) (collectively 65–70% of the total fatty acids), followed by 16:1(n-7), 18:2(n-6), and 14:0. This distribution is characteristic of most dinoflagellates, except for the low abundance (<3%) of the fatty acid 18:5(n-3), considered by some authors to be a marker for dinoflagellates. The three major sterols were 4α-methyl-5α-cholest-7-en-3β-ol, 4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol (the dinoflagellate sterol, dinosterol), and 4α,23,24-trimethyl-5α-cholest-7-en-3β-ol. These three sterols comprised about 75% of the total sterols in both logarithmic and early stationary phase cultures, and they were also found in high proportions (22–25%) in natural dinoflagellate bloom samples. 4-Desmethyl sterols, which are common in most microalgae, were only present in trace amounts in G. catenatum. The chemotaxonomic affinities of G. catenatum and the potential for using specific signature lipids for monitoring toxic dinoflagellate blooms are discussed.  相似文献   

10.
Nmr studies of the protected and free tetrapeptide Gly-Pro-Gly-Gly were carried out in β-turn-supporting solvents, that is, in CDCl3 for Z-Gly-Pro-Gly-Gly-OMe and in Me2SO-d6 for H-Gly-Pro-Gly-Gly-OH. Comparisons with specifically α-deuterated analogs gave complete assignments of the NH and methylene regions. Analysis of chemical shifts, coupling constants, and the temperature dependence of chemical shifts show that the peptide adopts a type II β-turn conformation. This turn is stabilized for the protected tetrapeptide by two hydrogen bonds between (i) C?O (Gly1) and NH(Gly4), and (ii) urethane function NH and methyl ester C?O.  相似文献   

11.
The 4,4-dimethylsterols 4α-lanost-24-ene-3β,9α-diol-[2-3H2] and parkeol-[2-3H2] were synthesized from lanosterol and subsequently incubated with cultures of Ochromonas malhamensis. 5α-Lanost-24-ene-3β,9α-diol was converted into poriferasterol with three times the efficiency of parkeol. Clionasterol was also found to be labelled from both parkeol and 5α-lanost-24-ene-3β,9α-diol. No significant incorporation of radioactivity into sterols was obtained after feeding 5α-lanost-24-ene-3β,9α-diol to higher plants, the chlorophyte alga Trebouxia, yeast or a cell free homogenate of rat liver.  相似文献   

12.
The complex sterol mixture isolated from A, nigra was found to contain a low level of Δ4-3-keto steroids, 5β-stanols and 4α-methyl sterols in addition to regular (4-demethyl) sterols. The following new marine sterols were isolated and identified using MS and 360 MHz NMR: 5β-cholest-22E-en-3β-ol, 24S-methyl-5β-cholest-22E-en-3β-ol, 24-methylene-5β-cholestan-3β-ol, both epimers at C-24 of 4α-methyl-24-ethyl-5α-cholest-22E-en-3β-ol, 4α, 22ξ, 23ξ-(or 24ξ-)trimethyl-5α-cholest-8(14)-en-3β-ol and (22S, 23S, 24S)-4α-24-dimethyl-22, 23-methylene-5α-cholestan-3β-ol. The latter sterol and 23-demethylgorqosterol have opposite configurations at C-22, C-23, and C-24; the Δ8(14) sterol has an unprecedented side chain.  相似文献   

13.
It is commonly believed that all membrane sterols are rigid all-trans ring systems with a fully extended alkyl side-chain and that they similarly influence phospholipid bilayer physical properties. Here, we report the sterol concentration-dependent, thermotropic phase behaviour of binary dipalmitoylphosphatidylcholine (DPPC)/sterol mixtures containing two similar 5α-H sterols with different functional group orientations (3α-OH or 3β-OH), which adopt an ideal all-trans planar ring conformation but lack the deformed ring B conformation of cholesterol (Chol) and epicholesterol (Echol), using differential scanning calorimetry (DSC). Our deconvolution of the DSC main phase transition endotherms show differences in the proportions of sterol-poor (sharp) and sterol-rich (broad) domains in the DPPC bilayer with increasing sterol concentration, which delineate gel/liquid-crystalline (Pβ′/Lα) and disordered gel (Lβ)/liquid-ordered (lo) phase regions. There are similarities in the DPPC main phase transition temperature, cooperativity and enthalpy for each 3β-ol and 3α-ol pair with increasing sterol concentration and differences in the parameters obtained for both the sterol-poor and sterol-rich regions. The sterol-poor domain persists over a greater concentration range in both 3α-ol/DPPC mixtures, suggesting that either those domains are more stable in the 3α-ols or that those sterols are less miscible in the sterol-rich domain. Corresponding parameters for the sterol-rich domain show that at sterol concentrations up to 20 mol%, the 5α-H,3β-ol is more effective at reducing the phase transition enthalpy of the broad component () than Chol, but is less effective at higher concentrations. Although mixtures containing Echol and 5α-cholestan-3α-ol have similar positive slopes below 7 mol% sterol, suggesting that they abolish the Lβ/lo phase transition equally effectively at low concentrations, Echol is more effective than the saturated 3α-ol at higher sterol concentrations. A comparison of obtained for the saturated and unsaturated pairs suggests that the latter sterols stabilize the lo phase and broaden and abolish the DPPC main phase transition more effectively than the saturated sterols at physiologically relevant concentrations, supporting the idea that the double bond of Chol and Echol promotes greater sterol miscibility and the formation of lo phase lipid bilayers relative to corresponding saturated sterols in biological membranes.  相似文献   

14.
Ergosterol, episterol, 4α-methyl-5α-ergosta-8,24(28)-dien-3β-ol and 24-methylene-24,25-dihydrolanosterol, isolated from Phycomyces blakesleeanus grown in the presence of methionine-[methyl-2H3], each contained two deuterium atoms; lanosterol, however, was unlabelled. The 14C:3H atomic ratio of the following sterols isolated from P. blakesleeanus grown in the presence of mevalonic acid-[2-14C,(4R)-4-3H1], was: ergosterol, 5:3; episterol, 5:4; ergosta-5,7,24(28)-trien-3β-ol, 5:3; 4α-methyl-5α-ergosta-8,24(28)-dien-3β-ol, 5:4; 24-methylene-24,25-dihydrolanosterol, 6:5; lanosterol, 6:5. The significance of these results in terms of ergosterol biosynthesis is discussed.  相似文献   

15.
Fourteen 4α-methyl sterols have been isolated from the gorgonians Briareum asbestinum, Gorgonia mariae, Muriceopsis flavida and Pseudoplexaura wagenaari, including the following five new sterols: 4α-methyl-24-methylene-5α-cholestan-3β-ol, (24R)-4α, 24-dimethyl-5α-cholesta-7,22-dien-3,β-ol, 4α,24S(or 23ξ)-dimethyl-5α-cholest-7-en-3β-ol, (22E, 24R)-4α,23,24-trimethyl-5α-cholesta-7,22-dien-3β-ol and (24R)-4α,24-dimethyl-5α-cholesta-8(14),22-dien-3β-ol. There is strong evidence that these 4α-methyl sterols are synthesized by the algal (dinoflagellate) symbionts (zooxanthellae) of the gorgonians. It is suggested that analysis of 4Δ-methyl sterol mixtures isolated from a zooxanthellae-bearing invertebrate, collected in several different geographic locations, might give information on the specificity of the symbiotic association between a given animal species and a particular strain of zooxanthellae.  相似文献   

16.
Phytosterols can be used by microorganisms as carbon and energy sources and completely degraded into CO2 and H2O. The catabolic pathway of phytosterols was well characterized in many microorganisms. Blocking the steroid core ring degradation by deletions of fadE30 and fadD3 genes, two important steroid intermediates, 3aα-H-4α-(3’-Propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone-δ-lactone (sitolactone, or HIL) and 3aα-H-4α-(3’-propionic acid)-7aβ-methylhexahydro-1,5-indanedione (HIP) can be accumulated. They are currently used to synthesize nor-steroid drugs with an α-methyl group or without the methyl group at the C10-position, such as estrone and norethindrone. In this study, a key gene involved in the bioconversion of HIP to HIL was identified in Mycolicibacterium neoaurum. Through heterologous expression, gene hipR was found to be involved in the reduction of the C5 keto group of HIP to a hydroxy group, leading to spontaneously lactonization into HIL in vitro. Through gene complementation and knockout, HipR functions were verified and two HIP degradation pathways in vivo were elucidated. The finding of this research facilitated the understanding of the metabolic pathway of sterols, and was directly applied to engineering robust production strains by overexpression or knockout of related genes.  相似文献   

17.
The following sterols have been isolated from the fungi, Phycomyces blakesleeanus and Agaricus campestris: ergosterol, lanosterol, 24-methylene-24,25-dihydrolanosterol and episterol. 4,4-Dimethyl-5α-ergosta-8.24(28)-dien-3β-ol and 4α-methyl-5α-ergosta-8,24(28)-dien-3β-ol have been tentatively identified. Evidence for the incorporation of label from l-methionine-[methyl-14C] into some of these sterols in P. blakesleeanus has been obtained. The significance of these sterols in ergosterol biosynthesis is discussed.  相似文献   

18.
K. Uma  R. Kishore  P. Balaram 《Biopolymers》1993,33(6):865-871
The competing effects of a disulfide bridge and an α-aminoisobutyryl residue (Aib) in determining the conformation of a hexapeptide have been investigated, by comparing the cyclic disulfide (1) and the acylic peptide Boc-Cys(SBzl)-Val-Aib-Ala-Leu-Cys(SBzl)-NHMe ( 2 ). Previously published nmr and crystallographic studies [R. Kishore, S. Raghothama, and P. Balaram (1987) Biopolymers, Vol. 26, pp. 873–891; I. L. Karle, R. Kishore, S. Raghothama, & P. Balaram, (1988) Journal of the American Chemical Society Vol. 110, pp. 1958–1963] have established an antiparallel β-hairpin structure for 1 with a central Aib-Ala β-turn. A comparison of nmr data for 1 and 2 in chloroform and dimethylsulfoxide reveals that the acyclic peptide is conformationally labile. Evidence for a 310-helical conformation in CDCl3 is obtained from sensitivity of NH chemical shifts to temperature and solvent perturbation and low JHNCαH values. Studies in solvent mixtures establish a conformational transition on going from CDCl3 to (CD3)2SO. The changes in NH nmr parameters, together with the observation of several interresidue C H-Ni + 1H nuclear Overhauser effects support a conformation having a central β-turn with extended arms in (CD3)2SO. A single Aib residue appears to stabilize a helix in apolar solvents, for the acyclic hexapeptide, while the disulfide bridge serves to lock the β-hairpin conformation. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
The dinoflagellate Glenodiniumhallii was investigated for its sterol composition. Five of the six sterols were isolated and identified as cholest-5-en-3β-ol, (24ξ)-24-methylcholest-5-en-3β-ol, stigmasta-5,22-dien-3β-ol, (22E,24R)-4α,23,24-trimethyl-5α-cholest-22-en-3β-ol, and 4α,23ξ,24ξ-trimethyl-5α-cholestan-3β-ol.  相似文献   

20.
Several new 4α-methyl sterols with unusual unsaturation in the Δ8(14)-or Δ14-positions, 4α,24S-dimethyl-5α-cholest-8 (14)-en-3β-ol, 4α-methyl-24ξ-ethyl-5α-cholest-8(14)-en-3β-ol, 4α-methyl-24(Z)-ethylidene-5α-cholest-8(14)- en-3β-ol, 4α,23 (or 22),24ξ-trimethyl-5α-cholesta-8(14),22-dien-3β-ol, 4α,24S(or 23ξ)-dimethyl-5α-cholest-14-en-3β-ol and 14-dehydrodinosterol, have been isolated from extracts of the cultured marine dinoflagellates Amphidinium carterae, A. corpulentum and Glenodinium sp. 4α-Methyl-24ξ-ethyl-5α-cholestan-3β-ol was isolated from the steryl ester fraction of Glenodinium sp. The structures of these new sterols are based upon extensive 360 MHz 1H NMR and MS analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号