首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Y Tserng  P D Klein 《Steroids》1979,33(2):167-182
The 7- and 12-monosulfates of chenodeoxycholic acid, deoxycholic acid, and cholic acid were prepared by sulfation of the protected bile acids with sulfur trioxide-triethylamine in pyridine overnight and were isolated by precipitation as the p-toluidinium salt after removing the protecting group(s). The taurine conjugates were obtained by conjugating the bile acid sulfates with taurine in hot dimethylformamide (DMF) in the presence of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). A new procedure of preparing glycine conjugated bile acid sulfates by direct conjugation of the bile acid sulfate triethylammonium salt with ethyl glycinate in boiling chloroform in the presence of EEDQ is also described. The advantage of these procedures over other procedures are their simplicity and their higher yields (tyically above 90%) The thin layer chromatographic mobilities of these sulfates are presented. The influence of side chain and hydroxyl group configurations on the properties of bile acid sulfates is briefly discussed.  相似文献   

2.
Synthesis of the specific monosulfates of cholic acid.   总被引:1,自引:0,他引:1  
G Parmentier  H Eyssen 《Steroids》1975,26(6):721-729
The three isomeric cholic acid-monosulfates were synthetized and characterized. Cholic acid-3-sulfate was obtained by reacting cholic acid for 2 min with chlorosulfonic acid in pyridine and chromatography of the resulting bile salt mixture on Sephadex LH-20. The 7- and the 12-monosulfate were prepared by sulfation of the corresponding monohydroxy-diacetates followed by removal of the acetyl groups by alkaline hydrolysis and purification by chromatography on Sephadex LH-20. On TLC in n-butanol-acetic acid-water (10:1:1, v/v) the Rf values were 0.59 for cholic acid-3-sulfate, 0.52 for cholic acid-7-sulfate and 0.48 for cholic acid-12-sulfate. The time required for complete solvolysis at 37 degrees C in acid methanol-acetone (1:9) was 3 h for cholic acid-3-sulfate, 12 h for the 12-monosulfate and 18 h for the 7-monosulfate.  相似文献   

3.
5beta-[G-3H]Cholestane-3alpha, 7alpha, 24xi, 25-tetrol (IV) was synthesized via dehydration and peroxidation of 5beta-[G-3H]cholestane-3alpha, 7alpha, 25-triol. Following perfusion of the labeled compound in the isolated rabbit liver, the bile alcohol and bile acid metabolites secreted into the bile were identified by a combination of thin layer chromatography, gas-liquid chromatography, and gas-liquid chromatography/mass spectrometry. The following bile alcohols were tentatively identified: 5beta-cholest-23-ene-3alpha, 7alpha, 25-triol, 5beta-cholest-25-ene-3alpha, 7alpha, 12alpha, 24xi-tetrol, and 5beta-cholestane-3alpha, 7alpha, 12alpha, 24xi, 25-pentol. The amount of administered tetrol recovered unchanged ranged from 1 to 88%. Cholic acid was the major product, but limited amounts of chemodeoxycholic acid were also formed. The 24-hydroxyl group in the steroid side chain did not prevent 12alpha-hydroxylation.  相似文献   

4.
Pure performylated bile acids are obtained in quantitative yield by anew formylation procedure. The procedure involves heating the bile acids in 90% formic acid containing catalytic amount of perchloric acid and then adding acetic anhydride slowly until effervescence occurs. Pure performylated bile acids are then isolated simply by diluting the reaction mixture with water. Contrary to what was believed by past investigations, the formyl groups on these compounds are quite stable to various reaction conditions. The stability and ready availability of these compounds make them more suitable candidates than their counterpart—bile acid acetates for use as starting material in various synthetic schemes, such as C-24 labeled bile acids, etc. The partial deformylation of these formates can be effected by using methanolic ammonia, sodium methoxide in methanol, or sodium hydroxide in aqueous acetone. The resulting 3-hydroxy formyl bile acids are obtained in high yield and are the best starting materials for the synthesis of bile acids with specific modification at 3-hydroxyl group, such as the synthesis of bile acid 3-monosulfates and 3-monoglucuronides.  相似文献   

5.
Sequential chromatography of human milk whey on concanavalin A—Sepharose 4B followed by cholate—Sepharose 4B yielded a bile salt-activated lipase with 150-fold purification. The lipase was not retained by concanavalin A—Sepharose 4B but was retained by the cholate—Sepharose 4B, from which it was eluted with 2% sodium cholate. The affinity chromatography procedure on cholate—Sepharose 4B was based on the specific structural requirement of the enzyme for a 7-hydroxyl group of bile salt. Sodium deoxycholate, which lacks the 7-hydroxyl group, was effective in removing the nonspecifically bound proteins without affecting the binding of the enzyme. Bile salt-activated lipase showed a single band on urea-sodium dodecyl sulfate—polyacrylamide gel electrophoresis with an apparent molecular weight of 125,000, and based on densitometric measurement accounted for 0.5–1.0% of the protein mass of human whole milk. A rabbit antiserum to the purified bile salt-activated lipase caused no inhibition of human milk lipoprotein lipase activity but completely inhibited bile salt-activated lipase activity.  相似文献   

6.
The effect of the 3 alpha- and 7 alpha-monosulfate esters of taurochenodeoxycholate on bile flow and biliary lipids was compared to the effect of unsulfated taurochenodeoxycholate. Test bile salts were infused directly into the portal circulation through a catheter introduced into the splenic pulp. Recovery of unsulfated and sulfated bile salts was complete; no biotransformation of any of the administered compounds was noted. Equivalent choleresis was noted in response to administration of each of the test bile salts. Of particular interest, the biliary cholesterol and phospholipid content was tightly linked to biliary bile salt monosulfates; the slope of the line describing the relationship between bile salts and lipids was similar to that for the unsulfated bile salt. The critical micellar concentration of the 3 alpha- and 7 alpha-monosulfate esters was 19 mM and 18 mM, respectively. Sulfation of taurochenodeoxycholate, therefore, does not impair its bile secretory function. Despite a higher critical micellar concentration, biliary lipid excretion with monosulfate esters is equivalent to that seen with unsulfated bile salt. The role of hydrophobic/hydrophilic balance in the promotion of biliary lipid excretion may need to be redefined.  相似文献   

7.
The 3- and 21-monosulfates of pentadeuterated 5β-tetrahydrocorticosteroides were synthesized, starting from cortisol and 11-deoxycotisol. The principal reactions used were (1) perdeuteration of the methylene groups adjacent to the 3-oxo group of 17,20:20,21-bismethylendioxy-5β-3-ketosteroids with NaOD in CH3OD followed by stereoselective reduction with NaBD4, (2) sulfation of hydroxy groups with sulfur trioxide–trimethylamine complex, and (3) removal of the 17,20:20,21-bismethylendioxy group with hydrogen fluoride. The labeled compounds can be used as internal standards in liquid chromatography/mass spectrometry assays for clinical and biochemical studies.  相似文献   

8.
The cell-free extract of Brevibacterium fuscum DC33 contained three kinds of hydroxysteriod dehydrogenase (3a-, 7a-, and 12a-hydroxysteriod dehydrogenases). 7a-Hydroxysteroid dehydrogenase (EC 1.1.1.59) was purified to electrophoretical homogeneity by ion exchange chromatography, affinity chromatography, and preparative electrophoresis. Its molecular weight was 104, 000 and the enzyme was composed of four identical subunits. The enzyme had an optimum pH of 5.3 for dehydrocholic acid reduction, and around 10 for cholic acid oxidation. It was stable in a pH range of 5.7 to 10.5 at 5°C overnight. The enzyme was most active at 25° to 30°C. The activity was not affected by incubation at 30°C for 30 min, but it was lost at 40°C for 30 min. Withe the assumption of two-substrate kinetics, we calculated various kinetic constants for dehydrocholic acid, 7, 12-diketolithocholic acid, 12-ketochenodeoxycholic acid, and 3, 12-diketolithocholic acid (for the structure of bile acids, see Table 2) together with NAD+ or NADH. The enzyme was active only toward hydroxysteroids with a 7a-hydroxyl group. The production of 7-ketochenodeoxycholic acid from cholic acid and of 3, 12-diketolithocholic acid from dehydrocholic acid by the purified 7a-hydroxysteroid dehydrogenase was confirmed by thin-layer chromatography.12a-Hydroxysteroid dehydrogenase was purified by a similar method. It was active toward hydroxysteroids with a 12a-hydroxyl group.3a-Hydroxysteroid dehydrogenase was purified by preparative electrophoresis. It was active toward hydroxysteroids with a 3a-hydroxyl group.  相似文献   

9.
In order to visualize bile salt transport, fluorescent bile salt derivatives were synthesized by introduction of the relatively small fluorescent 4-nitrobenzo-2-oxa-1,3-diazol (NBD)-amino group in either the 3-, 7-, or 12-position of the steroid structure, thus providing a complete set of diastereomeric derivatives, 3 alpha-NBD-amino-7 alpha,12 alpha-dihydroxy-5 beta-cholan-24-oic acid, 3 beta-NBD-amino-7 alpha,12 alpha-dihydroxy-5 beta-cholan-24-oic acid, 7 alpha-NBD-amino-3 alpha,12 alpha-dihydroxy-5 beta-cholan-24-oic acid, 7 beta-NBD-amino-3 alpha,12 alpha-dihydroxy-5 beta-cholan-24-oic acid, 12 alpha-NBD-amino-3 alpha,7 alpha-dihydroxy-5 beta-cholan-24-oic acid, 12 beta-NBD-amino-3 alpha,7 alpha-dihydroxy-5 beta-cholan-24-oic acid, as well as their taurine conjugates. Their optical properties with absorption maxima at about 490 nm and emission maxima at 550 nm make them suitable for fluorescent microscopic studies. Fluorescence of the NBD-derivatives is strongly dependent on polarity of the solvent, on the concentration of the bile salt derivatives, and only slightly on temperature.  相似文献   

10.
Optimal induction of 7 alpha- and 7 beta-hydroxysteroid dehydrogenase in 100-ml cultures grown to stationary phase was achieved by the addition of metabolizable bile salt inducers: chenodeoxycholate, 7-ketolithocholate or cholate at 2.5-3 h after inoculation. Bile salt addition prior to or after this period markedly reduced the enzyme levels induced. However, when the non-metabolizable inducers deoxycholate and 12-ketolithocholate were similarly added, no significant differences in enzyme levels were observed between addition at 2.5-3 h or at earlier times. The ability of both metabolizable and non-metabolizable bile salts to induce the enzymes fell markedly when additions were made later than approximately 3.5 h. Kinetic studies using 1-l cultures suggest that in a larger culture a somewhat earlier inducer addition period is optimal. When ranked according to the level of enzymes induced the order in decreasing induction power was: chenodeoxycholate, 7-ketolithocholate, deoxycholate, 12-ketolithocholate and cholate. Mixtures of cholate and suboptimal concentrations of deoxycholate induced the culture better than the sum of the two concentrations individually. The end product, ursodeoxycholate, was very effective in blocking the induction by chenodeoxycholate or deoxycholate. Ursocholate (3 alpha, 7 beta, 12 alpha-trihydroxy-5 beta-cholanoate) was less effective. Cultures when grown for 3 h with various bile salts or none, then centrifuged and recultured for a further 3 h in fresh medium containing chenodeoxycholate, all yielded identical enzyme levels within experimental error. We conclude that exposure of the organism to bile salt inducer in the last 3 h of culture was important, while the history of the culture prior to this time was unimportant in the induction process.  相似文献   

11.
TTUR 2-2, an alkalophilic Bacillus strain isolated from soil, grew well in media containing cholic acid (CA) at 5% or higher and efficiently converted 7α- and 12α-hydroxyl groups of CA to keto groups, with the conversion rate for both hydroxyl groups reaching 100% by 72 hours of cultivation. The strain also converted a 3α-hydroxyl group to a keto group, but the conversion rate was about 5% at 72 hours. The strain neither affected any other part of the CA molecule, nor oxidized 7β- or 12 β -hydroxyl groups.

By NTG mutagenesis, the following mutants were acquired; (1) converting only the 7α- and 12α-hydroxyl groups, (2) converting only the 12α-hydroxyl group, and (3) converting only the 7α-hydroxyl group. These mutants selectively produce 12-ketochenodeoxycholic acid (12KCDCA), 7-ketodeoxycholic acid (7KDOCA), and 7,12-diketolithocholic acid (7,12DKLCA), from CA; and 7-ketolithocholic acid (7KLCA) from cheno-deoxycholic acid (CDCA), respectively, at high yields, close to 100%.  相似文献   

12.
Formation of bile acids from sitosterol in bile-fistulated female Wistar rats was studied with use of 4-14C-labeled sitosterol and sitosterol labeled with 3H in specific positions. The major part (about 75%) of the 14C radioactivity recovered as bile acids in bile after intravenous administration of [4-14C]sitosterol was found to be considerably more polar than cholic acid, and only trace amounts of radioactivity had chromatographic properties similar to those of cholic acid and chenodeoxycholic acid. It was shown that polar metabolites were formed by intermediate oxidation of the 3 beta-hydroxyl group (loss of 3H from 3 alpha-3H-labeled sitosterol) and that the most polar fraction did not contain a hydroxyl group at C7 (retention of 3H in 7 alpha,7 beta-3H2-labeled sitosterol). Furthermore, the polar metabolites had lost at least the terminal 6 or 7 carbon atoms of the side chain (loss of 3H from 22,23-3H2- and 24,28-3H2-labeled sitosterol). Experiments with 3H-labeled 7 alpha-hydroxysitosterol and 4-14C-labeled 26-hydroxysitosterol showed that none of these compounds was an efficient precursor to the polar metabolites. By analysis of purified most polar products of [4-14C] sitosterol by radio-gas chromatography and the same products of 7 alpha,7 beta-[2H2]sitosterol by combined gas chromatography-mass spectrometry, two major metabolites could be identified as C21 bile acids. One metabolite had three hydroxyl groups (3 alpha, 15, and unknown), and one had two hydroxyl groups (3 alpha, 15) and one keto group. Considerably less C21 bile acids were formed from [4-14C]sitosterol in male than in female Wistar rats. The C21 bile acids formed in male rats did not contain a 15-hydroxyl group. Conversion of a [4-14C]sitosterol into C21 bile acids did also occur in adrenalectomized and ovariectomized rats, indicating that endocrine tissues are not involved. Experiments with isolated perfused liver gave direct evidence that the overall conversion of sitosterol into C21 bile acids occurs in this organ. Intravenously injected 7 alpha,7 beta-3H-labeled campesterol gave a product pattern identical to that of 4-14C-labeled sitosterol. Possible mechanisms for hepatic conversion of sitosterol and campesterol into C21 bile acids are discussed.  相似文献   

13.
T Ohkubo  T Wakasawa  T Nambara 《Steroids》1990,55(3):128-132
The ring A monoglucuronides and monosulfates of 2-hydroxyestriol were synthesized from 2-hydroxyestriol 16,17-diacetate by means of the Koenigs-Knorr reaction with methyl alpha-acetobromoglucuronate and sulfation with sulfur trioxide-pyridine complex, respectively. The conjugated positions of these compounds were definitely established by conversion to 2-hydroxyestriol monomethyl ethers by methylation, then enzymatic hydrolysis. The ring D monoglucuronides and monosulfates of 2-hydroxyestriol were also prepared from 2-hydroxyestriol 2,3-dibenzyl ether by glucuronidation and sulfation in a similar fashion followed by debenzylation, respectively. The positions of conjugation were established on the basis of their 1H-nuclear magnetic resonance spectral data.  相似文献   

14.
New carbene-generating photolabile bile salt derivatives, 3,3-azo-7 alpha,12 alpha-dihydroxy-5 beta [7 beta-3H]cholan-24-oic acid and (3,3-azo-7 alpha,12 alpha-dihydroxy-5 beta [7 beta-3H]cholan-24-oyl)-2- aminoethanesulfonic acid were synthesized with high specific radioactivity. These 3-diazirine-derivatives could be activated to the corresponding carbenes by irradiation with ultraviolet light at 350 nm with a half-life time of 2 min. The 3-diazirine derivatives behaved in enterohepatic circulation like the natural bile salts. The uptake of [3H]taurocholate into isolated hepatocytes was competitively inhibited by (3,3-azo-7 alpha,12 alpha-dihydroxy-5 beta-cholan-24-oyl)-2- aminoethanesulfonic acid indicating that the 3,3-azo-derivative of taurocholate shares the hepatic transport systems for natural bile salts. It was demonstrated that the radioactively labeled 3-diazirine bile salt derivatives are useful probes for photoaffinity labeling of bile salt binding proteins especially in intact cells and tissues.  相似文献   

15.
A detailed study of the qualitative and quantitative composition of bile acids in human fetal gallbladder bile is described. Bile was collected during early gestation (weeks 16-19) and analyzed by gas chromatography and mass spectrometry, fast atom bombardment ionization mass spectrometry, and high performance liquid chromatography. Bile acids were separated into different conjugate groups by chromatography on the lipophilic anion exchange gel, diethylaminohydroxypropyl Sephadex LH-20. Quantitatively more than 80% of the bile acids were secreted into bile conjugated to taurine. Unconjugated bile acids and glycine conjugates accounted for 5-10% of the total biliary bile acids. Bile acid sulfates were present only in trace amounts indicating that quantitatively sulfation is not an important pathway in bile acid metabolism during development. Total biliary bile acid concentrations were low (0.1-0.4 mM) when compared to reported values for adult bile (greater than 10 mM). Chenodeoxycholic acid was the major biliary bile acid and exceeded cholic acid concentrations by 1.43-fold indicating either a relative immaturity in 12 alpha-hydroxylase activity during early life or a dominance of alternative pathways for chenodeoxycholic acid synthesis. A relatively large proportion of the biliary bile acids comprised metabolites not found in adult bile. The presence of relatively high proportions of hyocholic acid (often greater than cholic acid) and several 1 beta-hydroxycholanoic acid isomers indicates that C-1 and C-6 hydroxylation are important pathways in bile acid synthesis during development. We describe, for the first time, evidence for the existence of a C-4 hydroxylation pathway in the metabolism of bile acids, which may be unique to early human development. Mass spectrometry was used to confirm the identification of 3 alpha,4 beta,7 alpha-trihydroxy-5 beta-cholanoic and 3 alpha,4 beta-dihydroxy-5 beta-cholanoic acids. Quantitatively, these C-4 hydroxylated bile acids accounted for 5-15% of the total biliary bile acids of the fetus, suggesting that C-4 hydroxylation is quantitatively an important pathway in the bile acid metabolism during early life.  相似文献   

16.
Biotransformation of natural products has great potential for producing new drugs and could provide in vitro models of mammalian metabolism. Microbial transformation of the cytotoxic steroid cinobufagin was investigated. Cinobufagin could be specifically hydroxylated at the 12β-position by the fungus Alternaria alternata. Six products from a scaled-up fermentation were obtained by silica gel column chromatography and reversed-phase liquid chromatography and were identified as 12β-hydroxyl cinobufagin, 12β-hydroxyl desacetylcinobufagin, 3-oxo-12β-hydroxyl cinobufagin, 3-oxo-12β-hydroxyl desacetylcinobufagin, 12-oxo-cinobufagin, and 3-oxo-12α-hydroxyl cinobufagin. The last five products are new compounds. 12β-Hydroxylation of cinobufagin by A. alternata is a fast catalytic reaction and was complete within 8 h of growth with the substrate. This reaction was followed by dehydrogenation of the 3-hydroxyl group and then deacetylation at C-16. Hydroxylation at C-12β also was the first step in the metabolism of cinobufagin by a variety of fungal strains. In vitro cytotoxicity assays suggest that 12β-hydroxyl cinobufagin and 3-oxo-12α-hydroxyl cinobufagin exhibit somewhat decreased but still significant cytotoxic activities. The 12β-hydroxylated bufadienolides produced by microbial transformation are difficult to obtain by chemical synthesis.  相似文献   

17.
It is postulated that the six conjugated bile acids of most common occurrence in human bile could be analyzed by three enzymic and one chemical assay without any prior chromatographic separation of the bile acids. In health, all bile acids in liver or gall bladder bile are conjugated with either glycine or taurine and have an a-hydroxyl group at the 3 position. In addition, the trihydroxy bile acid, cholic (C) has a 7α- and a 12α-hydroxy group while the dihydroxy bile acids either have a second hydroxyl group at the 7α-position (chenodeoxycholic acid, CDC) or at the 12α-position (deoxycholic acid, DC). Hydroxysteroid dehydrogenases (HSDH) specific for oxido-reductase activity at the 3α-, 7α- and 12α-positions would directly quantify these 3α-, 7α- and 12α-hydroxyl groups in a sample of bile or bile extract. Subsequent data would be used to solve three simultaneous equations yielding solutions for the overall concentrations of conjugated C, conjugated CDC and conjugated DC on the assumption that the overall concentration of lithocholic acid is negligible (< 2 %). A suitable assay for the sulphonate group containing taurine conjugates, such as that described by Christie, Macdonald & Williams, 1975, along with the total bile acid measurement would readily facilitate the estimation of the glycine/taurine (GT) ratio. This ratio applied to the enzymatically derived estimates for conjugated DC, CDC and C would approximate the glycodeoxycholate (GDC), glycochenodeoxycholate (GCDC), glycocholate (GC), taurodeoxycholate (TDC), taurochenodeoxycholate (TCDC) and taurocholate (TC) concentrations. Figures for these concentrations would be based on the assumption that the GT ratio is approximately the same for each bile acid and that all the bile acids are conjugated.  相似文献   

18.
A method for analysis of profiles of conjugated progesterone metabolites and bile acids in 10 ml of urine and 1–4 ml of serum from pregnant women is described. Total bile acids and neutral steroids from serum and urine were extracted with octadecylsilane-bonded silica. Groups of conjugates were separated on the lipophilic ion-exchanger triethylaminohydroxypropyl Sephadex LH-20 (TEAP-LH-20). Fractions were divided for steroid or bile acid analyses. Sequences of hydrolysis/ solvolysis and separations on TEAP-LH-20 permitted separate analyses of steroid glucuronides, monosulfates and disulfates and bile acid aminoacyl amidates, sulfates, glucuronides and sulfate-glucuronides. Radiolabelled compounds were added at different steps to monitor recoveries and completeness of separation, and hydrolysis/solvolysis of conjugates was monitored by fast-atom bombardment mass spectrometry. The extraction and solvolysis of steroid disulfates in urine were studied in detail, and extraction recoveries were found to be pH-dependent. Following methylation of bile acids, all compounds were analysed by capillary gas chromatography and gas chromatography—mass spectrometry of their trimethylsilyl ether derivatives. Semiquantification of individual compounds in each profile by gas—liquid chromatography had a coefficient of variation of less than 30%. The total analysis required 3 days for serum and 4 days for urine.  相似文献   

19.
In nine strains of Clostridium innocuum, 3 beta-hydroxysteroid-dehydrogenating activities were detected. 3 beta, 7 alpha, 12 alpha-Trihydroxy- and 3 beta-hydroxy-12-keto-5 beta-cholanoic acids were identified as reduction products of the respective 3-keto bile acids by gas-liquid chromatography and gas-liquid chromatography-mass spectrometry. One strain was shown to contain a NAD-dependent 3 beta-hydroxysteroid dehydrogenase. Enzyme production was constitutive in the absence of added bile acids. The specific enzyme activity was significantly reduced by growth medium supplementation with 3-keto bile acids, with trisubstituted acids being more effective than disubstituted ones. A pH optimum of 10.0 to 10.2 was found after partial purification by DEAE-cellulose chromatography. A molecular weight of about 56,000 was established. 3 beta-hydroxysteroid dehydrogenase activity was also found in the membrane fraction after solubilization with Triton X-100, suggesting that the enzyme was originally membrane bound. The enzyme reduced a 3-keto group in unconjugated and conjugated bile acids, lower Km values being demonstrated with disubstituted than with trisubstituted bile acids. Keto functions at C-7 and C-12 further reduced the Km value. The enzyme was found to be partially heat labile (86% inactivation at 50 degrees C for 10 min).  相似文献   

20.
In nine strains of Clostridium innocuum, 3 beta-hydroxysteroid-dehydrogenating activities were detected. 3 beta, 7 alpha, 12 alpha-Trihydroxy- and 3 beta-hydroxy-12-keto-5 beta-cholanoic acids were identified as reduction products of the respective 3-keto bile acids by gas-liquid chromatography and gas-liquid chromatography-mass spectrometry. One strain was shown to contain a NAD-dependent 3 beta-hydroxysteroid dehydrogenase. Enzyme production was constitutive in the absence of added bile acids. The specific enzyme activity was significantly reduced by growth medium supplementation with 3-keto bile acids, with trisubstituted acids being more effective than disubstituted ones. A pH optimum of 10.0 to 10.2 was found after partial purification by DEAE-cellulose chromatography. A molecular weight of about 56,000 was established. 3 beta-hydroxysteroid dehydrogenase activity was also found in the membrane fraction after solubilization with Triton X-100, suggesting that the enzyme was originally membrane bound. The enzyme reduced a 3-keto group in unconjugated and conjugated bile acids, lower Km values being demonstrated with disubstituted than with trisubstituted bile acids. Keto functions at C-7 and C-12 further reduced the Km value. The enzyme was found to be partially heat labile (86% inactivation at 50 degrees C for 10 min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号