首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
20β-Hydroxy-5α-pregnan-3-one (HPO) is a competitive inhibitor of reduction by 3a/20β-hydroxysteroid dehydrogenase (3α/20β-HSD; E.C.1.1.1.53) of 17β-hydroxy-5α-androstan-3-one (DHT; 3α-activity; Ki = 4.6 × 10?5M) and of 6β-acetoxyprogesterone (6β-AP; 20β-activity; Ki = 4.34 × 10?5M). HPO and DHT inhibit affinity alkylation of 3α/20β-HSD by 6β-bromoacetoxyprogesterone (6β-BAP). The facts that 1) enzyme 3α-activity and 20β-activity are both competitively inhibited by HPO with practically identical Ki-values, 2) 6β-BAP is solely a 20β-activity substrate for 3α/20β-HSD, 3) one mole of 6β-BAP reacts with one mole of 30/20β-HSD to simultaneously inactivate 3α- and 20β-activity and 4) inactivation of 3α/20β-HSD by 6β-BAP is inhibited by DHT (a Cig-steroid) or HPO (a C21-steroid), support the view that the same active site of 3α/20β-HSD possesses both 3α- and 20β-activity. Bifunctional activity at the same active site is considered for other steroid-specific enzymes in female mammalian reproductive systems.  相似文献   

2.
Zhang Y  Tobias HJ  Brenna JT 《Steroids》2009,74(3):369-271
Carbon isotope ratio (CIR) analysis of urinary steroids using gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS) is a recognized test to detect illicit doping with synthetic testosterone. There are currently no universally used steroid isotopic standards (SIS). We adapted a protocol to prepare isotopically uniform steroids for use as a calibrant in GCC-IRMS that can be analyzed under the same conditions as used for steroids extracted from urine. Two separate SIS containing a mixture of steroids were created and coded CU/USADA 33-1 and CU/USADA 34-1, containing acetates and native steroids, respectively. CU/USADA 33-1 contains 5α-androstan-3β-ol acetate (5α-A-AC), 5α-androstan-3α-ol-17-one acetate (androsterone acetate, A-AC), 5β-androstan-3α-ol-11, 17-dione acetate (11-ketoetiocholanolone acetate, 11k-AC) and 5α-cholestane (Cne). CU/USADA 34-1 contains 5β-androstan-3α-ol-17-one (etiocholanolone, E), 5α-androstan-3α-ol-17-one (androsterone, A), and 5β-pregnane-3α, 20α-diol (5βP). Each mixture was prepared and dispensed into a set of about 100 ampoules using a protocol carefully designed to minimize isotopic fractionation and contamination. A natural gas reference material, NIST RM 8559, traceable to the international standard Vienna PeeDee Belemnite (VPDB) was used to calibrate the SIS. Absolute δ13CVPDB and Δδ13CVPDB values from randomly selected ampoules from both SIS indicate uniformity of steroid isotopic composition within measurement reproducibility, SD(δ13C) < 0.2‰. This procedure for creation of isotopic steroid mixtures results in consistent standards with isotope ratios traceable to the relevant international reference material.  相似文献   

3.
The crystal and molecular structure of (10R)-17β-hydroxy-5-methylene-4,10-cyclo-19-nor-4,5-seco-17α -pregn-20-YN-1-one has been determined by X-ray analysis in order to ascertain the configuration at C(10). As observed in most other 17α-pregn-20-yn-17β-ol structures, atom 0(17B) participates as a donor in a hydrogen bond trans to the C(16)-C(17) bond, and there is a short C(21)…0 intermolecular contact.  相似文献   

4.
E Mappus  C Y Cuilleron 《Steroids》1979,33(6):693-718
The 3-(O-carboxymethyl)oximino derivative of 17β-hydroxy-5α-androstan-3-one (5α-dihydrotestosterone) was prepared. Thin-layer chromatography of the corresponding methyl ester showed the presence of two syn (60%) and anti (40%) geometrical isomers of the oxime chain to the C-4 position, which were characterized by 13C nmr. The 3β-hemisuccinami-do-5α-androstan-17β-ol was obtained after selective saponification with potassium carbonate of the 17β-hemisuccinate group of the 3,17-dihemi-succinoylated derivative of the previously described 3β-amino-5α-androstan-17β-ol. This 3β-hemisuccinamide was purified as the corresponding methyl ester-17β-acetate and was regenerated after saponification. The 3,3'-ethylenedioxy-7-oxo-5α-androstan-17β-yl acetate was obtained in quantitative yield by catalytic hydrogenation over 10% palladium-oncharcoal of the Δ5-7-oxo precursor in a dioxane-ethanol mixture containing traces of pyridine. The exclusive 5α-configuration of this hydrogenated product was established from nmr data and was confirmed by the synthesis of methyl 3,3'-ethylenedioxy-7-oxo-5β-cholan-24-oate as 5β-H-reference compound. The preceding 5α-H-7-ketone was converted into the 7-(O-carboxymethyl)oximino derivative (syn isomer to the C-6 position, exclusively) which was esterified into the corresponding methyl ester. The selective hydrolysis of the 3-ethyleneketal group was achieved by a short treatment with a formic acid-ether 1:1 (v/v) mixture at 20°C. Saponification of the latter reaction product with ethanolic potassium hydroxide gave the 7-(O-carboxymethyl)oximino-17β-hydroxy-5α-androstan-3-one derivative, which was characterized as the corresponding methyl ester. The reduction of the oxime of the 5α-H-7-ketone with sodium in ethanol or with lithium-aluminium hydride gave respectively the 7β-amine or the 7α-amine as the major product. The 7β- and 7α-configurations were established from nmr spectra of the corresponding 7-acetamido derivatives. The 7β- and 7α-hemisuccinamido derivatives were prepared from the mixture of 7β- and 7α-amines, as described above for 3-derivatives and were isolated after thin-layer chromatography of the methyl esters, followed by saponification of the corresponding 17β-acetates.  相似文献   

5.
The synthesis of labeled and non-labeled 3β,15α-dihydroxy-5-pregnen-20-one (V) and 3β, 15α-dihydroxy-5-androsten-17-one (XI) is described. Treatment of 15α-hydroxy-4-pregnene-3,20-dione (I) with acetic anhydride and acetyl chloride gave 3,15α-diacetoxy-3,5-pregnadien-20-one (II). The enol acetate (II) was ketalized by a modification of the general procedure to yield 3,15α-diacetoxy-3,5-pregnadien-20-one cyclic ethylene ketal (III) which was then reduced with NaBH4 and LiAlH4 to give 3β, 15α-dihydroxy-5-pregnen-20-one cyclic ethylene ketal (IV). Cleavage of the ketal group of IV gave V. Similarly, XI was prepared by starting with 15α-hydroxy-4-androstene-3,17-dione (VII). The (4-14C)-3β,15α-dihydroxy-5-pregnen-20-one was prepared by a modification of the above procedure in that the enol acetate (II)was directly reduced with NaBH4 and LiAlH4 to yield 5-pregnene-3β,15α,20β-triol (XIII) which was then oxidized enzymatically with 20β-hydroxysteroid dehydrogenase to V.  相似文献   

6.
5β-Pregnane-3α, 17α, 20α, 21-tetrol (l) and 5β-pregnane-3α, 17α 20β, 21-tetrol (II) have been isolated and identified from the urine of a girl with congenital adrenal hyperplasia. The total 5β-pregnane-3α, 17α, 20(α+β),21-tetrol consisted of 60% of I and 40% of II. The final identity of the compounds was established by gas chromatography — mass spectrometry. The mass spectra of the two trimethylsilyl isomers were closely related to each other in contrast to the spectra of five other pairs of C21-C-20(α and β)-hydroxy steroid-trimethylsilyl-ethers. The mass spectra of free I and II also exhibited many common features, but were less similar to each other than their trimethylsilyl derivatives.  相似文献   

7.
T Shinada  K J Ryan 《Steroids》1973,21(2):233-244
The biosynthesis and metabolism of progesterone and estrogens have been studied in chimpanzee placental tissue in vitro. The conversion of androstenedione-4-14C to estrone and estradiol-17β and of pregnenolone-7α-3H to progesterone has been demonstrated. In addition, the following metabolites were isolated following incubation of either pregnenolone-7α-3H or progesterone-4-14C: 20α-dihydroprogesterone, 20β-dihydroprogesterone, 6β-hydroxyprogesterone, 5α-pregnane-3,20 dione. The compound 5α-pregnan-3β o1-20-one was identified only after incubation with pregnenolone-7α-3H, while 5β-pregnane-3, 20 dione was identified only after incubation with progesterone-4-14C. No estrogens could be demonstrated following the incubation of placental preparations with either of the C21 substrates.  相似文献   

8.
Antibodies to progesterone (P) and to 17-hydroxyprogesterone (17-OHP) were raised by immunization of rabbits with progesterone-7α-carboxyethyl thioether--bovine serum albumin (P-7—BSA) or with 17-OHP-7α-carboxyethyl thioether--BSA (17-OHP-7--BSA). The antisera produced were of high affinity: Ka towards the homologous hapten was 3. 7 × 1010 1./mol for the anti-P serum and 5. 9 × 109 1/mol for the anti-17-OHP serum. The antiserum to P-7—BSA displayed little or no cross reaction (?= 2%) with the 20α-, 20β- or 5β-dihydro-derivatives of progesterone, moderate cross-reaction with pregnenolone (4%), but considerable cross-reaction with 11-deoxycorticosterone (7%), 5α-dihydro-progesterone (11%) and 17-OHP (15%). The antiserum to 17-OHP-7--BSA showed very little cross-reaction (?= 2%) with progesterone and other steroids lacking a 17α-hydroxyl group, such as pregnenolone or 11-deoxycorticosterone, but reacted significantly with 17α, 21-dihydroxy-4-pregnene-3, 20-dione (8%) and 3β, 17-dihydroxy-5-pregnen-20-one (13%). None of the sera reacted with testosterone, cortisol or estradiol-17β. It appears that conjugation of progesterone to protein through carbon-7 affords antisera comparable in specificity to those raised with 11α-conjugates and superior to those raised with 3-, 6- and 20-conjugates. The antiserum to 17-hydroxyprogesterone described is the first one that specifically recognizes this metabolite.  相似文献   

9.
5α-Dihydrotestosterone (5α-DHT) possesses a great affinity for the androgen receptor (AR), and its binding to AR promotes the proliferation of prostate cancer (PC) cells in androgen-dependent PC. Primarily synthesized from testosterone (T) in testis, 5α-DHT could also be produced from 5α-androstane-3α,17β-diol (3α-diol), an almost inactive androgen, following non-classical pathways. We reported the chemical synthesis of non-commercially available [4-14C]-3α-diol from [4-14C]-T, and the development of a biological assay to identify inhibitors of the 5α-DHT formation from radiolabeled 3α-diol in LAPC-4 cell PC model. We measured the inhibitory potency of 5α-androstane derivatives against the formation of 5α-DHT, and inhibition curves were obtained for the most potent compounds (IC50 = 1.2–14.1 μM). The most potent inhibitor 25 (IC50 = 1.2 μM) possesses a 4-(4-CF3-3-CH3O-benzyl)piperazinyl methyl side chain at C3β and 17β-OH/17α-CCH functionalities at C17 of a 5α-androstane core.  相似文献   

10.
Sertoli cells isolated from 17 day old rats were maintained in culture and incubated with [14C]-progesterone for 20 h. The cells and media were extracted with ether/chloroform and the extracts chromatographed two-dimensionally on TLC and the radioactive metabolites visualized by autoradiography. Nine of the metabolites (constituting about 88% of total metabolite radioactivity) were identified by relative mobilities of the compounds and their derivatives in TLC and GC systems and by recrystallizations with authentic steroids as the following: 20α-hydroxypregn-4-en-3-one, 3α-hydroxy-5α-pregnan-20-one, 5α-pregnane3α,20α-diol, 17β-hydroxy-5α-androstan-3-one, 5α-pregnane-3,20-dione, 17-hydroxypregn-4-ene-3,20-dione, testosterone, 5α-androstane-3α,17β-diol and androst-4-ene-3,17-dione. Over 71% of the metabolite radioactivity was due to 20α-hydroxypregn-4-en-3-one, the major metabolite. 5α-reduced pregnanes constituted about 12% and C19 steroids comprised about 2.9% of the radioactivity of the metabolites. Calculation of relative steroidogenic enzyme activities from initial reaction rates suggested the following activities in μunits/mg Sertoli cell protein: 20α-hydroxysteroid oxidoreductase (20α-HS0; 7.71), 5α-reductase (4.77), 3α-HS0 (3.57), 17α-hydroxylase (0.93), 17β-HS0 (0.34) and C17-C20 lyase (0.34). The relatively high rate of steroidogenic enzyme activities in the Sertoli cells of young rats may indicate that Sertoli cells are less dependent on Leydig cell steroidogenesis than has been assumed. Since nearly all the metabolites of progesterone and testosterone are now identified, it is possible to construct a picture of Sertoli cell steroidogenic activity.  相似文献   

11.
Placental homogenates from guinea-pigs at 16, 20, 35 and 55 days gestation were incubated with 7α-3H-dehydroepiandrosterone and 4-14C-androstenedione and analyzed for conversion products by reverse isotope dilution methods. 14C-3α-Hydroxy-5α-androstan-17-one, 14C-androstane-3α, 17β-diol and 3Handrost-5-ene-3β, 17β-diol were isolated from homogenates incubated with substrates for 2 hours. 3H, 14C-Testosterone was isolated from preparations incubated for 15 minutes or with high substrate: tissue ratios. Androst-4-ene-3, 17-dione, 5α-androstane-3, 17-dione, 5β-androstanedione derivative and C18 steroid formation could not be demonstrated. These results demonstrate the capacity of guinea-pig placentas to convert dehydroepiandrosterone and androstenedione to testosterone and to derivatives reduced in ring A (5α) and at carbon 17. The activity of the Δ5-3β-hydroxysteroid dehydrogenase enzyme system appears to have been rate limiting.Homogenates of adrenals from 44–55 day old fetuses converted 4-14C-pregnenolone to androst-4-ene-3, 17-dione and 6β- and 11β-hydroxyandrostenedione. A guineapig fetal-placental unit is postulated, with steroid metabolic characteristics different from the human unit. Both permit reduction of fetal adrenal cortisol production and placental removal of C19 steroids.  相似文献   

12.
This study has identified the polar metabolites of 5α-androstane-3β, 17β-diol(3β-diol) produced by the canine prostate. The major metabolite is 5α-androstane-3β, 7α, 17β-triol (7α-triol) accounting for approximately 80% of the total polar metabolites of 3β-diol. The remaining 20% is accounted for exclusively by another triol, 5α-androstane-3β, 6α, 17β-triol(6α-triol). This study has also characterized two enzymatic hydroxylases responsible for respective triol formation: 5α-androstane-3β, 17β-diol 6α-hydroxylase (6α-hydroxylase) and 5α-androstane-3β, 17β-diol 7α-hydroxylase (7α-hydroxylase). Both of these irreversible hydroxylases are located in the particulate fraction of the prostate and can utilize either NADH or NADPH as cofactor. Several in vitro steroid inhibitors of these hydroxylases were identified including cholesterol, estradiol and diethylstilbestrol. Neither of the hydroxylases were found to be decreased by castration (3 months) when expressed as activity/DNA. Using a variety of C19 androstane substrates, 6α- and 7α-triol were found to be major components of the total 3β-hydroxy-5α-androstane metabolites produced by the canine prostate.  相似文献   

13.
P Ofner  R L Vena 《Steroids》1974,24(2):261-279
An unknown radiometabolite, formed in the canine prostate and epididymis after intra-arterial infusion of testosterone-4-14C in physiologic saline and extraction of the organs with ethyl acetate-acetone, was identified as the 3-monoacetate of 5α-androstane-3β, 17β-diol (3β-diol). Transformation of 3β-diol-14C to its identified 3-monoacetate derivative could also be demonstrated, if the incubation of the radiosubstrate with minced canine prostate was terminated by ethyl acetate extraction. The formation of polar products in high yield was noted. Whereas minced canine prostate actively converted 5α-androstane-3α,17β-diol-14C to 17β-hydroxy-5α-androstan-3-one-14C, the same preparation hydroxylated 3β-diol-14C predominantly at the 7ξ- and, to a lesser extent, at the 6ξ-positions. Partial identification of the hydroxylated radiometabolites was by crystallization of the CrO3-oxidation products 5α-androstane-3,6,17-trione-14C and 5α-androstane-3,7,17-trione-14C to constant SA and by GLC/MS of the latter derivative. NADPH-supplementation of the preparation enhanced the yield of hydroxylated products derived from 3β-diol-14C in a 1 hr incubation from 22% to 41%. Analogous supplemented incubations of benign hyperplastic human prostate and canine epididymis produced polar metabolites (in 12.5% and 76% yields, respectively) which gave rise to similar proportions of the same androstanetrione epimers on CrO3-oxidation.  相似文献   

14.
Incubation of lanosta-8, 24-dien-3β-o1-1,2- 3H and lanost-8-en-3β-o1-1, 2-3H with an adrenocortical bovine mitochondrial acetone-dried preparation did not yield any significant ( < 0.01%) 3β-hydroxy-4, 4, 14-trimethyl-5α-pregn-8-en-20-one. Under the same conditions cholesterol-1,2-3H yielded 8.3% pregnenolone. Incubation of (20S?) — 17α, 20-dihydroxycholesterol-7-3 H yielded 0.6 to 1.6% (20SS?, 22R?) — 17α, 20, 22-trihydroxycholesterol, 1.0 to 3.2% of 17α-hydroxypregnenolone, but no significant ( < 0.02%) (20S, 22S)-17α, 20, 22-trihydroxycholesterol. In another experiment incubation of cholesterol-1, 2-3H yielded 5% pregnenolone, 0.5% 17α-hydroxypregnenolone, 0.2% (20R?,22R?)-20, 22-dihydroxy-cholesterol, but no significant ( < 0.01%) 17α-hydroxy-cholesterol, (20S?) -17α, 20-dihydroxycholesterol or (20S?, 22R?)-17α, 20, 22-trihydroxycholesterol.  相似文献   

15.
Aldo-keto reductase (AKR) 1C3 (type 5 17β-hydroxysteroid dehydrogenase and prostaglandin F synthase), may stimulate proliferation via steroid hormone and prostaglandin (PG) metabolism in the breast. Purified recombinant AKR1C3 reduces PGD2 to 9α,11β-PGF2, Δ4-androstenedione to testosterone, progesterone to 20α-hydroxyprogesterone, and to a lesser extent, estrone to 17β-estradiol. We established MCF-7 cells that stably express AKR1C3 (MCF-7-AKR1C3 cells) to model its over-expression in breast cancer. AKR1C3 expression increased steroid conversion by MCF-7 cells, leading to a pro-estrogenic state. Unexpectedly, estrone was reduced fastest by MCF-7-AKR1C3 cells when compared to other substrates at 0.1 μM. MCF-7-AKR1C3 cells proliferated three times faster than parental cells in response to estrone and 17β-estradiol. AKR1C3 therefore represents a potential target for attenuating estrogen receptor α induced proliferation. MCF-7-AKR1C3 cells also reduced PGD2, limiting its dehydration to form PGJ2 products. The AKR1C3 product was confirmed as 9α,11β-PGF2 and quantified with a stereospecific stable isotope dilution liquid chromatography–mass spectrometry method. This method will allow the examination of the role of AKR1C3 in endogenous prostaglandin formation in response to inflammatory stimuli. Expression of AKR1C3 reduced the anti-proliferative effects of PGD2 on MCF-7 cells, suggesting that AKR1C3 limits peroxisome proliferator activated receptor γ (PPARγ) signaling by reducing formation of 15-deoxy-Δ12,14-PGJ2 (15dPGJ2).  相似文献   

16.
3α, 18, 21-Trihydroxy-5β-pregnan-20-one 18 → 20-hemiacetal (18-hydroxy-tetrahydro-DOC) has been prepared from 3α-acetoxy-5β-pregnan-20-one by reduction to the 20β-alcohol, application of the ‘hypoiodite’ reaction [Pb(OAc)4-I2-hv] with subsequent steps leading to the 18-hydroxy-20-ketone (as hemiacetal), and C-21 acetoxylation [Pb(OAc)4] followed by hydrolysis.  相似文献   

17.
The tuber of Humirianthera rupestris (Icacinaceae) contains the degraded diterpenoids 3β,20-epoxy-30α- hydroxy- 14-oxo-9β-podocarpan-19,6β-olide (humirianthenolide A), 3β,20-epoxy-3α,14α-dihydroxy-9β-podocarpan-19,6β- olide (humirianthenolide B), 3β,20; 16,14-diepoxy-3α-hydroxy-17-nor-15-oxo-9β-abiet-13-en-19,6β-olide (humirianthenolide C), 3β,20-epoxy-3α,14-dihydroxy-13-oxo-9β-podocarp-8(14)-en-19,6β-olide (humirianthenolide D), 3β,20-epoxy-3α-hidroxy-14-oxo-8α,9β-podocarpan-19,6β-olide (humirianthenolide E) and 3β,20-epoxy-3α,14β- dihydroxy-8α,9β-podocarpan-19,6β-olide (humirianthenolide F). 1H NMR and 13C NMR spectroscopy were efrective for the determination of the humirianthenolide structures.  相似文献   

18.
Rabbit antisera to bovine serum albumin (BSA) conjugates of 3-(O-carboxymethyl)oximino-, 7-(O-carboxymethyl)oximino- and 7β-hemi-succinamido derivatives of 5α-dihydrotestosterone (DHT) were applied to four affinity columns bearing respectively these three antigens and a fourth 3β-hemisuccinamido-5α-androstan-17β-ol-BSA antigen as ligands.The antibodies retained on the columns were totally desorbed by an excess of DHT, but in DHT-bound form, whereas 1M mh4oh and electrophoretic elution allowed a recovery of 60% of the retained antibodies in unbound form. The antibody fractions (40%) remaining on the columns after NH4OH or electrophoretic elution were totally recovered by addition of DHT following the electrophoretic elution only. All the DHT-bound fractions were dissociated by dialysis but with a 70% loss of binding activity.The association constants for DHT of most of the antibody fractions were similar to those of the crude antisera (Ka ~ 1010M?1), with the exception of the antibodies recovered from the antibody fractions resistant to electrophoretic elution which had higher affinities (Ka ~ 2.0 to 30 × 1010M?1).The specificity charts of the antisera were in some cases considerably modified after fractionation, according to the choice of the ligand employed in the affinity columns as well as of the elution methods. The lowest cross-reactions with testosterone were observed after elution with 1M NH4OH (17–20%) or electrophoresis (23–25%) of the anti-7-(O-carboxymethyl)oximino-DHT antisera fractions retained on 3β-hemisuccinamido-5α-androstan-17β-ol-BSA-Sepharose columns.  相似文献   

19.
Two new steroid glycosides: distolasteroside D6, (24S)-24-O-(β-D-xylopyranosyl)-5α-cholestane-3β,6α,8,15β,16β,24-hexaol, and distolasteroside D7, (22E,24R)-24-O-(β-D-xylopyranosyl)-5α-cholest-22-ene-3β,6α,8,15β,24-pentaol were isolated along with the previously known distolasterosides D1, D2, and D3, echinasteroside C, and (25S)-5α-cholestane-3β4β,6α,7α,8,15α,16β,26-octaol from the Far Eastern starfish Distolasterias nipon. The structures of new compounds were elucidated by NMR spectroscopy and MALDI TOF mass spectrometry. Like neurotrophins, distolasterosides D1, D2, and D3 were shown to induce neuroblast differentiation in a mouse neuroblastoma C1300 cell culture.  相似文献   

20.
5α-Androstane-3α, 16α 17β-triol was synthesized from 3β-hy-droxy-5-androsten-17-one. The procedure Involved catalytic hydrogenation of 3β-hydroxy-5-androsten-17-one to 3β-hydroxy-5α-androstan-17-one. This was followed by conversion of the 3β-hydroxy group to 3α-benzoyloxy group by the Mitsunobu reaction. Further treatment with isopropenyl acetate yielded 5α-androsten-16-ene-3α, 17-diol 3-benzoate 17-acetate. This was then converted to 3α, 17-dihydroxy-5α-androstan-16-one 3-benzoate 17-acetate via the unstable epoxide intermediate after treatment with m-cloroperoxybenzoic acid. LiAlH4 reduction of this compound formed 5α-androstane-3α, 16α, 17β-trlol. 1H and 13C NMR of various steroids are presented to confirm the structure of this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号