首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The survival of selected naturally occurring and genetically engineered bacteria in a fully functional laboratory-scale activated-sludge unit (ASU) was investigated. The effect of the presence of 3-chlorobenzoate (3CB) on the survival of Pseudomonas putida UWC1, with or without a chimeric plasmid, pD10, which encodes 3CB catabolism, was determined. P. putida UWC1(pD10) did not enhance 3CB breakdown in the ASU, even following inoculation at a high concentration (3 x 10(8) CFU/ml). The emergence of a natural, 3CB-degrading population appeared to have a detrimental effect on the survival of strain UWC1 in the ASU. The fate of two 3CB-utilizing bacteria, derived from activated-sludge microflora, was studied in experiments in which these strains were inoculated into the ASU. Both strains, AS2, an unmanipulated natural isolate which flocculated readily in liquid media, and P. putida ASR2.8, a transconjugant containing the recombinant plasmid pD10, survived for long periods in the ASU and enhanced 3CB breakdown at 15 degrees C. The results reported in this paper illustrate the importance of choosing strains which are well adapted to environmental conditions if the use of microbial inoculants for the breakdown of target pollutants is to be successful.  相似文献   

2.
The possibility of the accidental or deliberate release of genetically engineered microorganisms into the environment has accentuated the need to study their survival in, and effect on, natural habitats. In this study, Pseudomonas putida UWC1 harboring a non-self-transmissible plasmid, pD10, encoding the breakdown of 3-chlorobenzoate was shown to survive in a fully functioning laboratory-scale activated-sludge unit (ASU) for more than 8 weeks. The ASU maintained a healthy, diverse protozoal population throughout the experiment, and the introduced strain did not adversely affect the functioning of the unit. Although plasmid pD10 was stably maintained in the host bacterium, the introduced strain did not enhance the degradation of 3-chlorobenzoate in the ASU. When reisolated from the ASU, derivatives of strain UWC1 (pD10) were identified which were able to transfer plasmid pD10 to a recipient strain, P. putida PaW340, indicating the in situ transfer of mobilizing plasmids from the indigenous population to the introduced strain. Results from plate filter matings showed that bacteria present in the activated-sludge population could act as recipients for plasmid pD10 and actively expressed genes carried on the plasmid. Some of these activated-sludge transconjugants gave higher rates of 3-chlorobenzoate breakdown than did strain UWC1(pD10) in batch culture.  相似文献   

3.
The possibility of the accidental or deliberate release of genetically engineered microorganisms into the environment has accentuated the need to study their survival in, and effect on, natural habitats. In this study, Pseudomonas putida UWC1 harboring a non-self-transmissible plasmid, pD10, encoding the breakdown of 3-chlorobenzoate was shown to survive in a fully functioning laboratory-scale activated-sludge unit (ASU) for more than 8 weeks. The ASU maintained a healthy, diverse protozoal population throughout the experiment, and the introduced strain did not adversely affect the functioning of the unit. Although plasmid pD10 was stably maintained in the host bacterium, the introduced strain did not enhance the degradation of 3-chlorobenzoate in the ASU. When reisolated from the ASU, derivatives of strain UWC1 (pD10) were identified which were able to transfer plasmid pD10 to a recipient strain, P. putida PaW340, indicating the in situ transfer of mobilizing plasmids from the indigenous population to the introduced strain. Results from plate filter matings showed that bacteria present in the activated-sludge population could act as recipients for plasmid pD10 and actively expressed genes carried on the plasmid. Some of these activated-sludge transconjugants gave higher rates of 3-chlorobenzoate breakdown than did strain UWC1(pD10) in batch culture.  相似文献   

4.
We report a field study on plasmid mobilization in an agricultural soil. The influence of pig manure on the mobilization of the IncQ plasmid pIE723 by indigenous plasmids or by the IncP(alpha) plasmid pGP527 into the recipient Pseudomonas putida UWC1 (Rif(supr) Nal(supr)) was studied in field soil. Six plots were prepared in duplicate, three of which were treated with manure prior to inoculation of the donor and recipient strains. As a donor strain, either Escherichia coli J53(pIE723) or E. coli 600(pIE723, pGP527) was used. Putative transconjugants obtained on a selective medium were confirmed by DNA hybridization and PCR. Plasmid mobilization by indigenous mobilizing plasmids was observed on two occasions in manured soil. Manuring of soil significantly enhanced the frequency of pIE723 mobilization by pGP527, since mobilization frequencies into P. putida UWC1 were at least 10-fold higher in manured soil than in nonmanured soil. Enhanced numbers of P. putida UWC1 transconjugant and recipient colonies could be observed in manured soil throughout the 79-day field test. Transfer of pIE723 or pG527 into indigenous soil or rhizosphere bacteria could not be detected when indigenous bacteria isolated by selective cultivation were screened for the presence of these plasmids by DNA hybridization. Furthermore, the presence of IncN-, IncP-, or IncQ-specific sequences was confirmed in total community DNA extracted directly from the manured or nonmanured soil by PCR. IncW plasmids were detectable only in manured soil, indicating entry of these plasmids into soil via manure.  相似文献   

5.
Two genetically engineered microorganisms (GEMs), Pseudomonas sp. strain B13 FR1(pFRC20P) (FR120) and Pseudomonas putida KT2440(pWWO-EB62) (EB62), were introduced into activated sludge microcosms that had the level of aeration, nutrient makeup, and microbial community structure of activated sludge reactors. FR120 contains an experimentally assembled ortho cleavage route for simultaneous degradation of 3-chlorobenzoate (3CB) and 4-methyl benzoate (4MB); EB62 contains a derivative TOL plasmid-encoded degradative pathway for toluene experimentally evolved so that it additionally processes 4-ethyl benzoate (4EB). Experiments assessed survival of the GEMs, their ability to degrade target substrates, and lateral transfer of plasmid-encoded recombinant DNA. GEMs added at initial densities of 10(6) to 10(7) bacteria per ml of activated sludge declined to stable population densities of 10(4) to 10(5) bacteria per ml. FR120 degraded combinations of 3CB and 4MB (1 mM each) following 3 days of adaptation in the microcosms. Indigenous microorganisms required an 8-day adaptation period before degradation of 4MB was observed; 3CB was degraded only after the concentration of 4MB was much reduced. The indigenous microbial community was killed when both compounds were present at concentrations of 4.0 mM. However, in parallel microcosms containing FR120, the microbial community maintained a normal density of viable cells. Indigenous microbes readily degraded 4EB (2 mM), and EB62 did not significantly increase the observed rate of degradation. In filter matings, transfer of pFRC20P, which specifies mobilization but not transfer functions, from FR120 to P. putida UWC1 was not detectable (< 10(-7) transconjugants per donor cell).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Two genetically engineered microorganisms (GEMs), Pseudomonas sp. strain B13 FR1(pFRC20P) (FR120) and Pseudomonas putida KT2440(pWWO-EB62) (EB62), were introduced into activated sludge microcosms that had the level of aeration, nutrient makeup, and microbial community structure of activated sludge reactors. FR120 contains an experimentally assembled ortho cleavage route for simultaneous degradation of 3-chlorobenzoate (3CB) and 4-methyl benzoate (4MB); EB62 contains a derivative TOL plasmid-encoded degradative pathway for toluene experimentally evolved so that it additionally processes 4-ethyl benzoate (4EB). Experiments assessed survival of the GEMs, their ability to degrade target substrates, and lateral transfer of plasmid-encoded recombinant DNA. GEMs added at initial densities of 10(6) to 10(7) bacteria per ml of activated sludge declined to stable population densities of 10(4) to 10(5) bacteria per ml. FR120 degraded combinations of 3CB and 4MB (1 mM each) following 3 days of adaptation in the microcosms. Indigenous microorganisms required an 8-day adaptation period before degradation of 4MB was observed; 3CB was degraded only after the concentration of 4MB was much reduced. The indigenous microbial community was killed when both compounds were present at concentrations of 4.0 mM. However, in parallel microcosms containing FR120, the microbial community maintained a normal density of viable cells. Indigenous microbes readily degraded 4EB (2 mM), and EB62 did not significantly increase the observed rate of degradation. In filter matings, transfer of pFRC20P, which specifies mobilization but not transfer functions, from FR120 to P. putida UWC1 was not detectable (< 10(-7) transconjugants per donor cell).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study examined the potential of bacteria from river epilithon to mobilize a recombinant catabolic plasmid, pD10, encoding 3-chlorobenzoate degradation and kanamycin resistance. Fifty-four mobilizing plasmids were exogenously isolated by triparental matings between strains of Pseudomonas putida and epilithic bacteria from the River Taff (South Wales, United Kingdom). Frequencies for mobilization ranged from 1.7 x 10(-8) to 4.5 x 10(-3) per recipient at 20 degrees C. The sizes of the mobilizing plasmids isolated ranged from 40 kb to over 200 kb, and 19 of 54 were found to encode mercury resistance. Plasmid-encoded resistance to tetracycline and streptomycin was also found but not resistance to UV light or various heavy metals. Eight plasmids of epilithic bacteria, analyzed by comparing restriction fragmentation patterns, showed significant differences between those isolated from different independent matings. Optimal temperatures for mobilization of pD10 were between 15 and 25 degrees C. Four mercury resistance plasmids were found to be broad host range, transferring mercury resistance and mobilizing pD10 readily to representative species of beta- and gamma-purple bacteria. In general, frequencies of pD10 mobilization by plasmids of epilithic bacteria were 2 to 3 orders of magnitude lower than conjugal transfer frequencies. Thus, there is a high potential for exchange of recombinant genes introduced into the epilithon by mobilization between a variety of bacterial species.  相似文献   

8.
This study examined the potential of bacteria from river epilithon to mobilize a recombinant catabolic plasmid, pD10, encoding 3-chlorobenzoate degradation and kanamycin resistance. Fifty-four mobilizing plasmids were exogenously isolated by triparental matings between strains of Pseudomonas putida and epilithic bacteria from the River Taff (South Wales, United Kingdom). Frequencies for mobilization ranged from 1.7 x 10(-8) to 4.5 x 10(-3) per recipient at 20 degrees C. The sizes of the mobilizing plasmids isolated ranged from 40 kb to over 200 kb, and 19 of 54 were found to encode mercury resistance. Plasmid-encoded resistance to tetracycline and streptomycin was also found but not resistance to UV light or various heavy metals. Eight plasmids of epilithic bacteria, analyzed by comparing restriction fragmentation patterns, showed significant differences between those isolated from different independent matings. Optimal temperatures for mobilization of pD10 were between 15 and 25 degrees C. Four mercury resistance plasmids were found to be broad host range, transferring mercury resistance and mobilizing pD10 readily to representative species of beta- and gamma-purple bacteria. In general, frequencies of pD10 mobilization by plasmids of epilithic bacteria were 2 to 3 orders of magnitude lower than conjugal transfer frequencies. Thus, there is a high potential for exchange of recombinant genes introduced into the epilithon by mobilization between a variety of bacterial species.  相似文献   

9.
Comparative studies were performed to investigate the contribution of microbial consortia, individual microbial populations, and specific plasmids to chlorinated biphenyl biodegradation among microbial communities from a polychlorinated biphenyl-contaminated freshwater environment. A bacterial consortium, designated LPS10, was shown to mineralize 4-chlorobiphenyl (4CB) and dehalogenate 4,4'-dichlorobiphenyl. The LPS10 consortium involved three isolates: Pseudomonas testosteroni (LPS10A), which mediated the breakdown of 4CB and 4,4'-dichlorobiphenyl to 4-chlorobenzoic acid; an isolate tentatively identified as an Arthrobacter sp. (LPS10B), which mediated 4-chlorobenzoic acid degradation; and Pseudomonas putida bv. A (LPS10C), whose role in the consortium has not been determined. None of these isolates contained detectable plasmids or sequences homologous to the 4CB-degradative plasmid pSS50. A freshwater isolate, designated LBS1C1, was found to harbor a 41-megadalton plasmid that was related to the 35-megadalton plasmid pSS50, and this isolate was shown to mineralize 4CB. In chemostat enrichments with biphenyl and 4CB as primary carbon sources, the LPS10 consortium was found to outcomplete bacterial populations harboring plasmids homologous to pSS50. These results demonstrate that an understanding of the biodegradative capacity of individual bacterial populations as well as interacting populations of bacteria must be considered in order to gain a better understanding of polychlorinated biphenyl biodegradation in the environment.  相似文献   

10.
Comparative studies were performed to investigate the contribution of microbial consortia, individual microbial populations, and specific plasmids to chlorinated biphenyl biodegradation among microbial communities from a polychlorinated biphenyl-contaminated freshwater environment. A bacterial consortium, designated LPS10, was shown to mineralize 4-chlorobiphenyl (4CB) and dehalogenate 4,4'-dichlorobiphenyl. The LPS10 consortium involved three isolates: Pseudomonas testosteroni (LPS10A), which mediated the breakdown of 4CB and 4,4'-dichlorobiphenyl to 4-chlorobenzoic acid; an isolate tentatively identified as an Arthrobacter sp. (LPS10B), which mediated 4-chlorobenzoic acid degradation; and Pseudomonas putida bv. A (LPS10C), whose role in the consortium has not been determined. None of these isolates contained detectable plasmids or sequences homologous to the 4CB-degradative plasmid pSS50. A freshwater isolate, designated LBS1C1, was found to harbor a 41-megadalton plasmid that was related to the 35-megadalton plasmid pSS50, and this isolate was shown to mineralize 4CB. In chemostat enrichments with biphenyl and 4CB as primary carbon sources, the LPS10 consortium was found to outcomplete bacterial populations harboring plasmids homologous to pSS50. These results demonstrate that an understanding of the biodegradative capacity of individual bacterial populations as well as interacting populations of bacteria must be considered in order to gain a better understanding of polychlorinated biphenyl biodegradation in the environment.  相似文献   

11.
Separate continuous cultures of Pseudomonas putida R5-3, grown on toluene, and Pseudomonas alcaligenes C-O, grown on benzoate, were concentrated and continuously amalgamated on a ceramic bead column, which was subjected to a continuous stream of chlorobenzene vapors. A recombinant strain, P. putida CB1-9, was isolated in less than 1 month. P. alcaligenes C-0 grew on benzoate and 3-chlorobenzoate but not on toluene, P. putida R5-3 grew on benzoate and toluene but not on 3-chlorobenzoate, and neither strain grew on chlorobenzene or 1,4-dichlorobenzene; however, the recombinant P. putida CB1-9 grew on all of these substrates. Chlorobenzene-utilizing strains were not found in continuous cultures run at the lowest growth rate (0.05/h) or in the absence of the donor strain, P. alcaligenes C-0. Chloride was released in stoichiometric amounts when P. putida CB1-9 was grown on either chlorobenzene or 1,4-dichlorobenzene. The recombinant strain was related to P. putida R5-3, phenotypically and genetically. Restriction enzyme digests of the single 57-kilobase (kb) plasmid in R5-3 and of the single 33-kb plasmid in CB1-9 were similar, but also indicated rearrangement of plasmid DNA. Coincidental or causal to the loss of the 24-kb fragment was the observation that the recombinant--unlike its parent, R5-3--did not grow on xylenes or methylbenzoates. Although both ortho-pyrocatechase (OP) and meta-pyrocatechase (MP) were found in CB1-9 and R5-3, MP activity was 20- to 50-fold higher in R5-3 cells grown on 4-methylbenzoate than in the same cells grown on benzene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Separate continuous cultures of Pseudomonas putida R5-3, grown on toluene, and Pseudomonas alcaligenes C-O, grown on benzoate, were concentrated and continuously amalgamated on a ceramic bead column, which was subjected to a continuous stream of chlorobenzene vapors. A recombinant strain, P. putida CB1-9, was isolated in less than 1 month. P. alcaligenes C-0 grew on benzoate and 3-chlorobenzoate but not on toluene, P. putida R5-3 grew on benzoate and toluene but not on 3-chlorobenzoate, and neither strain grew on chlorobenzene or 1,4-dichlorobenzene; however, the recombinant P. putida CB1-9 grew on all of these substrates. Chlorobenzene-utilizing strains were not found in continuous cultures run at the lowest growth rate (0.05/h) or in the absence of the donor strain, P. alcaligenes C-0. Chloride was released in stoichiometric amounts when P. putida CB1-9 was grown on either chlorobenzene or 1,4-dichlorobenzene. The recombinant strain was related to P. putida R5-3, phenotypically and genetically. Restriction enzyme digests of the single 57-kilobase (kb) plasmid in R5-3 and of the single 33-kb plasmid in CB1-9 were similar, but also indicated rearrangement of plasmid DNA. Coincidental or causal to the loss of the 24-kb fragment was the observation that the recombinant--unlike its parent, R5-3--did not grow on xylenes or methylbenzoates. Although both ortho-pyrocatechase (OP) and meta-pyrocatechase (MP) were found in CB1-9 and R5-3, MP activity was 20- to 50-fold higher in R5-3 cells grown on 4-methylbenzoate than in the same cells grown on benzene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Pseudomonas putida EEZ15(pWW0-EB62) is a phosphinothricin (PPT)-resistant strain with a recombinant TOL plasmid which allows the strain to grow on p-ethylbenzoate. The survival of this strain in sterile agricultural soils depends on the physicochemical properties of the soil. The recombinant pWW0-EB62 plasmid and its catabolic functions were stable for periods of up to 1 month in bacteria introduced in unamended soils and only conferred selective advantage to the host bacteria without the plasmid or with the natural pWW0 plasmid when the soils were amended with low amounts of p-ethylbenzoate. The addition to soils of aromatics that are cometabolized by P. putida EEZ15(pWW0-EB62) had a detrimental effect on the survival of the bacteria, whereas low amounts of aromatics that are not metabolized by this bacterium had no effect on their survival. Survival of P. putida EEZ15(pWW0-EB62) was better at 4 and 25 degrees C than at 37 degrees C. The host bacterium carrying the recombinant pWW0-EB62 plasmid was established in unsterile soils.  相似文献   

14.
Pseudomonas putida EEZ15(pWW0-EB62) is a phosphinothricin (PPT)-resistant strain with a recombinant TOL plasmid which allows the strain to grow on p-ethylbenzoate. The survival of this strain in sterile agricultural soils depends on the physicochemical properties of the soil. The recombinant pWW0-EB62 plasmid and its catabolic functions were stable for periods of up to 1 month in bacteria introduced in unamended soils and only conferred selective advantage to the host bacteria without the plasmid or with the natural pWW0 plasmid when the soils were amended with low amounts of p-ethylbenzoate. The addition to soils of aromatics that are cometabolized by P. putida EEZ15(pWW0-EB62) had a detrimental effect on the survival of the bacteria, whereas low amounts of aromatics that are not metabolized by this bacterium had no effect on their survival. Survival of P. putida EEZ15(pWW0-EB62) was better at 4 and 25 degrees C than at 37 degrees C. The host bacterium carrying the recombinant pWW0-EB62 plasmid was established in unsterile soils.  相似文献   

15.
Antibiotic resistance plasmids were exogenously isolated in biparental matings with piggery manure bacteria as plasmid donors in Escherichia coli CV601 and Pseudomonas putida UWC1 recipients. Surprisingly, IncQ-like plasmids were detected by dot blot hybridization with an IncQ oriV probe in several P. putida UWC1 transconjugants. The capture of IncQ-like plasmids in biparental matings indicates not only their high prevalence in manure slurries but also the presence of efficiently mobilizing plasmids. In order to elucidate unusual hybridization data (weak or no hybridization with IncQ repB or IncQ oriT probes) four IncQ-like plasmids (pIE1107, pIE1115, pIE1120, and pIE1130), each representing a different EcoRV restriction pattern, were selected for a more thorough plasmid characterization after transfer into E. coli K-12 strain DH5alpha by transformation. The characterization of the IncQ-like plasmids revealed an astonishingly high diversity with regard to phenotypic and genotypic properties. Four different multiple antibiotic resistance patterns were found to be conferred by the IncQ-like plasmids. The plasmids could be mobilized by the RP4 derivative pTH10 into Acinetobacter sp., Ralstonia eutropha, Agrobacterium tumefaciens, and P. putida, but they showed diverse patterns of stability under nonselective growth conditions in different host backgrounds. Incompatibility testing and PCR analysis clearly revealed at least two different types of IncQ-like plasmids. PCR amplification of total DNA extracted directly from different manure samples and other environments indicated the prevalence of both types of IncQ plasmids in manure, sewage, and farm soil. These findings suggest that IncQ plasmids play an important role in disseminating antibiotic resistance genes.  相似文献   

16.
Abstract The presence of transfer proficient plasmids in bacteria isolated from the leaves of sugar beet ( Beta vulgaris L.) was studied. Of 435 bacteria sampled 79 (18%) contained plasmids. Pseudomonads (30%), Erwinia (12%) and Klebsiella (9%) were the largest populations sampled of which 22%, 33% and 29%, respectively, contained plasmids. The ability of these plasmids to self-transfer or mediate the mobilization of the tra mob+ broad host range IncQ plasmid R300B was determined. R300B was maintained in 61/79 natural plasmid containing isolates, the Gram positive isolates could not support R300B. Pseudomonas aureofaciens SBW25, isolated from sugar beet leaves, was chromosomally marked with a tetracycline resistance gene and used as a recipient (SBW25ETc). Five isolates of Erwinia herbicola and one of Erwinia salicis containing natural plasmids were able to mobilize R300B into the recombinant, SBW25ETc. These mobolizing ( tra+ ) plasmids were not maintained in transconjugant SBW25 cells. Analysis of the fragment patterns of Pst I digested plasmid DNA demonstrated that four (pSB139, pSB140, pSB142, pSB146; 110 kb) were identical, one (pSB153; 65 kb) was common to a subset of fragments in these four and another (pSB169; 100 kb) was unique. Other natural isolates were able to transfer copper resistance ( Erwinia rhapontici , 2 strains) or mercury resistance ( Pseudomonas fluorescens SBW340) to a rifampicin resistant recipient Pseudomonas putida UWC1 but not to SBW25ETc. These self-transferable plasmids were not able to mobilize R300B. These data demonstrate that the phyllosphere supports indigenous microbial populations which have the capacity to transfer genetic material between bacteria of different genera.  相似文献   

17.
A 7.8 kb plasmid (pQM17) encoding mercury resistance was isolated from two epilithic strains of Acinetobacter calcoaceticus. The plasmid had a broad host range when mobilized by RP1, transferring into Pseudomonas aeruginosa, P. putida, P. fluorescens, Escherichia coli, Proteus vulgaris and Chromobacterium sp. with frequencies ranging from 5.3 x 10(-9) to 4.6 x 10(-4) per recipient. The plasmid could be transferred into A. calcoaceticus BD413 using intact cells of donor and recipient bacteria (i.e. natural transformation) and there was a broad temperature optimum (14-37 degrees C) for transformation. Transformation was as efficient in liquid matings as on plates but there was no effect of pH in the range 5.6-7.9. Maximum transformation frequencies were obtained after 24 h on agar plates containing 3.5-10 g C 1-1 with donor to recipient ratios ranging from 6 to 415.  相似文献   

18.
Recombinant TOL plasmid pWWO-EB62 allows Pseudomonas putida to grow on p-ethylbenzoate. This plasmid can be transferred to other microorganisms, and its catabolic functions for the metabolism of alkylbenzoates are expressed in a limited number of gram-negative bacteria, including members of pseudomonad rRNA group I and Escherichia coli. Transfer of the recombinant plasmid to Erwinia chrysanthemi was observed, but transconjugants failed to grow on alkylbenzoates because they lost catabolic functions. Pseudomonads belonging to rRNA groups II, III, and IV, Acinetobacter calcoaceticus, and Alcaligenes sp. could not act as recipients for TOL, either because the plasmid was not transferred or because it was not stably maintained. The frequency of transfer of pWWO-EB62 from P. putida as a donor to pseudomonads belonging to rRNA group I was on the order of 1 to 10(-2) transconjugant per recipient, while the frequency of intergeneric transfer ranged from 10(-3) to 10(-7) transconjugant per recipient. The profile of potential hosts was conserved when the donor bacterium was Escherichia coli or Erwinia chrysanthemi instead of P. putida. No intergeneric gene transfer of the recombinant TOL plasmid was observed in soils; however, intraspecies transfer did take place. Intraspecies transfer of TOL in soils was affected by the type of soil used, the initial inoculum size, and the presence of chemicals that could affect the survival of the donor or recipient bacteria.  相似文献   

19.
Recombinant TOL plasmid pWWO-EB62 allows Pseudomonas putida to grow on p-ethylbenzoate. This plasmid can be transferred to other microorganisms, and its catabolic functions for the metabolism of alkylbenzoates are expressed in a limited number of gram-negative bacteria, including members of pseudomonad rRNA group I and Escherichia coli. Transfer of the recombinant plasmid to Erwinia chrysanthemi was observed, but transconjugants failed to grow on alkylbenzoates because they lost catabolic functions. Pseudomonads belonging to rRNA groups II, III, and IV, Acinetobacter calcoaceticus, and Alcaligenes sp. could not act as recipients for TOL, either because the plasmid was not transferred or because it was not stably maintained. The frequency of transfer of pWWO-EB62 from P. putida as a donor to pseudomonads belonging to rRNA group I was on the order of 1 to 10(-2) transconjugant per recipient, while the frequency of intergeneric transfer ranged from 10(-3) to 10(-7) transconjugant per recipient. The profile of potential hosts was conserved when the donor bacterium was Escherichia coli or Erwinia chrysanthemi instead of P. putida. No intergeneric gene transfer of the recombinant TOL plasmid was observed in soils; however, intraspecies transfer did take place. Intraspecies transfer of TOL in soils was affected by the type of soil used, the initial inoculum size, and the presence of chemicals that could affect the survival of the donor or recipient bacteria.  相似文献   

20.
The possibilities for low-frequency horizontal transfer of the self-transmissible chlorocatechol degradative genes (clc) from Pseudomonas sp. strain B13 were investigated in activated-sludge microcosms. When the clc genes were transferred into an appropriate recipient bacterium such as Pseudomonas putida F1, a new metabolic pathway for chlorobenzene degradation was formed by complementation which could be selected for by the addition of mono- or 1,4-dichlorobenzene (CB). Under optimized conditions with direct donor-recipient filter matings, very low transfer frequencies were observed (approximately 3.5 × 10−8 per donor per 24 h). In contrast, in matings on agar plate surfaces, transconjugants started to appear after 8 to 10 days, and their numbers then increased during prolonged continuous incubation with CB. In activated-sludge microcosms, CB-degrading (CB+) transconjugants of strain F1 which had acquired the clc genes were detected but only when strain B13 cell densities of more than 105 CFU/ml could be maintained by the addition of its specific growth substrate, 3-chlorobenzoate (3CBA). The CB+ transconjugants reached final cell densities of between 102 and 103 CFU/ml. When strain B13 was inoculated separately (without the designated recipient strain F1) into an activated-sludge microcosm, CB+ transconjugants could not be detected. However, in this case a new 3CBA-degrading strain appeared which had acquired the clc genes from strain B13. The effects of selective substrates on the survival and growth of and gene transfer between bacteria degrading aromatic pollutants in a wastewater ecosystem are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号