首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mobilization of Minerals to Developing Seeds of Legumes   总被引:4,自引:0,他引:4  
HOCKING  P. J.; PATE  J. S. 《Annals of botany》1977,41(6):1259-1278
The mineral nutrition of fruiting plants of Pisum sativum L.,Lupinus albus L. and Lupinus angustifolius L. is examined insand cultures supplying adequate and balanced amounts of essentialnutrients. Changes in content of specific minerals in leaves,pods, seed coat, and embryo are described. P, N and Zn tendto increase precociously in an organ relative to dry matteraccumulation, other elements more or less parallel with (K,Mn, Cu, Mg and Fe) or significantly behind (Ca and Na) dry weightincrease. Some 60–90 per cent of the N, P and K is lostfrom the leaf, pod and seed coat during senescence, versus 20–60per cent of the Mg, Zn, Mn, Fe and Cu and less than 20 per centof the Na and Ca. Mobilization returns from pods are estimatedto provide 4–39 per cent of the seeds' accumulations ofspecific minerals, compared with 4–27 per cent for testatransfer to the embryo. Endosperm minerals are of only minorsignificance in embryo nutrition. Comparisons of the mineral balance of plant parts of Lupinusspp. with that of stem xylem sap and fruit tip phloem sap supportthe view that leaves and pod are principal recipients of xylem-borneminerals and that export from these organs via phloem is themajor source of minerals to the seeds. Endosperm and embryodiffer substantially in mineral compostition from phloem sap,suggesting that selective uptake occurs from the translocationstream during seed development. Considerable differences are observed between species in mineralcomposition of plant organs and in the effectiveness of transferof specific minerals to the seeds Differences between speciesrelate principally to Ca, Na and certain trace elements.  相似文献   

2.
The economy of carbon, nitrogen, water and mineral elementsin fruits of Lupinus albus L. was studied by measuring accumulationof these quantities in the developing fruit and estimating itstranspirational losses and CO2 exchanges. Combining this informationwith data on levels of mineral elements in the xylem sap andphloem sap supplying the fruit, it was possible to test whethertransport based on mass inflow through xylem and phloem wouldaccount for the observed intake of elements. A model of transportbased on water and carbon intake suggested that vascular intakeduring the fruit's life matched the recorded increment for mineralsto within ± 15 per cent for N, Na, Zn, Fe and Cu, andto within ± 23 per cent for P, K and S. However, estimatedvascular intake of Ca, Mg and Mn accounted for less than one–thirdof the recorded intake by the fruit, inadequacy of vascularintake being especially great early in growth. Transport inphloem accounted for more than 80 per cent of the fruit's vascularintake of C, N and S, and 70–80 per cent of its P, K,Mg and Zn. Xylem contributed 68 per cent of the vascular inputof Ca, 59 per cent of the Na, and 34–38 per cent of theFe, Mn and Cu. Enclosure and darkening of fruits reduced levelsof Ca and Fe but increased levels of N, P, K and Zn in fruitdry matter relative to unenclosed, illuminated fruits. Resultswere related to previous observations on fruit functioning. Lupinus albus, legume fruit, mineral supply, phloem, xylem  相似文献   

3.
HOCKING  P. J. 《Annals of botany》1980,45(6):633-643
The composition of xylem sap and exudate from stem incisionsof Nicotiana glauca Grah. was compared in detail. Exudationfrom stem incisions occurred over a 5 min period in certainplants, enabling collection of 5–30 µl of sap. Therate of exudation showed an exponential decline. Exudate hada high dry matter content (170–196 mg ml–1) andhigh sugar (sucrose) levels. Xylem sap had a low pH (5.8) andexudate a pH of 7.9. Glutamine dominated the amino compoundsin xylem sap and exudate, and K+ was the major cation. Totalamino compounds in stem exudate reached 10.8 mg ml–1 whereasxylem sap contained much lower levels (0.28 mg ml–1).All mineral elements and amino compounds with the exceptionof calcium were more concentrated in stem exudate than in xylemsap. Sucrose was labelled heavily in stem exudate following pulsingof an adjacent leaf with 14CO2. A concentration gradient ofsugar (2.1 bar m–1) was recorded for stems. Levels ofsucrose, amino compounds and K+ ions in stem exudate showeda diurnal periodicity. Each commodity reached maximum concentrationat or near noon and minimum concentration about dawn. The evidencesuggests that exudate from stem incisions of N. glauca is arepresentative sample of solutes translocated in the phloem. Nicotiana glauca Grah., phloem sap, xylem sap, sucrose, amino compounds, mineral ions  相似文献   

4.
MCNEIL  D. L. 《Annals of botany》1980,45(3):329-338
Collections of phloem sap made over a 40-day period from a varietyof locations on nodulated white lupin plants (Lupinus albusL. cv. ultra) showed considerable enrichment with K+ and Mg2+in the phloem streams destined for the shoot apices or fruitsrelative to the streams arising from the leaflets (up to 5.5times). Sodium showed enrichment in the streams destined forthe roots (up to 2.5 times) but only when present in the watersupply at a high level (3 mM). The stem, in view of its centrallocation in the transport pathway, is seen as an organ capableof redistributing minerals in the phloem independently of photosynthate. Lupinus albus L., lupin, phloem loading, magnesium, potassium, sodium, mineral elements  相似文献   

5.
HOCKING  P. J. 《Annals of botany》1982,49(1):51-62
The nutrition of developing fruits of Ricinus communis was studiednear Perth, Western Australia, where the species grows as aweed on poor sandy soil. Fruits required 60 days to mature anddehydration of the capsule began 20 days before the seeds ripened.Mature seeds accumulated 49 per cent of the fruit dry matterand over 80 per cent of its P, Zn and Cu, 50–80 per centof its Mg, N, Fe and Mn, 41–46 per cent of its S and Caand 11–21 per cent of its K and Na. Losses of nutrientsfrom capsules during fruit ripening were: Zn, 73 per cent, P,42 per cent, Cu, 23 per cent and Mn, 8 per cent. Dry matter,N, K, S, Ca, Mg, Na and Fe were not withdrawn from capsules.Apparent retranslocation from capsules could have provided from6–28 per cent of the Zn, Mn, P and Cu in mature seeds.Seeds from plants on poor sandy soil were small but had adequatelevels of nutrients when compared with those from plants growingon a fertile loam. Concentrations of all nutrients except P were higher in youngcapsules than in young seeds, but levels of N, P, Mg, Fe, Znand Cu were higher in mature seeds than in mature capsules.The intake of most nutrients by fruits was out of phase withdry matter accumulation, especially in capsules, and the elementsappeared to accumulate in fruit parts independently of eachother. Glutamine accounted for over 85 per cent of the amino-Nin phloem sap destined for fruits. Potassium made up over 90per cent of the inorganic cations in phloem exudate. Of theminor elements in the exudate, Fe was present at highest concentrationand Cu at the lowest. The results showed that retranslocation from the capsule madea very small contribution to the nutrition of seeds. It is suggestedthat R. communis would require a sustained supply of soil nutrientsto ensure maximum seed yield, partly due to the restricted retranslocationof most nutrients from capsules. Ricinus communis L., castor bean, mineral nutrition, translocation, retranslocation  相似文献   

6.
Patterns of transport and accumulation of manganese were studiedin Lupinus albus L. and Lupinus angustifolius L. in a wide rangeof availability levels in the rooting medium. The recently described‘split seed’ disorder, involving discolouration,splitting, and deformity of seeds, was reproduced in sand cultureusing critically low levels of manganese. The disorder was preventedby maintaining adequate manganese in the medium and its incidencein field and glasshouse was quantitatively related to the managneselevel in seed and fruit phloem sap. The use of phloem sap analysisfor early diagnosis of the disorder is suggested. High levelsof manganese in parent seed is suggested to afford protectionagainst the disorder by improving early vegetative growth ina manganese deficient situation. Direct carry-over of manganesefrom one seed generation to the next was insignificant. Manganese proved to be fully mobile in xylem but only sparinglymobile in phloem from vegetative structures to seed. It wasaccumulated in massive amounts in leaves and fruits when availabilitywas high. Seed manganese content increased 80–100 foldas the level in the rooting medium was increased from 0•1to 500 mg Mn 1–1. L. albus was superior to L. angustifoliusin accumulating manganese in leaves and pods, and more efficientin translocating the element to its seeds. These differenceswere greatest at low or moderate manganese levels. Xylem intakeby a fruit was small relative to phloem intake when manganeseavailability was low, but became increasingly important as thesupply in the rooting medium was raised.  相似文献   

7.
Maize (Zea mays L.) was grown in quartz sand culture eitherwith a normal root system (controls) or with seminal roots only(‘single-rooted’). Development of adventitious rootswas prevented by using plants with an etiolated mesocotyl andthe stem base was positioned 5–8 cm above the sand. Eventhough the roots of the single-rooted plants were sufficientlysupplied with water and nutrients, the leaves experienced waterdeficits and showed decreased transpiration as trans plrationalwater flow was restricted by the constant number of xylem vesselspresent in the mesocotyl. As a consequence of this restriction,transpirational water flow velocities in the metaxylem vesselsreached mean values of 270 m h–1 and phloem transportvelocities of 5.2 m h–1. Despite limited xylem transportmineral nutrient concentrations in leaf tissues were not decreasedin single-rooted plants, but shoot and particularly stem developmentwas somewhat inhibited. Due to the lack of adventitious rootsthe shoot:root ratio was strongly increased in the single-rootedplants, but the seminal roots showed compensatory growth comparedto those in control plants. Consistent with decreased leaf conductance,ABA concentrations in leaves of single-rooted plants were elevatedup to 10-fold, but xylem sap ABA concentrations in these plantswere lower than in controls, in good agreement with the well-wateredconditions experienced by the seminal roots. Surprisingly, however,ABA concentrations in tissues of the seminal roots of the single-rooted plants were clearly increased compared to the controls,presumably due to increased ABA import via phloem from the water-stressedleaves. The results are discussed in relation to the role ofABA as a shoot to root signal. Key words: Zea mays, seminal roots, plant development, xylem transport, mineral nutrition, ABA, shoot-to-root signal  相似文献   

8.
Developing cladodes had lower water potentials and developingfruits had higher water potentials than the underlying cladodesof the widely cultivated prickly pear cactus, Opuntia ficus-indica.The 0.06 MPa lower value in 4-week-old daughter cladodes indicateda typical water potential gradient from the underlying clad-odealong the xylem of –0.2 MPa m–1; the 0.17 MPa highervalue in 4-week-old fruits, which decreased to 0.07 MPa by 10weeks, implicated the phloem as their supplier of water. Thephloem sap of the underlying cladodes had an osmotic pressureof only 0.90 to 0.98 MPa, so the phloem could supply a relativelydilute solution to the photosynthetically dependent fruits (daughtercladodes of O. ficus-indica are photosynthetically independentat 4 weeks). Although the water potentials were similar foradjacent tissues, the osmotic pressures were lower for the water-storagecompared with the photosynthetic tissue; the osmotic pressureswere higher for xylem sap from fruits, for which xylary flowapparently occurred toward the underlying cladodes, than fordaughter cladodes. The relative capacitance (change in relativewater content divided by change in tissue water potential) wasapproximately 0.71 MPa–1 for the water-storage tissueand the photosynthetic tissue of both daughter cladodes andfruits at 4 weeks of age. When these organs approached maturityat 10 weeks, the relative capacitance increased about 40% fortheir water-storage tissue, but decreased 30% for their photosynthetictissue. As the plant water content decreases during drought,about twice as much water will thus be lost per unit volumeof the water-storage tissue compared with the photosynthetictissue of maturing fruits and cladodes. Key words: Opuntia ficus-indica, phloem, relative water content, water capacitance, water potential  相似文献   

9.
Plants of Lupinus albus were grown for 51 d under control (1.1mol m–3 NaCl) and saline (40 mol m–3 NaCl) conditions.Plants were harvested and changes of carbon, nitrogen and abscisicacid (ABA) contents of individual organs were determined 41d and 51 d after germination. In the period between the twoharvests xylem and phloem saps were collected and respirationand photosynthesis of individual organs were measured. Usingflows of carbon, C/ABA ratios and increments of ABA flows ofABA in phloem and xylem and rates of biosynthesis and degradationof ABA were calculated. Both under control and saline conditionsnet biosynthesis occurred in the root, the basal strata of leavesand in the inflorescence. Metabolic degradation of ABA tookplace in the stem internodes and apical leaf strata. Salt stress increased xylem transport of ABA up to 10-fold andphloem transport to the root up to 5-fold relative to that ofthe controls. A considerable amount of ABA in the xylem saporiginated from biosynthesis in the roots, i.e. 55% in salt-treatedand smaller than 28% in control plants. The remaining part ofABA in the xylem sap originated from the shoot: it was translocatedin the phloem from fully differentiated leaves towards the rootand from there it was recirculated back to the aerial partsof the plant. The data suggest that ABA may serve as a hormonalstress signal from the root system. Key words: Lupinus albus, salt stress, abscisic acid, long distance transport  相似文献   

10.
Exchanges of CO2 and changes in content of C and N were studied over the life of a leaf of Lupinus albus L. These data were combined with measurements of C:N weight ratios of xylem (upper stem tracheal) and phloem (petiole) sap to determine net fluxes of C and N between leaf and plant. Phase 1 of leaf development (first 11 days, leaf to one-third area) showed increasing net import of C and N, with phloem contributing 61% of the imported C and 18% of the N. 14C feeding studies suggested the potential for simultaneous import and export through phloem over the period 9 to 12 days. Phase 2 (11-20 days, leaf attaining maximum area and net photosynthesis rate) exhibited net import through xylem and increasing export through phloem. Eighty-two% of xylem-delivered N was consumed in leaf growth, the remainder exported in phloem. Phase 3 (20-38 days) showed high but declining rates of photosynthesis, translocation, and net export of N. Phase 4 (38-66 days) exhibited substantial losses of N and declining photosynthesis and translocation of C. C:N ratio of xylem sap remained constant (2.3-2.6) during leaf life; petiole phloem sap C:N ratio varied from 25 to 135 over leaf development. The relationships between net photosynthesis and N import in xylem were: phase 1, 4.8 milligrams C per milligram N; phase 2, 24.7 milligrams C per milligram N; phase 3, 91.9 milligrams C per milligram N; and phase 4, 47.7 milligrams C per milligram N.  相似文献   

11.
HOCKING  P. J. 《Annals of botany》1980,45(4):383-396
The distribution of dry matter and various mineral nutrientsbetween testa and embryo of seeds of Lupinus albus and L. angustifoliusis described It was found that lupin seeds at either end ofa pod contained less dry matter and minerals than seeds in themiddle of the fruit. The transport of dry matter, N, P, K, S,Ca, Mg, Na, Fe, Zn, Mn and Cu from cotyledons of parent seedsof both species to the seedling axis was measured from germinationto the time of cotyledon death. N, P, K and S were retrievedfrom cotyledons with over 90 per cent efficiency, dry matter,Mg, Na, Fe, Zn, Mn and with 59–90 per cent efficiency,and Ca with 26–31 per cent efficiency. There was littlechange in the efficiency of nutrient retrieval from cotyledonswhen seedlings were grown in different culture media. Both speciesshowed a linear relationship between the loss of each elementand dry matter throughout the experiment, and a similar proportioningbetween root and shoot of the amount of a specific nutrientmobilized from cotyledons of parent seeds. Lupinus albus L., Lupinus angustifolius L., lupin, transport, of dry matter and mineral nutrients  相似文献   

12.
Plants of Lupinus albus L., cv. Ultra, were grown hydroponicallywith NO3-nutrition for 51 d under control (0.05 mol m–3Na+ and 10 mol m–3 Cl) and saline (40 mol m–3NaCI) conditions. Plants were harvested 41 and 51 d after germinationand analysed for content and net increment of C, N and the mineralcations K+, Na+, Mg2+, and Ca2+ and the anions Cl, NOJ,malate, phosphate, and SO42–. Roots, stem interaodes,petioles and leaflets were analysed separately. During the studyperiod net photosynthesis, respiratory losses of CO2 from shootand root and the composition of the spontaneously bleeding phloemsap and the root pressure xylem exudate were also determined.Using molar ratios of C over N in the transport fluids, incrementsof C and N, and photosynthetic gains as well as respiratorylosses of C, the net flows of C and N in the xylem and phloemwere then calculated as in earlier studies (Pate, Layzell andMcNeill, 1979a). Knowing the carbon flows, the ratios of ionto carbon in the phloem sap, and ion increments in individualorgans, net flows of K+, Na+, and Cl over the study periodwere also calculated. Salt stress led to a general decrease of all partial componentsof C and N partitioning indicating that inhibitions were notdue to specific effects of NaCI salinity on photosynthesis oron NO3 uptake. However, there were differences between variouslyaged organs, and net phloem export of nitrogenous compoundsfrom ageing leaves was substantially enhanced under saline conditions.In addition, NO3reduction in the roots was specificallyinhibited. Uptake and xylem transport of K+ was more severelyinhibited than photosynthetic carbon gain or NO3 uptakeby the root. K+ transport in the phloem was even more severelyrestricted under saline conditions. Na+ and Cl flowsand uptake, on the other hand, were substantially increasedin the presence of salt and, in particular, there were thenmassive flows of Na in the phloem. The results are discussedin relation to the causes of salt sensitivity of Lupinus albus.The data suggest that both a restriction of K+ supply and astrongly increased phloem translocation of Na+ contribute tothe adverse effects of salt in this species. Restriction ofK+ supply occurs by diminished K+ uptake and even more by reducedK+ cycling within the plant. Key words: Lupinus albus, salt stress, phloem transport, xylem transport, partitioning, carbon, nitrogen, K+, Na+, CI  相似文献   

13.
Changes in net photosynthesis, respiration, transpiration andcontents of total C, NO3-N and reduced N were followed throughoutthe life of leaf 6 of nitrate-dependent plants of castor beanexposed to moderate salinity stress (71 mol m–3 NaCl).Salt treatment was applied for measuring mineral flows in aparallel study (Jeschke and Pate, 1991b). Concurrent measurementswere made of solute composition and C: N molar ratios and concentrationsof reduced N and collected NO3-N in phloem sap bleeding fromshallow incisions in the top and at the base of petioles andin xylem exudates from flaps of proximal leaf midribs followingpressurization of the root system. The resulting data were usedto construct empirical models of the respective economies ofC, total N, NO3 and reduced N for a sequence of defined phasesof leaf life. Water use efficiency increased 3-fold from emergenceto a maximum of 1·5 mmol CO2 mol–1 H2O before decliningto 0·5 mmol CO2 mol–1 H2O at senescence. Xylemmolar ratios of C:N varied from 1·2–2·8,with nitrate always a smaller component than reduced N. Phloemsap C:N increased from 10–40 with leaf expansion and wasthen maintained in the range of 40–50 until falling steeplyto 20 at leaf senescence. Nitrate comprised less than 1% oftotal N in all phloem sap samples. The models of C uptake, flow,and utilization showed a major role of phloem import and thenincreasingly of laminar photosynthesis in providing C for leafgrowth. The carbon budget was thereafter characterized by ratesof phloem export closely matched to net rates of CO2 fixationby the lamina. Corresponding data for total N depicted an earlymajor role of both xylem and phloem import, but the eventualdominance of xylem import as the N source for leaf growth. Cyclingof N by xylem to phloem exchange commenced before the leaf hadachieved maximum N content, and was the major contributor tophloem export until leaf senescence when mobilized N providedmost exported N. The nitrate economy of the leaf was characterizedby early establishment of tissue pools of the ion in the petioleand to a lesser extent in the lamina, continued high rates ofnitrate reduction in the lamina but negligible assimilationin the petiole, and a release through xylem of previously accumulatedNO3 from petiole to lamina. Related data for reduced N illustratedthe much greater importance of this form of N than nitrate intransport, storage and cycling of N at all stages of leaf andpetiole life. Xylem to phloem interchanges of reduced N in petiolewere minimal in comparison with cycling through the lamina.The ratio of CO2 reduction to NO3 reduction in the lamina wasat first low (57 mol mol–1) increasing to a peak valueof 294 during mature leaf functioning before declining to 190during the presenescence phase of leaf development. This patternreflected age-related effects on water use efficiency, changesin NO3 levels in the xylem stream entering the lamina, and therelatively low photosynthetic performances of very young andsenescent laminae. Key words: Ricinus communis, leaf development, phloem transport, xylem transport, carbon, nitrogen, nitrate, reduced nitrogen, nitrate reduction, partitioning  相似文献   

14.
Nodulated Lupinus albus L. was grown on quartz sand in the greenhouseand supplied with a N-free culture solution. Half the plantswere infected with Cuscuta reflexa Roxb. at 33 DAS. An empiricallybased modelling technique was developed to quantitatively depictuptake, flow and utilization of C and N in the host plant andbetween host and parasite over a 12 d period. The modellingincorporated C: N ratios of solutes in phloem and pressure-inducedxylem sap, net increments of C and N and respiratory lossesof C. For assessing the transfer of solutes from host phloemto Cuscuta it was not possible to use the C: N ratio of phloemsap close to the site of parasite attachment, a procedure whichwould have assumed non-specific withdrawal of phloem-borne solutes,since this would have implied unimpeded mass flow from hostto parasite. The relative intake of C and N by the parasiteby specific withdrawal of nitrogenous and carbonaceous solutesfrom the phloem was obtained independently by assuming thatxylem intake occurred non-specifically. Xylem import was thusobtained (a) from transpiration and tissue water increment ofCuscuta and the concentrations of N and C in xylem sap and (b)from the Ca2+ increment of Cuscuta and the ratios Ca: N andCa: C in lupin xylem sap, assuming that Ca2+ intake occurredsolely via xylem. By subtracting net xylem import from totaluptake of C and N by Cuscuta the methods resulted in comparableratios of C: N intake from the phloem. The average ratio (53.4)was smaller than the C:N ratio in host phloem (85.6) indicatingspecific withdrawal of solutes with a distinct preference forN. Using this ratio, modelling of flows of C and N was possibleand showed that Cuscuta abstracted C and N mainly from the hostphloem, but xylem supply was nutrient-dependent and amountedto 6.4% of the N but only 0.5% of the C demand. The resultsindicated that Cuscuta exerted a very strong sink and competedefficiently with the root, the major sink of L. albus, by attracting81% of the current photosynthate and more N (223%) than wascurrently fixed. The massive demand of the parasite led to lossesparticularly of N from leaves and the root and apart from causingcarbon losses it appeared to induce a sink-dependent stimulationof photosynthesis. In contrast, nitrogen fixation in the Cuscuta-infectedlupin was inhibited to 37% of the control. Key words: Cuscuta reflexa, Lupinus albus, carbon, nitrogen, phloem, xylem, transport, parasites, modelling  相似文献   

15.
An experimentally-based modelling technique was developed todescribe quantitatively the uptake, flow, storage and utilizationof NO3-N over a 9 d period in mid-vegetative growth of sandcultured castor bean (Ricinus communis L.) fed 12 mol m–3nitrate and exposed to a mean salinity stress of 128 mol m–3NaCl. Model construction used information on increments or lossesof NO3-N or total reduced N in plant parts over the study periodand concentration data for NO3-N and reduced (amino acid) Nin phloem sap and pressure-induced xylem exudates obtained fromstem, petiole and leaf lamina tissue at various levels up ashoot. The resulting models indicated that the bulk (87%) of incomingnitrate was reduced, 51% of this in the root, the remainderprincipally in the laminae of leaves. The shoot was 60% autotrophicfor N through its own nitrate assimilation, but was oversuppliedwith surplus reduced N generated by the root and fed to theshoot through the xylem. The equivalent of over half (53%) ofthis N returned to the root as phloem translocate and, mostly,then cycled back to the shoot via xylem. Nitrate comprised almosthalf of the N of most xylem samples, but less than 1% of phloemsap N. Laminae of leaves of different age varied greatly inN balance. The fully grown lower three leaves generated a surplusof reduced N by nitrate assimilation and this, accompanied byreduced N cycling by xylem to phloem exchange, was exportedfrom the leaf. Leaf 4 was gauged to be just self-sufficientin terms of nitrate reduction, while also cycling reduced N.The three upper leaves (5–7) met their N balance to varyingextents by xylem import, phloem import (leaves 6 and 7 only)and assimilation of nitrate. Petioles and stem tissue generallyshowed low reductase activities, but obtained most of theirN by abstraction from xylem and phloem streams. The models predictedthat nodal tissue of lower parts of the stem abstracted reducedN from the departing leaf traces and transferred this, but notnitrate, to xylem streams passing further up the shoot. As aresult, xylem sap was predicted to become more concentratedin N as it passed up the shoot, and to decrease the ratio ofNO3-N to reduced N from 0·45 to 0·21 from thebase to the top of the shoot. These changes were reflected inthe measured N values for pressure-induced xylem exudates fromdifferent sites on the shoot. Transfer cells, observed in thexylem of leaf traces exiting from nodal tissue, were suggestedto be involved in the abstraction process. Key words: Ricinus communis, nitrogen, nitrate, nitrate reduction, partitioning, phloem, xylem, flow models  相似文献   

16.
Water and solute flows in the coupled system of xylem and phloem were modeled together with predictions for xylem and whole stem diameter changes. With the model we could produce water circulation between xylem and phloem as presented by the Münch hypothesis. Viscosity was modeled as an explicit function of solute concentration and this was found to vary the resistance of the phloem sap flow by many orders of magnitude in the possible physiological range of sap concentrations. Also, the sensitivity of the predicted phloem translocation to changes in the boundary conditions and parameters such as sugar loading, transpiration, and hydraulic conductivity were studied. The system was found to be quite sensitive to the sugar-loading rate, as too high sugar concentration, (approximately 7 MPa) would cause phloem translocation to be irreversibly hindered and soon totally blocked due to accumulation of sugar at the top of the phloem and the consequent rise in the viscosity of the phloem sap. Too low sugar loading rate, on the other hand, would not induce a sufficient axial water pressure gradient. The model also revealed the existence of Münch “counter flow”, i.e., xylem water flow in the absence of transpiration resulting from water circulation between the xylem and phloem. Modeled diameter changes of the stem were found to be compatible with actual stem diameter measurements from earlier studies. The diurnal diameter variation of the whole stem was approximately 0.1 mm of which the xylem constituted approximately one-third.  相似文献   

17.
Hordeum vulgare cv. California Mariout was established in sandculture at two different NaCl concentrations (0.5 mol m–3‘control’ and 100 mol m–3) in the presenceof 6.5 mol m–3 K +. Between 16 and 31 d after germination,before stem elongation started, xylem sap was collected by useof a pressure chamber. Collections were made at three differentsites on leaves 1 and 3: at the base of the sheath, at the baseof the blade, i.e. above the ligule, and at the tip of the blade.Phloem sap was collected from leaf 3 at similar sites throughaphid stylets. The concentrations of K +, Na+, Mg2+ and Ca2+were measured. Ion concentrations in xylem sap collected at the base of leaves1 and 3 were identical, indicating there was no preferentialdelivery of specific ions to older leaves. All ion concentrationsin the xylem decreased from the base of the leaf towards thetip; these gradients were remarkably steep for young leaves,indicating high rates of ion uptake from the xylem. The gradientsdecreased with leaf age, but did not disappear completely. In phloem sap, concentrations of K+ and total osmolality declinedslightly from the tip to the base of leaves of both controland salt-treated plants. By contrast, Na+ concentrations inphloem sap collected from salt-treated plants decreased drasticallyfrom 21 mol m–3 at the tip to 7.5 mol m–3 at thebase. Data of K/Na ratios in xylem and phloem sap were used to constructan empirical model of Na+ and K+ flows within xylem and phloemduring the life cycle of a leaf, indicating recirculation ofNa+ within the leaf. Key words: Hordeum vulgare, xylem transport, phloem transport, NaCl-stress  相似文献   

18.
Phloem versus xylem water and carbon flow between a developingdaughter cladode (flattened stem segment) and the underlyingbasal cladode of Opuntia ficus-indica was assessed using netCO2 uptake, transpiration, phloem sap concentration, and waterpotential of both organs as well as phloem and apoplastic tracers.A 14-d-old daughter cladode was a sink organ with a negativedaily net CO2 uptake; its water potential was higher than thatof the underlying basal cladode, implicating a non-xylem pathwayfor the water needed for growth. Indeed, the relatively dilutephloem sap (7.44% dry weight) of a basal cladode can supplyall the water (7.1 gd–1) along with photosynthate neededfor the growth of a 14-d-old daughter cladode; about 3% of theimported water flowed back to the basal cladode via the xylem.In contrast, a 28-d-old daughter cladode was a source organwhose water potential was lower than that of its basal cladode,so the xylem can supply the water needed (25.7 g d–1)for its growth; about 6% of the imported water flowed back tothe basal cladode along with photosynthate via the phloem. Thephloem tracer carboxyfluorescein occurred in the phloem of 14-d-olddaughter cladodes after its precursor was applied to basal cladodes.When applied to basal cladodes, the apoplastic tracers sulphorhodamineG (SR) and trisodium 8-hydroxy-1,3,6-pyrenetrisulphonate (PTS)failed to move into 14-d-old daughter cladodes within 5 h, butmoved into 28-d-old daughter cladodes within 2 h. SR and PTSmoved into basal cladodes within 2 h when applied to 14-d-olddaughter cladodes, but not within 5-6 h when applied to 28-d-olddaughter cladodes. The tracer experiments therefore confirmedthe patterns of water flow determined using water and carbonbudgets. Key words: Carboxyfluorescein, phloem-xylem water flow, source-sink water relations, suiphorhodamine G, trisodium 8-hydroxy-1,3,6-pyrenetnsulphonate  相似文献   

19.
Uptake and partitioning through the xylem and phloem of K+,Na+, Mg2+ , Ca2+ and Cl were studied over a 9 d intervalduring late vegetative growth of castor bean (Ricinus communisL.) plants exposed to a mean salinity stress of 128 mol m–3NaCl. Empirically based models of flow and utilization of eachion within the whole plant were constructed using informationon ion increments of plant parts, molar ratios of ions to carbonin phloem sap sampled from petioles and stem internodes andpreviously derived information on carbon flow between plantsparts in xylem and phloem in identical plant material. Salientfeatures of the plant budget for K+ were prominent depositionin leaves, high mobility of K+ in phloem, high rates of cyclingthrough leaves and downward translocation of K+ providing theroot with a large excess of K+ . Corresponding data for Na+showed marked retention in the root, lateral uptake from xylemby hypocotyl, stem internodes and petioles leading to low intakeby young leaf laminae and substantial cycling from older leavesback to the root. The partitioning of the anionic componentof NaCl salinity, Cl, contrasted to that of Na+ in thatit was not substantially retained in the root, but depositedmore or less uniformly in stem, petiole and leaf lamina tissues.The flow pattern for Mg2+ showed relatively even depositionthrough the plant but some preferential uptake by young leaves,generally lesser export than import by leaf laminae, and a returnflow of Mg2+ from shoot to root considerably less than the recordedincrement of the root. Ca2+ partitioning contrasted with thatof the other ions in showing extremely poor phloem mobility,leading to progressive preferential accumulation in leaf laminaeand negligible cycling of the element through leaves or root.Features of the response of Ricinus to salinity shown in thepresent study were discussed with data from similar modellingstudies on white lupin (Lupinus albus L.) and barley (Hordeumvulgare L.) Key words: Ricinus communis L, potassium, sodium, chloride, calcium, magnesium, phloem, xylem, transport, partitioning, salinity  相似文献   

20.
Chemical Composition of Bleeding Xylem Sap from Kiwifruit Vines   总被引:5,自引:0,他引:5  
A study of the chemical composition and charge balance was madeof bleeding xylem sap collected from excised one-year-old extensionshoots of healthy, Mn-deficient, Mn-toxic and Zn-deficient kiwifruitvines (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson)immediately prior to leafburst. The exudates were analysed formacronutrient cations and anions, trace elements, amino acids,organic acids and sugars. Major charged species measured wereCa (13.3 mM), K (8.9 mM), Mg (5.6 mM), malate (12.5 mM) andphosphate (5.8 mM). Glutamine (12 mM) was the predominant Ncarrier identified, accounting for 58 per cent of the totalN followed by NO2-N (4.5 per cent), NH4+-N (3.5 per cent)and arginine-N (2.9 per cent). Approximately 22 per cent ofthe N was in a hydrolysable proteinaceous fraction comprisingmainly glutamine and glutamate. Eighteen free proteinaceousamino acids were idetified in sap, the most abundant being glutamine,glutamic acid, valine, isoleucine and phenylalanine. Computersimulation of the chemical composition predicted that in additionto hydrated cations, ion pairs formed between inorganic components(SO42–, HPO42–, H2PO4) and cations (Ca2+,Mg2+, Mn2+), plus metal-organic ligand complexes (Ca Malate,Zn Malate, FeCit, CuHis, CuGln) are important species involvedin translocation. The solubility product of hydroxyapatite wasexceeded in all exudates although in vitro precipitation wasnot observed. To achieve electroneutrality with the componentsmeasured, however, formation of precipitate precursors (hydroxyapatitenuclei) had to be assumed. Irregularities in Mn nutrition (butnot Zn) were clearly indicated by the elemental compositionof exudate suggesting the use of sap analysis as a possiblepre-season indicator of nutritional status for this species. Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson, kiwifruit, xylem sap composition, trace metals, amino acids, organic acids  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号