首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Attention selectively enhances the influence of neuronal responses conveying information about relevant sensory attributes. Accumulating evidence suggests that this selective neuronal modulation relies on rhythmic synchronization at local and long-range spatial scales: attention selectively synchronizes the rhythmic responses of those neurons that are tuned to the spatial and featural attributes of the attended sensory input. The strength of synchronization is thereby functionally related to perceptual accuracy and behavioural efficiency. Complementing this synchronization at a local level, attention has recently been demonstrated to regulate which locally synchronized neuronal groups phase-synchronize their rhythmic activity across long-range connections. These results point to a general computational role for selective synchronization in dynamically controlling which neurons communicate information about sensory inputs effectively.  相似文献   

2.
3.
Gamma rhythms (30-80 Hz) are a near-ubiquitous feature of neuronal population activity in mammalian cortices. Their dynamic properties permit the synchronization of neuronal responses to sensory input within spatially distributed networks, transient formation of local neuronal "cell assemblies," and coherent response patterns essential for intercortical regional communication. Each of these phenomena form part of a working hypothesis for cognitive function in cortex. All forms of physiological gamma rhythm are inhibition based, being characterized by rhythmic trains of inhibitory postsynaptic potentials in populations of principal neurons. It is these repeating periods of relative enhancement and attenuation of the responsivity of major cell groups in cortex that provides a temporal structure shared across many millions of neurons. However, when considering the origins of these repeating trains of inhibitory events considerable divergence is seen depending on cortical region studied and mode of activation of gamma rhythm generating networks. Here, we review the evidence for involvement of multiple subtypes of interneuron and focus on different modes of activation of these cells. We conclude that most massively parallel brain regions have different mechanisms of gamma rhythm generation, that different mechanisms have distinct functional correlates, and that switching between different local modes of gamma generation may be an effective way to direct cortical communication streams. Finally, we suggest that developmental disruption of the endophenotype for certain subsets of gamma-generating interneuron may underlie cognitive deficit in psychiatric illness.  相似文献   

4.
Recent experimental results imply that inhibitory postsynaptic potentials can play a functional role in realizing synchronization of neuronal firing in the brain. In order to examine the relation between inhibition and synchronous firing of neurons theoretically, we analyze possible effects of synchronization and sensitivity enhancement caused by inhibitory inputs to neurons with a biologically realistic model of the Hodgkin-Huxley equations. The result shows that, after an inhibitory spike, the firing probability of a single postsynaptic neuron exposed to random excitatory background activity oscillates with time. The oscillation of the firing probability can be related to synchronous firing of neurons receiving an inhibitory spike simultaneously. Further, we show that when an inhibitory spike input precedes an excitatory spike input, the presence of such preceding inhibition raises the firing probability peak of the neuron after the excitatory input. The result indicates that an inhibitory spike input can enhance the sensitivity of the postsynaptic neuron to the following excitatory spike input. Two neural network models based on these effects on postsynaptic neurons caused by inhibitory inputs are proposed to demonstrate possible mechanisms of detecting particular spatiotemporal spike patterns. Received: 15 April 1999 /Accepted in revised form: 25 November 1999  相似文献   

5.
A central motif in neuronal networks is convergence, linking several input neurons to one target neuron. In visual cortex, convergence renders target neurons responsive to complex stimuli. Yet, convergence typically sends multiple stimuli to a target, and the behaviorally relevant stimulus must be selected. We used two stimuli, activating separate electrocorticographic V1 sites, and both activating an electrocorticographic V4 site equally strongly. When one of those stimuli activated one V1 site, it gamma synchronized (60-80?Hz) to V4. When the two stimuli activated two V1 sites, primarily the relevant one gamma synchronized to V4. Frequency bands of gamma activities showed substantial overlap containing the band of interareal coherence. The relevant V1 site had its gamma peak frequency 2-3?Hz higher than the irrelevant V1 site and 4-6?Hz higher than V4. Gamma-mediated interareal influences were predominantly directed from V1 to V4. We propose that selective synchronization renders relevant input effective, thereby modulating effective connectivity.  相似文献   

6.
The synchronization of different γ-rhythms arising in different brain areas has been implicated in various cognitive functions. Here, we focus on the effect of the ubiquitous neuronal heterogeneity on the synchronization of ING (interneuronal network gamma) and PING (pyramidal-interneuronal network gamma) rhythms. The synchronization properties of rhythms depends on the response of their collective phase to external input. We therefore determine the macroscopic phase-response curve for finite-amplitude perturbations (fmPRC) of ING- and PING-rhythms in all-to-all coupled networks comprised of linear (IF) or quadratic (QIF) integrate-and-fire neurons. For the QIF networks we complement the direct simulations with the adjoint method to determine the infinitesimal macroscopic PRC (imPRC) within the exact mean-field theory. We show that the intrinsic neuronal heterogeneity can qualitatively modify the fmPRC and the imPRC. Both PRCs can be biphasic and change sign (type II), even though the phase-response curve for the individual neurons is strictly non-negative (type I). Thus, for ING rhythms, say, external inhibition to the inhibitory cells can, in fact, advance the collective oscillation of the network, even though the same inhibition would lead to a delay when applied to uncoupled neurons. This paradoxical advance arises when the external inhibition modifies the internal dynamics of the network by reducing the number of spikes of inhibitory neurons; the advance resulting from this disinhibition outweighs the immediate delay caused by the external inhibition. These results explain how intrinsic heterogeneity allows ING- and PING-rhythms to become synchronized with a periodic forcing or another rhythm for a wider range in the mismatch of their frequencies. Our results identify a potential function of neuronal heterogeneity in the synchronization of coupled γ-rhythms, which may play a role in neural information transfer via communication through coherence.  相似文献   

7.
It is suggested that the term neurotransmission, which is used to designate neuronal communication at synaptic level, be associated to the less restrictive term neuromodulation. These two types of intercellular communication seem in fact to be two basically different mechanisms, both of which contribute to neuronal integration. The integration of neuronal information at cellular level appears to be more complex than the simple addition of excitatory plus inhibitory influences eliciting postsynaptic responses. Evidence has been obtained that non synaptic transmission can alter the capacity of a given synapse to transfer neuronal information from the presynaptic element to the postsynaptic neuron. For instance, presynaptic mechanisms provide evidence for the functional independence of the nerve terminals, since the release of neuromediators by the latter is sometimes independent of the axonal firing rate. Similarly, the somato-dendritic part of some neurons exhibits intrinsic functions, such as a dendritic release of neuromediator, suggesting that the control of the axonal firing rate takes place partly at this somato-dendritic level and does not depend for the totality on afferent axonic information. The intercellular operations which organize individual neurons into neuronal networks will also occur either at somato-dendritic level or at the level of specific nerve terminals selected as the result of presynaptic interactions. This integration of neuronal information also seems to take place at postsynaptic level, where cooperative interactions have been shown to occur between various receptors. These mechanisms will function at the level of a single nerve terminal containing more than one neuromediator. Neuromodulation can therefore be said to involve very efficient adaptive processes, which help to account for the fact that such large behavioral responses are expressed by such a small number of neuronal elements.  相似文献   

8.
It has been discovered recently in experiments that the dendritic integration of excitatory glutamatergic inputs and inhibitory GABAergic inputs in hippocampus CA1 pyramidal neurons obeys a simple arithmetic rule as , where , and are the respective voltage values of the summed somatic potential, the excitatory postsynaptic potential (EPSP) and the inhibitory postsynaptic potential measured at the time when the EPSP reaches its peak value. Moreover, the shunting coefficient in this rule only depends on the spatial location but not the amplitude of the excitatory or inhibitory input on the dendrite. In this work, we address the theoretical issue of how much the above dendritic integration rule can be accounted for using subthreshold membrane potential dynamics in the soma as characterized by the conductance-based integrate-and-fire (I&F) model. Then, we propose a simple I&F neuron model that incorporates the spatial dependence of the shunting coefficient by a phenomenological parametrization. Our analytical and numerical results show that this dendritic-integration-rule-based I&F (DIF) model is able to capture many experimental observations and it also yields predictions that can be used to verify the validity of the DIF model experimentally. In addition, the DIF model incorporates the dendritic integration effects dynamically and is applicable to more general situations than those in experiments in which excitatory and inhibitory inputs occur simultaneously in time. Finally, we generalize the DIF neuronal model to incorporate multiple inputs and obtain a similar dendritic integration rule that is consistent with the results obtained by using a realistic neuronal model with multiple compartments. This generalized DIF model can potentially be used to study network dynamics that may involve effects arising from dendritic integrations.  相似文献   

9.
In 1965, H. T. Hammel proposed a neuronal model to explain set-point thermoregulation. His model was based on a synaptic network encompassing four different types of hypothalamic neurons: i.e., warm-sensitive and temperature-insensitive neurons and heat loss and heat production effector neurons. Although some modifications to this model are suggested, recent electrophysiological and morphological studies support many of the model's major tenets. Hypothalamic warm-sensitive neurons integrate core and peripheral thermal information. These neurons sense changes in hypothalamic temperature, and they orient their dendrites medially and laterally to receive ascending afferent input from cutaneous thermoreceptors. Temperature-insensitive neurons have a different dendritic orientation and may provide constant reference signals, which are important in determining thermoregulatory set points. In Hammel's model, temperature-sensitive and -insensitive neurons send mutually antagonistic synaptic inputs to effector neurons controlling various thermoregulatory responses. The model predicts that warm-sensitive neurons synaptically excite heat loss effector neurons and inhibit heat production effector neurons. In recent studies, one counterpart of these effector neurons may be "excitatory postsynaptic potential-driven neurons," the activity of which is dependent on synaptic excitation from nearby cells. Excitatory postsynaptic potential-driven neurons have sparse dendrites that appear to be specifically oriented, either medially or laterally, presumably to receive selective synaptic input from a discrete source. Another counterpart of effector neurons may be "silent neurons," which have extensive dendritic branches that may receive synaptic excitation from remote sources. Because some silent neurons receive synaptic inhibition from nearby warm-sensitive neurons, Hammel's model would predict that they have a role in heat production or heat retention responses.  相似文献   

10.
Wide Dynamic Range (WDR) neurons in the spinal cord receive inputs from the contralateral side that, under normal conditions, are ineffective in generating an active response. These inputs are effective when the target WDRs change their excitability conditions. To further reveal the mechanisms supporting this effectiveness shift, we investigated the weight of the excitation of the contralateral neurons on the target WDR responses. In the circuit of presynaptic (sending) and postsynaptic (receiving) neurons in crossed spinal connections the fibres that form the presynaptic neurons impinge on postsynaptic neurons can be considered the final relay of this contralateral pathway. The enhancement of the presynaptic neuron excitability may thus modify the efficacy of the contralateral input. Pairs of neurons each on a side of the spinal cord, at the L5-L6 lumbar level were simultaneously recorded in intact, anaesthetized, paralysed rats. The excitatory aminoacid NMDA and strychnine, the antagonist of the inhibitory aminoacid glycine, were iontophoretically administrated to presynaptic neurons to increase their excitability. Before and during the drug administration, spontaneous and noxious-evoked activities of the neurons were analysed. During the iontophoresis of the two substances we found that noxious stimuli applied to the receptive field of presynaptic neurons activated up to 50% of the previously unresponsive postsynaptic neurons on the opposite side. Furthermore, the neurons on both sides of the spinal cord showed significantly increased spontaneous activity and amplified responses to ipsilateral noxious stimulation. These findings indicate that the contralateral input participates in the circuit dynamics of spinal nociceptive transmission, by modulating the excitability of the postsynaptic neurons. A possible functional role of such a nociceptive transmission circuit in neuronal sensitization following unilateral nerve injury is hypothesized.  相似文献   

11.
Wide Dynamic Range (WDR) neurons in the spinal cord receive inputs from the contralateral side that, under normal conditions, are ineffective in generating an active response. These inputs are effective when the target WDRs change their excitability conditions. To further reveal the mechanisms supporting this effectiveness shift, we investigated the weight of the excitation of the contralateral neurons on the target WDR responses. In the circuit of presynaptic (sending) and postsynaptic (receiving) neurons in crossed spinal connections the fibres that form the presynaptic neurons impinge on postsynaptic neurons can be considered the final relay of this contralateral pathway. The enhancement of the presynaptic neuron excitability may thus modify the efficacy of the contralateral input. Pairs of neurons each on a side of the spinal cord, at the L5–L6 lumbar level were simultaneously recorded in intact, anaesthetized, paralysed rats. The excitatory aminoacid NMDA and strychnine, the antagonist of the inhibitory aminoacid glycine, were iontophoretically administrated to presynaptic neurons to increase their excitability. Before and during the drug administration, spontaneous and noxious-evoked activities of the neurons were analysed. During the iontophoresis of the two substances we found that noxious stimuli applied to the receptive field of presynaptic neurons activated up to 50% of the previously unresponsive postsynaptic neurons on the opposite side. Furthermore, the neurons on both sides of the spinal cord showed significantly increased spontaneous activity and amplified responses to ipsilateral noxious stimulation. These findings indicate that the contralateral input participates in the circuit dynamics of spinal nociceptive transmission, by modulating the excitability of the postsynaptic neurons. A possible functional role of such a nociceptive transmission circuit in neuronal sensitization following unilateral nerve injury is hypothesized.  相似文献   

12.
The functional role of synchronization has attracted much interest and debate: in particular, synchronization may allow distant sites in the brain to communicate and cooperate with each other, and therefore may play a role in temporal binding, in attention or in sensory-motor integration mechanisms. In this article, we study another role for synchronization: the so-called “collective enhancement of precision”. We argue, in a full nonlinear dynamical context, that synchronization may help protect interconnected neurons from the influence of random perturbations—intrinsic neuronal noise—which affect all neurons in the nervous system. More precisely, our main contribution is a mathematical proof that, under specific, quantified conditions, the impact of noise on individual interconnected systems and on their spatial mean can essentially be cancelled through synchronization. This property then allows reliable computations to be carried out even in the presence of significant noise (as experimentally found e.g., in retinal ganglion cells in primates). This in turn is key to obtaining meaningful downstream signals, whether in terms of precisely-timed interaction (temporal coding), population coding, or frequency coding. Similar concepts may be applicable to questions of noise and variability in systems biology.  相似文献   

13.
Rhythms with time scales of multiple cycles per second permeate the mammalian brain, yet neuroscientists are not certain of their functional roles. One leading idea is that coherent oscillation between two brain regions facilitates the exchange of information between them. In rats, the hippocampus and the vibrissal sensorimotor system both are characterized by rhythmic oscillation in the theta range, 5–12 Hz. Previous work has been divided as to whether the two rhythms are independent or coherent. To resolve this question, we acquired three measures from rats—whisker motion, hippocampal local field potential (LFP), and barrel cortex unit firing—during a whisker-mediated texture discrimination task and during control conditions (not engaged in a whisker-mediated memory task). Compared to control conditions, the theta band of hippocampal LFP showed a marked increase in power as the rats approached and then palpated the texture. Phase synchronization between whisking and hippocampal LFP increased by almost 50% during approach and texture palpation. In addition, a greater proportion of barrel cortex neurons showed firing that was phase-locked to hippocampal theta while rats were engaged in the discrimination task. Consistent with a behavioral consequence of phase synchronization, the rats identified the texture more rapidly and with lower error likelihood on trials in which there was an increase in theta-whisking coherence at the moment of texture palpation. These results suggest that coherence between the whisking rhythm, barrel cortex firing, and hippocampal LFP is augmented selectively during epochs in which the rat collects sensory information and that such coherence enhances the efficiency of integration of stimulus information into memory and decision-making centers.  相似文献   

14.
The suprachiasmatic nuclei (SCN) host a robust, self-sustained circadian pacemaker that coordinates physiological rhythms with the daily changes in the environment. Neuronal clocks within the SCN form a heterogeneous network that must synchronize to maintain timekeeping activity. Coherent circadian output of the SCN tissue is established by intercellular signaling factors, such as vasointestinal polypeptide. It was recently shown that besides coordinating cells, the synchronization factors play a crucial role in the sustenance of intrinsic cellular rhythmicity. Disruption of intercellular signaling abolishes sustained rhythmicity in a majority of neurons and desynchronizes the remaining rhythmic neurons. Based on these observations, the authors propose a model for the synchronization of circadian oscillators that combines intracellular and intercellular dynamics at the single-cell level. The model is a heterogeneous network of circadian neuronal oscillators where individual oscillators are damped rather than self-sustained. The authors simulated different experimental conditions and found that: (1) in normal, constant conditions, coupled circadian oscillators quickly synchronize and produce a coherent output; (2) in large populations, such oscillators either synchronize or gradually lose rhythmicity, but do not run out of phase, demonstrating that rhythmicity and synchrony are codependent; (3) the number of oscillators and connectivity are important for these synchronization properties; (4) slow oscillators have a higher impact on the period in mixed populations; and (5) coupled circadian oscillators can be efficiently entrained by light–dark cycles. Based on these results, it is predicted that: (1) a majority of SCN neurons needs periodic synchronization signal to be rhythmic; (2) a small number of neurons or a low connectivity results in desynchrony; and (3) amplitudes and phases of neurons are negatively correlated. The authors conclude that to understand the orchestration of timekeeping in the SCN, intracellular circadian clocks cannot be isolated from their intercellular communication components.  相似文献   

15.
Advances in research on globus pallidus (GP) suggest that this 'long thought to be' relay in the 'indirect pathway' plays a unique and critical role in basal ganglia function. The traditional idea of parallel processing within the basal ganglia is also challenged by recent findings. It is now clear that axons of GP neurons form large, perisomatic baskets around target neurons in all major basal ganglia nuclei, thereby exerting a profound influence on the output of the entire basal ganglia. GP neurons are autonomously active both in vivo and in vitro. It is believed that temporal information carried along the corticostriatopallidal pathway is critical for proper motor execution. The importance of appropriately controlled discharge of GP neurons is highlighted by psychomotor disorders such as Parkinson's disease, in which alterations in the pattern and synchrony of discharge in GP neurons are thought to contribute to motor symptoms. Several lines of evidence suggest that the aberrant activity of GP neurons following dopamine depletion is caused by alteration in the synaptic input from both striatum and subthalamic nucleus. In normal subjects, the capability of striatal input in translating cortical input into precisely timed responses in GP neurons is mediated by (1) the expression of postsynaptic GABA(A) receptor composed of subunits with fast kinetic properties; (2) an effective GABA reuptake system in terminating the action of synaptically released GABA, and (3) the existence of dendritic HCN channels that actively abbreviate the time course of the inhibitory postsynaptic potentials and reset rhythmic discharge. Despite the rapid pace in uncovering the elements that shape the activity along the striatopallidosubthalamic pathway, the origin of rhythmic, synchronized bursting of GP neurons seen in parkinsonism has not been fully established experimentally. Further elucidation of the factors that control the information transfer in the striatopallidal synapses is thus critical to our understanding of basal ganglia function and establishing treatment for Parkinson's disease and other basal ganglia disorders.  相似文献   

16.
Shen LL  Peng YJ  Wu GQ  Cao YX  Li P 《生理学报》1999,(2):168-174
本文分析了大鼠延头端腹外侧区(RVLM)神经元单位活动与心血管活动的相干性,观察了RVLM区神经元电 对电刺激中脑防御反应区的诱发反应,以及对压力感受性反射的反应,并用FFT对RVLM区神经元自发单位放电和血压波进行频域的相干性分析,以判断是具有心节律。还分析了RVLM区单位放电变异性与心率变异性的相干性。结果显示:RVLM区大多数神经元对电刺激中脑防御反应区呈兴奋反应(67%),70%神经元放电  相似文献   

17.
The basolateral complex of the amygdala (BLA) is a critical component of the neural circuit regulating fear learning. During fear learning and recall, the amygdala and other brain regions, including the hippocampus and prefrontal cortex, exhibit phase-locked oscillations in the high delta/low theta frequency band (~2-6 Hz) that have been shown to contribute to the learning process. Network oscillations are commonly generated by inhibitory synaptic input that coordinates action potentials in groups of neurons. In the rat BLA, principal neurons spontaneously receive synchronized, inhibitory input in the form of compound, rhythmic, inhibitory postsynaptic potentials (IPSPs), likely originating from burst-firing parvalbumin interneurons. Here we investigated the role of compound IPSPs in the rat and rhesus macaque BLA in regulating action potential synchrony and spike-timing precision. Furthermore, because principal neurons exhibit intrinsic oscillatory properties and resonance between 4 and 5 Hz, in the same frequency band observed during fear, we investigated whether compound IPSPs and intrinsic oscillations interact to promote rhythmic activity in the BLA at this frequency. Using whole-cell patch clamp in brain slices, we demonstrate that compound IPSPs, which occur spontaneously and are synchronized across principal neurons in both the rat and primate BLA, significantly improve spike-timing precision in BLA principal neurons for a window of ~300 ms following each IPSP. We also show that compound IPSPs coordinate the firing of pairs of BLA principal neurons, and significantly improve spike synchrony for a window of ~130 ms. Compound IPSPs enhance a 5 Hz calcium-dependent membrane potential oscillation (MPO) in these neurons, likely contributing to the improvement in spike-timing precision and synchronization of spiking. Activation of the cAMP-PKA signaling cascade enhanced the MPO, and inhibition of this cascade blocked the MPO. We discuss these results in the context of spike-timing dependent plasticity and modulation by neurotransmitters important for fear learning, such as dopamine.  相似文献   

18.
It was often reported and suggested that the synchronization of spikes can occur without changes in the firing rate. However, few theoretical studies have tested its mechanistic validity. In the present study, we investigate whether changes in synaptic weights can induce an independent modulation of synchrony while the firing rate remains constant. We study this question at the level of both single neurons and neuronal populations using network simulations of conductance based integrate-and-fire neurons. The network consists of a single layer that includes local excitatory and inhibitory recurrent connections, as well as long-range excitatory projections targeting both classes of neurons. Each neuron in the network receives external input consisting of uncorrelated Poisson spike trains. We find that increasing this external input leads to a linear increase of activity in the network, as well␣as an increase in the peak frequency of oscillation. In␣contrast, balanced changes of the synaptic weight of␣excitatory long-range projections for both classes of postsynaptic neurons modulate the degree of synchronization without altering the firing rate. These results demonstrate that, in a simple network, synchronization and firing rate can be modulated independently, and thus, may be used as independent coding dimensions. Electronic supplementary material  The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

19.
Neuronal circuits underlying rhythmic behaviors (central pattern generators: CPGs) can generate rhythmic motor output without sensory input. However, sensory input is pivotal for generating behaviorally relevant CPG output. Here we discuss recent work in the decapod crustacean stomatogastric nervous system (STNS) identifying cellular and synaptic mechanisms whereby sensory inputs select particular motor outputs from CPG circuits. This includes several examples in which sensory neurons regulate the impact of descending projection neurons on CPG circuits. This level of analysis is possible in the STNS due to the relatively unique access to identified circuit, projection, and sensory neurons. These studies are also revealing additional degrees of freedom in sensorimotor integration that underlie the extensive flexibility intrinsic to rhythmic motor systems.  相似文献   

20.
Uhlhaas PJ  Singer W 《Neuron》2006,52(1):155-168
Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, novel methods of time series analysis have been developed for the examination of task- and performance-related oscillatory activity and its synchronization. Studies employing these advanced techniques revealed that synchronization of oscillatory responses in the beta- and gamma-band is involved in a variety of cognitive functions, such as perceptual grouping, attention-dependent stimulus selection, routing of signals across distributed cortical networks, sensory-motor integration, working memory, and perceptual awareness. Here, we review evidence that certain brain disorders, such as schizophrenia, epilepsy, autism, Alzheimer's disease, and Parkinson's are associated with abnormal neural synchronization. The data suggest close correlations between abnormalities in neuronal synchronization and cognitive dysfunctions, emphasizing the importance of temporal coordination. Thus, focused search for abnormalities in temporal patterning may be of considerable clinical relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号