首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liver slices from young (20 weeks) and old (117 weeks) rats were incubated with [methyl-14C]methionine in the absence or presence of spermine or sodium butyrate. The high-mobility-group (HMG) non-histone proteins were extracted from the liver with perchloric acid and separated by acid-urea polyacrylamide slab gel electrophoresis. Methylation of HMG proteins decreased drastically in old rats. Whereas spermine inhibited the methylation of total HMG proteins in young rats, it had no effect in old age. On the contrary, sodium butyrate did not change the incorporation of methyl groups into total HMG proteins of young rats, but inhibited that of old rats. Particularly, the incorporation of [14C]methyl groups into HMG 2 was enhanced but into other HMGs it was reduced by both effectors in young and old age. Such discrepancies in the methylation of HMG proteins and their differential modulation by spermine and butyrate might affect the higher-order organization of chromatin and consequently destabilize the expression of genes during aging.  相似文献   

2.
The possibility of methylation, acetylation and phosphorylation of the bases of DNA has been studied in vitro by incubating nuclei of the liver and cerebral hemisphere of young (18 wk) and old (120 wk) rats with radioactive donors, [3H]S approximately adenosyl methylmethionine, [3H]-acetyl approximately CoA and [32P]-gamma-ATP for methylation, acetylation and phosphorylation of the bases, respectively. Nuclei were also incubated with S approximately adenosyl homocysteine to inhibit methylation with sodium butyrate to stimulate acetylation and with alkaline phosphatase to remove phosphate groups incorporated into the bases. DNA was then extensively purified and incorporation of each type of label was estimated. The data show that both methylation and acetylation of DNA of old rats were significantly higher than those of young rats, and phosphorylation is lower in old rats. Such modifications may prevent base pairing between the two strands of DNA, alter its conformation and binding of trans-acting factors at specific sites, and thereby alter gene expression.  相似文献   

3.
The conformation of estrogen receptor (ER) and its in vitro transformation by RNase, Urea and ATP were analysed using the uteri of young (16 weeks) and old (92 weeks) rats. Following the digestion of ER with proteolytic enzymes like trypsin and chymotrypsin and the analysis of cleaved fragments by SDS-PAGE, similar pattern is observed in both ages. In vitro transformation of ER by RNase, Urea and ATP shows that the degree of transformation is lower in old than young. Furthermore, the transformed ER from old is less capable of binding to DNA than that from young. Thus our results show that the conformation of ER probably does not change with age, but the degree of transformation and the ability of transformed receptor to bind to DNA decrease with age.  相似文献   

4.
HMG proteins were extracted with 5% PCA or 0.35 M NaCl from whole tissue, nuclei or chromatin of the liver of young (19 weeks) and old (118 weeks) male rats. They were resolved on acetic acid-urea polyacrylamide gel. The electrophoretic patterns of the major HMG proteins 1, 2, 14 and 17 of both ages are similar. The in vitro synthesis of HMG 1 and 2 decreases, but that of HMG 14 and 17 increases considerably in the liver of old rats. The synthesis of different HMG proteins is modulated differentially by spermine, butyrate, dexamethasone and 3-aminobenzamide in the liver of young and old rats. These findings suggest that HMG proteins contribute to alterations in the organization of chromatin and expression of genes during aging.  相似文献   

5.
6.
The effect of estrogen on methylation of DNA from the uteri of young (20 weeks) and old (96 weeks) female Wistar rats has been examined by isoschizomeric restriction enzymes and HPLC analysis. In vitro methylation of DNA is significantly higher in the uteri of young rats as compared to old ones. This is reduced by estrogen to greater extent in young than in old age. Furthermore, the digestion of DNA with EcoRI+Msp I shows a distinct 1.2 kb band only in young control. Such band is absent in old control and estrogen-treated sets of both age groups. The HPLC data further reveal that the level of 5-methyl cytosine is high in young and decreases by nearly 18% in old. Estrogen lowers the level of 5-methyl cytosine by 8% in young but shows no effect in the old. Such age-dependent changes in the methylation of DNA brought by estrogen in the rat uterus attribute to alterations in gene expression during aging.  相似文献   

7.
Constitutive and gamma-induced ADP-ribosylation of nuclei and mitochondrial proteins in 2- and 29-month-old rats was studied. ADP-ribosylation was determined by binding of [3H]-adenin with the proteins after incubation of cellular organells in reaction mixture supplemented with [adenin-2,8-3H]-NAD. It was detected that the level of total protein ADP-ribosylation in the nuclei is 4.5-6.2 times higher than in the mitochondria. By inhibition of poly(ADP-ribose) polymerase (PARP) with 3-aminobenzamidine and treatment of ADP-ribosylated proteins with phosphodiesterase I, it was demonstrated that about 90% of [3H]-adenin bound by proteins in the nuclei and 70% in the mitochondria was the result of PARP activity. The level of total ADP-ribosylation of nuclear and mitochondrial proteins in the tissues of old rats was reliably lower than in young animals. This reduction of ADP-ribosylation in old animals is the result of the lower activity of PARP, not of mono(ADP-ribosyl) transferase (MART). The level of ADP-ribosylation of proteins in the nuclei of brain and spleen cells of 2-month-old rats irradiated with of 5 and 10 Gy was by 49-109% higher than in the control. At the same doses of radiation, the level of ADP-ribosylation of nuclear proteins in brain and spleen of old rats increased only by 29-65% compared to the control. Unlike cell nuclei, the radiation-induced activation of ADP-ribosylation in mitochondria was less expressed: the level of ADP-ribosylation increased by 34-37% in young rats and by 11-27% in old animals. This increased binding of ADP-ribose residues by the proteins of nuclei and mitochondria from tissues of gamma-irradiated rats is exceptionally conditioned by activation of poly(ADP-ribosyl)ation because the level of mono(ADP-ribosyl)ation remains constant. The results of this study enable the suggestion that poly(ADP-ribosyl)ation also occurs in the mitochondria of brain and spleen cells of the gamma-irradiated rats, though less pronounced than in cell the cell nuclei of these tissues. Thus, one of the probable causes of the less efficient repair of radiation-induced DNA damage in old organisms is a decline of both constitutive and induced poly(ADP-ribosyl)ation of proteins in cell nucleus and mitochondria.  相似文献   

8.
Changes in gene expression associated with skeletal muscle atrophy due to aging are distinct from those due to disuse, suggesting that the response of old muscle to inactivity may be altered. The goal of this study was to identify changes in muscle gene expression that may contribute to loss of adaptability of old muscle. Muscle atrophy was induced in young adult (6-mo) and old (32-mo) male Brown Norway/F344 rats by 2 wk of hindlimb suspension (HS), and soleus muscles were analyzed by cDNA microarrays. Overall, similar changes in gene expression with HS were observed in young and old muscles for genes encoding proteins involved in protein folding (heat shock proteins), muscle structure, and contraction, extracellular matrix, and nucleic acid binding. More genes encoding transport and receptor proteins were differentially expressed in the soleus muscle from young rats, while in soleus muscle from old rats more genes that encoded ribosomal proteins were upregulated. The gene encoding the cold-shock protein RNA-binding motif protein-3 (RBM3) was induced most highly with HS in muscle from old rats, verified by real-time RT-PCR, while no difference with age was observed. The cold-inducible RNA-binding protein (Cirp) gene was also overexpressed with HS, whereas cold-shock protein Y-box-binding protein-1 was not. A time course analysis of RBM3 mRNA abundance during HS showed that upregulation occurred after apoptotic nuclei and markers of protein degradation increased. We conclude that a cold-shock response may be part of a compensatory mechanism in muscles undergoing atrophy to preserve remaining muscle mass and that RBM3 may be a therapeutic target to prevent muscle loss.  相似文献   

9.
The synthesis of total cellular as well as acid-soluble nuclear proteins and estrogen receptor is high in the uteri of young (22 weeks) and decreases to half in old (104 weeks) rats. Administration of estrogen induces the synthesis of these proteins significantly in young but shows no remarkable effect in old rats. Interestingly, a specific cytosolic protein of 45 kDa is stimulated about two-fold after estrogen injection in young but not in old rats. These findings further establish the reduced responsiveness of uterus to estrogen in old age.  相似文献   

10.
The synthesis of total cellular as well as acid-soluble nuclear proteins and estrogen receptor is high in the uteri of young (22 weeks) and decreases to half in old (104 weeks) rats. Administration of estrogen induces the synthesis of these proteins significantly in young but shows no remarkable effect in old rats. Interestingly, a specific cytosolic protein of 45 kDa is stimulated about two-fold after estrogen injection in young but not in old rats. These findings further establish the reduced responsiveness of uterus to estrogen in old age.  相似文献   

11.
Following the binding of estrogen to estrogen receptor (ER)β ligand binding domain (LBD) and its interaction with the target genes, a host of nuclear proteins is recruited to regulate the expression of specific genes(s). It is not known which proteins interact with ERβLBD and whether they vary with age and sex in the brain. Therefore, using pull down assay, immunoprecipitation and immunoblotting, we report that cell signaling molecules Trk A and Src interacted with ERβLBD, and showed alteration in the level of interaction and expression in the brain of AKR strain young (6 weeks), adult (25 weeks) and old (70 weeks) mice of both sexes. Trk A showed decreasing interaction with age, and lower expression in adult as compared to young and old males, whereas female mice exhibited decline in both interaction and expression as a function of age. On the other hand, Src interaction with ERβLBD decreased, but its expression increased with age in males, whereas the interaction and expression was lower in adult but higher in old as compared to young females. These findings suggest the implication of Trk A and Src in ERβ mediated brain functions and related disorders during aging.  相似文献   

12.
The interaction of partially purified calf uterine estradiol-charged estrogen receptor ([3H]ER) with rat nuclei was studied in vitro. We previously observed a significantly greater number of [3H]ER binding sites (at saturation) in nuclei of R3230AC mammary tumors from intact vs ovariectomized (ovex) rats with no difference in the affinity of [3H]ER binding for these nuclei. We now report on the nuclease sensitivity of [3H]ER binding sites in nuclei from these tumors and from normal rat tissues. Digestion of tumor nuclei with deoxyribonuclease I (DNase I) prior to incubation with [3H]ER in vitro resulted in a progressive loss of [3H]ER binding capacity, which was not accompanied by alterations in the affinity of [3H]ER for the nuclei (Kd = 1-3 nM). A significantly lower concentration (P less than 0.005) of DNase I eliminated 50% of the [3H]ER binding sites in nuclei of tumors from intact hosts (8 unit.min/ml) compared to tumors from ovex hosts (22 unit.min/ml). These results indicate that DNA regions capable of binding ER are more susceptible to DNase I digestion in tumors from intact rats than those from ovex hosts, suggesting that the endogenous hormonal milieu is responsible, at least in part, for maintenance of nuclease-sensitive DNA conformations in this hormone-responsive mammary tumor. The amount of DNase I required to eliminate 50% of [3H]ER binding to nuclei from lactating mammary gland, liver, and kidney ranged from 14 to 56 unit.min/ml. Therefore, accessibility of [3H]ER binding sites to nuclease digestion in normal rat tissue is generally less than that of R3230AC tumors.  相似文献   

13.
Specific binding of [3H]dexamethasone to cytosol and the activation of bound hormone-receptor complexes were studied in the liver of immature (3 weeks old) and mature (26 weeks old) Long-Evans male rats. The concentration of specific binding sites was significantly higher (33%) in the liver of immature rats as compared to mature, while dissociation constants (Kd) remain unaltered at both ages. Heat activation (for 45 min at 25 degrees C) significantly enhances the binding of [3H]dexamethasone-receptor complexes to DNA-cellulose and purified nuclei at both the ages, with a greater magnitude in mature rats. Cross mixing experiments (i.e., binding of activated cytosol from mature rats to nuclei of immature and vice-versa) show receptor specificity. Ca2+ activation (20 mM Ca2+ for 45 min at 0 degree C) also enhances the nuclear and DNA-cellulose binding at both the ages, but to a similar extent. Differences in the number of specific binding sites and some of the physiochemical properties of glucocorticoid receptors presented here between immature and mature rats may underlie the functional changes in tissue response with age.  相似文献   

14.
Following binding to cognate ligand, estrogen receptor (ER) β interacts with specific responsive elements of the target genes and recruits a host of nuclear proteins for hormone dependent gene regulation. However, it is poorly known which proteins interact with ER β in mouse brain and whether their interaction and expression change with age. In this report, we have used his-tag mouse ER β for interaction with nuclear proteins of cerebral cortex of young (6 ± 1 weeks), adult (25 ± 2 weeks), and old (70 ± 5 weeks) female mice. We have identified estrogen receptor-associated protein (ERAP) 140 as one of the interacting proteins and studied its interaction by pull down immunoblotting, far-Western blotting and immunoprecipitation, and expression by western blotting. The data show that ERAP 140 interacts with ER β and its interaction decreases but its expression increases with age in mouse cerebral cortex, suggesting its role in estrogen-mediated brain functions during aging.  相似文献   

15.
Chromatin of the brain of young (22-23 week) and old (118-119 week) rats has been analysed by nick-translation reaction following its digestion by DNaseI, EcoRI, MspI and HpaII. The incorporation of (3H)-dTMP in the old is only about 50 percent of that of the young. The difference in the incorporation following digestion of nuclei by MspI and HpaII that quantitate the degree of methylation of internal cytosines in the 5' CCGG 3' sequences, is nearly two-fold higher in the old. These data indicate that the chromatin undergoes increasing condensation as a function of age. One of the contributory factors may be increasing methylation of DNA. This may decrease the active fraction of chromatin.  相似文献   

16.
The formation and repair of DNA-protein cross-links (DPC) in the mitochondria and nuclei from the brain and spleen of 2- and 29-month rats after their exposure to ionizing radiation were studied. The background level of DPC in brain and spleen mitochondria of old rats was shown to be about two times as high as in young rats. In the nuclei from the brain of old rats the background amount of DPC was also increased, unlike the nuclei of spleen of the same rats. At the doses 5 and 10 Gy (137Cs), the amount of DPC produced in the mitochondria and nuclei of brain and spleen of 29-month rats was 1.8-2.5 times greater than in the nuclei of the same tissues of young animals. At the same time, in the mitochondria of brain and spleen from irradiated rats the amount of DPC was by 30-80% higher than in the nuclei of the same tissues. Analysis of changes in DPC content during the post-radiation period showed that 5 h after irradiation of rats with a dose of 10 Gy, the level of these lesions in the nuclei of brain and spleen of young rats decreased by 40 and 65%, respectively, whereas the amount of these lesions in the mitochondria did not decrease. In this post-radiation period in nuclei of brain and spleen of old rats the amount of DPC decreased by 20-40%, respectively. However, the data on DPC obtained for the mitochondria of brain and spleen from both young and old rats showed that the amount of these lesions did not decrease during the 5 h post-radiation period. These results enable the suggestion that mitochondria do not possess a system of DPC repair. To summarize, ionizing radiation initiates in the nuclei of brain and spleen of old rats more DPC and their repair proceeds slower than in the nuclei of the same tissues of young animals. In the mitochondria of gamma-radiation exposed old rats more DPC are also produced than in young rats but no repair of DPC is observed in both old and young animals within the 5 h post-radiation period.  相似文献   

17.
18.
用MspⅠ/HpaⅡ酶解电泳法和高效液相色谱(HPLC)两种方法进行比较,研究了不同年龄大鼠的肝、脑细胞基因组DNA的甲基化程度。从酶解电泳图谱可观察到,肝、脑细胞基因组DNA甲基化在青年鼠和老年鼠之间没有差异。但用具有高分辨率的高效液相色谱测量DNA中5-mC的含量时发现,老年鼠脑细胞DNA甲基化程度较大年鼠的下降62%,而肝细胞DNA甲基化程度在老年鼠与青年鼠之间并没有显著差异。这些结果提示:(1)用常规的酶解电泳法所分析的DNA甲基化结果并不能反映整个基因组DNA甲基化的水平。(2)衰老过程中,不同组织DNA甲基化的改变存在差异,引起这种差异的原因可能与组织的增殖和分化程度有关。进一步分析脑细胞原癌基因c-Ha-ras的甲基化水平,无论MspⅠ酶切图谱,还是HpaⅡ酶切图谱均可观察到分子大小为19kb、7.5kb、1.3kb、0.9kb的四条阳性带,说明该基因未发生甲基化,且与年龄无关。  相似文献   

19.
High purified nuclei were obtained from human sperm without protein loss through the use of CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate), a newly available detergent. The basic protein complement of these nuclei is highly heterogeneous and comprises histones (some of which are testis-specific), protamines and proteins of intermediate basicity and molecular size. The protamines belong to two different classes of protein. Microheterogeneity observed in some of these protamines originates from slight variations in their amino acid composition as well as from post-synthetic modifications. Two of these protamines previously considered as two different proteins as in fact the same protein with different degrees of phophorylation. All these protamines and intermediate basic proteins are characterized by high amounts of arginine and cysteine. Three of the protamines and all five intermediate basic proteins are also histidine-rich.  相似文献   

20.
The survival of motor neurons (SMN) complex mediates the assembly of small nuclear ribonucleoproteins (snRNPs) involved in splicing and histone RNA processing. A crucial step in this process is the binding of Sm proteins onto the SMN protein. For Sm B/B', D1, and D3, efficient binding to SMN depends on symmetrical dimethyl arginine (sDMA) modifications of their RG-rich tails. This methylation is achieved by another entity, the PRMT5 complex. Its pICln subunit binds Sm proteins whereas the PRMT5 subunit catalyzes the methylation reaction. Here, we provide evidence that Lsm10 and Lsm11, which replace the Sm proteins D1 and D2 in the histone RNA processing U7 snRNPs, associate with pICln in vitro and in vivo without receiving sDMA modifications. This implies that the PRMT5 complex is involved in an early stage of U7 snRNP assembly and hence may have a second snRNP assembly function unrelated to sDMA modification. We also show that the binding of Lsm10 and Lsm11 to SMN is independent of any methylation activity. Furthermore, we present evidence for two separate binding sites in SMN for Sm/Lsm proteins. One recognizes Sm domains and the second one, the sDMA-modified RG-tails, which are present only in a subset of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号