首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence is accumulating that a distinct compartment(s) exists in the secretory pathway interposed between the rough ER (RER) and the Golgi stack. In this study we have defined a novel post-RER, pre-Golgi compartment where unassembled subunits of rubella virus (RV) E1 glycoprotein accumulate. When RV E1 is expressed in CHO cells in the absence of E2 glycoprotein, transport of E1 to the Golgi complex is arrested. The compartment in which E1 accumulates consists of a tubular network of smooth membranes which is in continuity with the RER but has distinctive properties from either the RER, Golgi, or previously characterized intermediate compartments. It lacks RER and Golgi membrane proteins and is not disrupted by agents which disrupt either the RER (thapsigargin, ionomycin) or Golgi (nocodazole and brefeldin A). However, luminal ER proteins bearing the KDEL signal have access to this compartment. Kinetically the site of E1 arrest lies distal to or at the site where palmitylation occurs and proximal to the low temperature 15 degrees C block. Taken together the findings suggest that the site of E1 arrest corresponds to, or is located close to the exit site from the ER. This compartment could be identified morphologically because it is highly amplified in cells overexpressing unassembled E1 subunits, but it may have its counterpart among the transitional elements of non-transfected cells. We conclude that the site of E1 arrest may represent a new compartment or a differentiated proximal moiety of the intermediate compartment.  相似文献   

2.
During mitosis the interconnected Golgi complex of animal cells breaks down to produce both finely dispersed elements and discrete vesiculotubular structures. The endoplasmic reticulum (ER) plays a controversial role in generating these partitioning intermediates and here we highlight the importance of mitotic ER export arrest in this process. We show that experimental inhibition of ER export (by microinjecting dominant negative Sar1 mutant proteins) is sufficient to induce and maintain transformation of Golgi cisternae to vesiculotubular remnants during interphase and telophase, respectively. We also show that buds on the ER, ER exit sites and COPII vesicles are markedly depleted in mitotic cells and COPII components Sec23p, Sec24p, Sec13p and Sec31p redistribute into the cytosol, indicating ER export is inhibited at an early stage. Finally, we find a markedly uneven distribution of Golgi residents over residual exit sites of metaphase cells, consistent with tubulovesicular Golgi remnants arising by fragmentation rather than redistribution via the ER. Together, these results suggest selective recycling of Golgi residents, combined with prebudding cessation of ER export, induces transformation of Golgi cisternae to vesiculotubular remnants in mitotic cells. The vesiculotubular Golgi remnants, containing populations of slow or nonrecycling Golgi components, arise by fragmentation of a depleted Golgi ribbon independently from the ER.  相似文献   

3.
Sec7p directs the transitions required for yeast Golgi biogenesis   总被引:6,自引:0,他引:6  
Endoplasmic reticulum (ER)-to-Golgi traffic in yeast proceeds by the maturation of membrane compartments from post-ER vesicles to intermediate small vesicle tubular clusters (VTCs) to Golgi nodular membrane networks (Morin-Ganet et al., Traffic 2000; 1: 56–68). The balance between ER and Golgi compartments is maintained by COPII- and COPI-mediated anterograde and retrograde traffic, which are dependent on Sec7p and ARF function. The sec7-4 temperature-sensitive allele is a mutation in the highly conserved Sec7 domain (Sec7d) found in all ARF-guanine nucleotide exchange factor proteins. Post-ER trafficking is rapidly inactivated in sec7-4 mutant yeast at the restrictive temperature. This conditional defect prevented the normal production of VTCs and instead generated Golgi-like tubes emanating from the ER exit sites. These tubes progressively developed into stacked cisternae defining the landmark sec7 mutant phenotype. Consistent with the in vivo results, a Sec7d peptide inhibited ER-to-Golgi transport and displaced Sec7p from its membrane anchor in vitro . The similarities in the consequences of inactivating Sec7p or ARFs in vivo was revealed by genetic disruption of yeast ARFs or by addition of brefeldin A (BFA) to whole cells. These treatments, as in sec7-4 yeast, affected the morphology of membrane compartments in the ER-Golgi transition. Further evidence for Sec7p involvement in the transition for Golgi biogenesis was revealed by in vitro binding between distinct domains of Sec7p with ARFs, COPI and COPII coat proteins. These results suggest that Sec7p coordinates membrane transitions in Golgi biogenesis by directing and scaffolding the binding and disassembly of coat protein complexes to membranes, both at the VTC transition from ER exit sites to form Golgi elements and for later events in Golgi maturation.  相似文献   

4.
Transport vesicles coated with the COPII complex, which is assembled from Sar1p, Sec23p-Sec24p, and Sec13p-Sec31p, are involved in protein export from the endoplasmic reticulum (ER). We previously identified and characterized a novel Sec23p-interacting protein, p125, that is only expressed in mammals and exhibits sequence homology with phosphatidic acid-preferring phospholipase A(1) (PA-PLA(1)). In this study, we examined the localization and function of p125 in detail. By using immunofluorescence and electron microscopy, we found that p125 is principally localized in ER exit sites where COPII-coated vesicles are produced. Analyses of chimeric proteins comprising p125 and two other members of the mammalian PA-PLA(1) family (PA-PLA(1) and KIAA0725p) showed that, for localization to ER exit sites, the p125-specific N-terminal region is critical, and the putative lipase domain is interchangeable with KIAA0725p but not with PA-PLA(1). RNA interference-mediated depletion of p125 affected the organization of ER exit sites. The structure of the cis-Golgi compartment was also substantially disturbed, whereas the medial-Golgi was not. Protein export from the ER occurred without a significant delay in p125-depleted cells. Our study suggests that p125 is a mammalian-specific component of ER exit sites and participates in the organization of this compartment.  相似文献   

5.
ER to Golgi transport: Requirement for p115 at a pre-Golgi VTC stage   总被引:1,自引:0,他引:1  
The membrane transport factor p115 functions in the secretory pathway of mammalian cells. Using biochemical and morphological approaches, we show that p115 participates in the assembly and maintenance of normal Golgi structure and is required for ER to Golgi traffic at a pre-Golgi stage. Injection of antibodies against p115 into intact WIF-B cells caused Golgi disruption and inhibited Golgi complex reassembly after BFA treatment and wash-out. Addition of anti-p115 antibodies or depletion of p115 from a VSVtsO45 based semi-intact cell transport assay inhibited transport. The inhibition occurred after VSV glycoprotein (VSV-G) exit from the ER but before its delivery to the Golgi complex, and resulted in VSV-G protein accumulating in peripheral vesicular tubular clusters (VTCs). The p115-requiring step of transport followed the rab1-requiring step and preceded the Ca(2+)-requiring step. Unexpectedly, mannosidase I redistributed from the Golgi complex to colocalize with VSV-G protein arrested in pre-Golgi VTCs by p115 depletion. Redistribution of mannosidase I was also observed in cells incubated at 15 degrees C. Our data show that p115 is essential for the translocation of pre-Golgi VTCs from peripheral sites to the Golgi stack. This defines a previously uncharacterized function for p115 at the VTC stage of ER to Golgi traffic.  相似文献   

6.
Yeast Sec22p participates in both anterograde and retrograde vesicular transport between the endoplasmic reticulum (ER) and the Golgi apparatus by functioning as a v-SNARE (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein receptor) of transport vesicles. Three mammalian proteins homologous to Sec22p have been identified and are referred to as Sec22a, Sec22b/ERS-24, and Sec22c, respectively. The existence of three homologous proteins in mammalian cells calls for detailed cell biological and functional examinations of each individual protein. The epitope-tagged forms of all three proteins have been shown to be primarily associated with the ER, although functional examination has not been carefully performed for any one of them. In this study, using antibodies specific for Sec22b/ERS-24, it is revealed that endogenous Sec22b/ERS-24 is associated with vesicular structures in both the perinuclear Golgi and peripheral regions. Colabeling experiments for Sec22b/ERS-24 with Golgi mannosidase II, the KDEL receptor, and the envelope glycoprotein G (VSVG) of vesicular stomatitis virus (VSV) en route from the ER to the Golgi under normal, brefeldin A, or nocodazole-treated cells suggest that Sec22b/ERS-24 is enriched in the pre-Golgi intermediate compartment (IC). In a well-established semi-intact cell system that reconstitutes transport from the ER to the Golgi, transport of VSVG is inhibited by antibodies against Sec22b/ERS-24. EGTA is known to inhibit ER–Golgi transport at a stage after vesicle/transport intermediate docking but before the actual fusion event. Antibodies against Sec22b/ERS-24 inhibit ER–Golgi transport only when they are added before the EGTA-sensitive stage. Transport of VSVG accumulated in pre-Golgi IC by incubation at 15°C is also inhibited by Sec22b/ERS-24 antibodies. Morphologically, VSVG is transported from the ER to the Golgi apparatus via vesicular intermediates that scatter in the peripheral as well as the Golgi regions. In the presence of antibodies against Sec22b/ERS-24, VSVG is seen to accumulate in these intermediates, suggesting that Sec22b/ERS-24 functions at the level of the IC in ER–Golgi transport.  相似文献   

7.
Mechanisms for exporting variably sized cargo from the endoplasmic reticulum (ER) using the same machinery remain poorly understood. COPII-coated vesicles, which transport secretory proteins from the ER to the Golgi apparatus, are typically 60–90 nm in diameter. However, collagen, which forms a trimeric structure that is too large to be accommodated by conventional transport vesicles, is also known to be secreted via a COPII-dependent process. In this paper, we show that Sec12, a guanine-nucleotide exchange factor for Sar1 guanosine triphosphatase, is concentrated at ER exit sites and that this concentration of Sec12 is specifically required for the secretion of collagen VII but not other proteins. Furthermore, Sec12 recruitment to ER exit sites is organized by its direct interaction with cTAGE5, a previously characterized collagen cargo receptor component, which functions together with TANGO1 at ER exit sites. These findings suggest that the export of large cargo requires high levels of guanosine triphosphate–bound Sar1 generated by Sec12 localized at ER exit sites.  相似文献   

8.
COPI and COPII are vesicle coat complexes whose assembly is regulated by the ARF1 and Sar1 GTPases, respectively. We show that COPI and COPII coat complexes are recruited separately and independently to ER (COPII), pre-Golgi (COPI, COPII), and Golgi (COPI) membranes of mammalian cells. To address their individual roles in ER to Golgi transport, we used stage specific in vitro transport assays to synchronize movement of cargo to and from pre-Golgi intermediates, and GDP- and GTP-restricted forms of Sar1 and ARF1 proteins to control coat recruitment. We find that COPII is solely responsible for export from the ER, is lost rapidly following vesicle budding and mediates a vesicular step required for the build-up of pre-Golgi intermediates composed of clusters of vesicles and small tubular elements. COPI is recruited onto pre-Golgi intermediates where it initiates segregation of the anterograde transported protein vesicular stomatitis virus glycoprotein (VSV-G) from the retrograde transported protein p58, a protein which actively recycles between the ER and pre-Golgi intermediates. We propose that sequential coupling between COPII and COPI coats is essential to coordinate and direct bi-directional vesicular traffic between the ER and pre-Golgi intermediates involved in transport of protein to the Golgi complex.  相似文献   

9.
The function of the pre-Golgi intermediate compartment (IC) and its relationship with the endoplasmic reticulum (ER) and Golgi remain only partially understood. Here, we report striking segregation of IC domains in polarized PC12 cells that develop neurite-like processes. Differentiation involves expansion of the IC and movement of Rab1-containing tubules to the growth cones of the neurites, whereas p58- and COPI-positive IC elements, like rough ER and Golgi, remain in the cell body. Exclusion of Rab1 effectors p115 and GM130 from the neurites further indicated that the centrifugal, Rab1-mediated pathway has functions that are not directly related to ER-to-Golgi trafficking. Disassembly of COPI coats did not affect this pathway but resulted in missorting of p58 to the neurites. Live cell imaging showed that green fluorescent protein (GFP)-Rab1A-containing IC elements move bidirectionally both within the neurites and cell bodies, interconnecting different ER exit sites and the cis-Golgi region. Moreover, in nonpolarized cells GFP-Rab1A-positive tubules moved centrifugally towards the cell cortex. Hydroxymethylglutaryl-CoA reductase, the key enzyme of cholesterol biosynthesis, colocalized with slowly sedimenting, Rab1-enriched membranes when the IC subdomains were separated by velocity sedimentation. These results reveal a novel pathway directly connecting the IC with the cell periphery and suggest that this Rab1-mediated pathway is linked to the dynamics of smooth ER.  相似文献   

10.
Glycoproteins exit the endoplasmic reticulum (ER) of the yeast Saccharomyces cerevisiae in coat protein complex II (COPII) coated vesicles. The coat consists of the essential proteins Sec23p, Sec24p, Sec13p, Sec31p, Sar1p and Sec16p. Sec24p and its two nonessential homologues Sfb2p and Sfb3p have been suggested to serve in cargo selection. Using temperature-sensitive sec24-1 mutants, we showed previously that a secretory glycoprotein, Hsp150, does not require functional Sec24p for ER exit. Deletion of SFB2, SFB3 or both from wild type or the deletion of SFB2 from sec24-1 cells did not affect Hsp150 transport. SFB3 deletion has been reported to be lethal in sec24-1. However, here we constructed a sec24-1 Deltasfb3 and a sec24-1 Deltasfb2 Deltasfb3 strain and show that Hsp150 was secreted slowly in both. Turning off the SEC24 gene did not inhibit Hsp150 secretion either, and the lack of SEC24 expression in a Deltasfb2 Deltasfb3 deletant still allowed some secretion. The sec24-1 Deltasfb2 Deltasfb3 mutant grew slower than sec24-1. The cells were irregularly shaped, budded from random sites and contained proliferated ER at permissive temperature. At restrictive temperature, the ER formed carmellae-like proliferations. Our data indicate that ER exit may occur in vesicles lacking a full complement of Sec23p/24p and Sec13p/31p, demonstrating diversity in the composition of the COPII coat.  相似文献   

11.
Despite the ubiquitous presence of the COPI, COPII, and clathrin vesicle budding machineries in all eukaryotes, the organization of the secretory pathway in plants differs significantly from that in yeast and mammalian cells. Mobile Golgi stacks and the lack of both transitional endoplasmic reticulum (ER) and a distinct ER-to-Golgi intermediate compartment are the most prominent distinguishing morphological features of the early secretory pathway in plants. Although the formation of COPI vesicles at periphery of Golgi cisternae has been demonstrated in plants, exit from the ER has been difficult to visualize, and the spatial relationship of this event is now a matter of controversy. Using tobacco (Nicotiana tabacum) BY-2 cells, which represent a highly active secretory system, we have used two approaches to investigate the location and dynamics of COPII binding to the ER and the relationship of these ER exit sites (ERES) to the Golgi apparatus. On the one hand, we have identified endogenous COPII using affinity purified antisera generated against selected COPII-coat proteins (Sar1, Sec13, and Sec23); on the other hand, we have prepared a BY-2 cell line expressing Sec13:green fluorescent protein (GFP) to perform live cell imaging with red fluorescent protein-labeled ER or Golgi stacks. COPII binding to the ER in BY-2 cells is visualized as fluorescent punctate structures uniformly distributed over the surface of the ER, both after antibody staining as well as by Sec13:GFP expression. These structures are smaller and greatly outnumber the Golgi stacks. They are stationary, but have an extremely short half-life (<10 s). Without correlative imaging data on the export of membrane or lumenal ER cargo it was not possible to equate unequivocally these COPII binding loci with ERES. When a GDP-fixed Sar1 mutant is expressed, ER export is blocked and the visualization of COPII binding is perturbed. On the other hand, when secretion is inhibited by brefeldin A, COPII binding sites on the ER remain visible even after the Golgi apparatus has been lost. Live cell imaging in a confocal laser scanning microscope equipped with spinning disk optics allowed us to investigate the relationship between mobile Golgi stacks and COPII binding sites. As they move, Golgi stacks temporarily associated with COPII binding sites at their rims. Golgi stacks were visualized with their peripheries partially or fully occupied with COPII. In the latter case, Golgi stacks had the appearance of a COPII halo. Slow moving Golgi stacks tended to have more peripheral COPII than faster moving ones. However, some stationary Golgi stacks entirely lacking COPII were also observed. Our results indicate that, in a cell type with highly mobile Golgi stacks like tobacco BY-2, the Golgi apparatus is not continually linked to a single ERES. By contrast, Golgi stacks associate intermittently and sometimes concurrently with several ERES as they move.  相似文献   

12.
When the ER to Golgi transport is blocked by a GTP-restricted mutant of Sar1p (H79G) in NRK-52E cells, most Golgi resident proteins are transported back into the ER. In contrast, the cis-Golgi matrix proteins GM130 and GRASP65 are retained in punctate cytoplasmic structures, namely Golgi remnants. Significant amounts of the medial-Golgi matrix proteins golgin-45, GRASP55 and giantin are retained in the Golgi remnants, but a fraction of these proteins relocates to the ER. Golgin-97, a candidate trans-Golgi network matrix protein, is retained in Golgi remnant-like structures, but mostly separated from GM130 and GRASP65. Interestingly, most Sec13p, a COPII component, congregates into larger cytoplasmic clusters soon after the microinjection of Sar1p(H79G), and these move to accumulate around the Golgi apparatus. Sec13p clusters remain associated with Golgi remnants after prolonged incubation. Electron microscopic analysis revealed that Golgi remnants are clusters of larger vesicles with smaller vesicles, many of which are coated. GM130 is mainly associated with larger vesicles and Sec13p with smaller coated vesicles. The Sec13p clusters disperse when p115 binding to the Golgi apparatus is inhibited. These results suggest that cis-Golgi matrix proteins resist retrograde transport flow and stay as true residents in Golgi remnants after the inhibition of ER to Golgi transport.  相似文献   

13.
Coat protein complex II (COPII)-coated vesicles/carriers, which mediate export of proteins from the endoplasmic reticulum (ER), are formed at special ER subdomains in mammals, termed ER exit sites or transitional ER. The COPII coat consists of a small GTPase, Sar1, and two protein complexes, Sec23-Sec24 and Sec13-Sec31. Sec23-Sec24 and Sec13-Sec31 appear to constitute the inner and the outermost layers of the COPII coat, respectively. We previously isolated two mammalian proteins (p125 and p250) that bind to Sec23. p125 was found to be a mammalian-specific, phospholipase A(1)-like protein that participates in the organization of ER exit sites. Here we show that p250 is encoded by the KIAA0310 clone and has sequence similarity to yeast Sec16 protein. Although KIAA0310p was found to be localized at ER exit sites, subcellular fractionation revealed its predominant presence in the cytosol. Cytosolic KIAA0310p was recruited to ER membranes in a manner dependent on Sar1. Depletion of KIAA0310p mildly caused disorganization of ER exit sites and delayed protein transport from the ER, suggesting its implication in membrane traffic out of the ER. Overexpression of KIAA0310p affected ER exit sites in a manner different from that of p125. Binding experiments suggested that KIAA0310p interacts with both the inner and the outermost layer coat complexes, whereas p125 binds principally to the inner layer complex. Our results suggest that KIAA0310p, a mammalian homologue of yeast Sec16, builds up ER exit sites in cooperation with p125 and plays a role in membrane traffic from the ER.  相似文献   

14.
Membrane proteins exit the endoplasmic reticulum (ER) in COPII-transport vesicles. ER export is a selective process in which transport signals present in the cytoplasmic tail (CT) of cargo membrane proteins must be recognized by coatomer proteins for incorporation in COPII vesicles. Two classes of ER export signals have been described for type I membrane proteins, the diacidic and the dihydrophobic motifs. Both motifs participate in the Sar1-dependent binding of Sec23p-Sec24p complex to the CTs during early steps of cargo selection. However, information concerning the amino acids in the CTs that interact with Sar1 is lacking. Herein, we describe a third class of ER export motif, [RK](X)[RK], at the CT of Golgi resident glycosyltransferases that is required for these type II membrane proteins to exit the ER. The dibasic motif is located proximal to the transmembrane border, and experiments of cross-linking in microsomal membranes and of binding to immobilized peptides showed that it directly interacts with the COPII component Sar1. Sar1GTP-bound to immobilized peptides binds Sec23p. Collectively, the present data suggest that interaction of the dibasic motif with Sar1 participates in early steps of selection of Golgi resident glycosyltransferases for transport in COPII vesicles.  相似文献   

15.
The transport of pro-alpha-factor from the ER to the Golgi apparatus in gently lysed yeast spheroplasts is mediated by diffusible vesicles. These transport vesicles contain core-glycosylated pro-alpha-factor and are physically separable from donor ER and target Golgi compartments. The formation of diffusible vesicles from the ER requires ATP, Sec12p, Sec23p, and GTP hydrolysis. The vesicles produced are functionally distinct from the ER: they transfer pro-alpha-factor to the Golgi apparatus faster and more efficiently than the ER, they do not require Sec12p or Sec23p to complete transfer, and transfer is resistant to GTP gamma S. Targeting of vesicles to the Golgi apparatus requires Ypt1p and Sec18p. Fusion of vesicles that have targeted requires calcium and ATP.  相似文献   

16.
Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery.  相似文献   

17.
Yeast Sec12p, a type II transmembrane glycoprotein, is required for formation of transport vesicles from the endoplasmic reticulum (ER). Biochemical and morphological analyses have suggested that Sec12p is localized to the ER by two mechanisms: static retention in the ER and dynamic retrieval from the early region of the Golgi apparatus. The rer1 mutant we isolated in a previous study mislocalizes the authentic Sec12p to the later compartments of the Golgi. To understand the role of RER1 on Sec12p localization, we cloned the gene and determined its reading frame. RER1 encodes a hydrophobic protein of 188 amino acid residues containing four putative membrane spanning domains. The rer1 null mutant is viable. Even in the rer1 disrupted cells, immunofluorescence of Sec12p stains the ER, implying that the retention system is still operating in the mutant. To determine the subcellular localization of Rer1p, an epitope derived from the influenza hemagglutinin was added to the C-terminus of Rer1p and the cells expressing this tagged but functional protein were observed by immunofluorescence microscopy. The anti-HA monoclonal antibody stains the cells in a punctate pattern that is typical for Golgi proteins and clearly distinct from the ER staining. This punctate staining was in fact exaggerated in the sec7 mutant that accumulates the Golgi membranes at the restrictive temperature. Furthermore, double staining of Rer1p and Ypt1p, a GTPase that is known to reside in the Golgi apparatus, showed good colocalization. Subcellular fractionation experiments indicated that the fractionation pattern of Rer1p was similar to that of an early Golgi protein, Och1p. From these results, we suggest that Rer1p functions in the Golgi membrane to return Sec12p that has escaped from the static retention system of the ER.  相似文献   

18.
The formation of transport vesicles that bud from endoplasmic reticulum (ER) exit sites is dependent on the COPII coat made up of three components: the small GTPase Sar1, the Sec23/24 complex, and the Sec13/31 complex. Here, we provide evidence that apoptosis-linked gene 2 (ALG-2), a Ca(2+)-binding protein of unknown function, regulates the COPII function at ER exit sites in mammalian cells. ALG-2 bound to the Pro-rich region of Sec31A, a ubiquitously expressed mammalian orthologue of yeast Sec31, in a Ca(2+)-dependent manner and colocalized with Sec31A at ER exit sites. A Ca(2+) binding-deficient ALG-2 mutant, which did not bind Sec31A, lost the ability to localize to ER exit sites. Overexpression of the Pro-rich region of Sec31A or RNA interference-mediated Sec31A depletion also abolished the ALG-2 localization at these sites. In contrast, depletion of ALG-2 substantially reduced the level of Sec31A associated with the membrane at ER exit sites. Finally, treatment with a cell-permeable Ca(2+) chelator caused the mislocalization of ALG-2, which was accompanied by a reduced level of Sec31A at ER exit sites. We conclude that ALG-2 is recruited to ER exit sites via Ca(2+)-dependent interaction with Sec31A and in turn stabilizes the localization of Sec31A at these sites.  相似文献   

19.
To identify novel factors required for ER to Golgi transport in yeast we performed a screen for genes that, when mutated, confer a dependence on a dominant mutant form of the ER to Golgi vesicle docking factor Sly1p, termed Sly1-20p. DSL1 , a novel gene isolated in the screen, encodes an essential protein with a predicted molecular mass of 88 kDa. DSL1 is required for transport between the ER and the Golgi because strains bearing mutant alleles of this gene accumulate the pre-Golgi form of transported proteins at the restrictive temperature. Two strains bearing temperature-sensitive alleles of DSL1 display distinct phenotypes as observed by electron microscopy at the restrictive temperature; although both strains accumulate ER membrane, one also accumulates vesicles. Interestingly, the inviability of strains bearing several mutant alleles of DSL1 can be suppressed by expression of either Erv14p (a protein required for the movement of a specific protein from the ER to the Golgi), Sec21p (the γ-subunit of the COPI coat protein complex coatomer), or Sly1-20p. Because the strongest suppressor is SEC21 , we proposed that Dsl1p functions primarily in retrograde Golgi to ER traffic, although it is possible that Dsl1p functions in anterograde traffic as well, perhaps at the docking stage, as suggested by the suppression by SLY1-20 .  相似文献   

20.
The COPII vesicle coat protein promotes the formation of endoplasmic reticulum- (ER) derived transport vesicles that carry secretory proteins to the Golgi complex in Saccharomyces cerevisiae. This coat protein consists of Sar1p, the Sec23p protein complex containing Sec23p and Sec24p, and the Sec13p protein complex containing Sec13p and a novel 150-kDa protein, p150. Here, we report the cloning and characterization of the p150 gene. p150 is encoded by an essential gene. Depletion of this protein in vivo blocks the exit of secretory proteins from the ER and causes an elaboration of ER membranes, indicating that p150 is encoded by a SEC gene. Additionally, overproduction of the p150 gene product compromises the growth of two ER to Golgi sec mutants: sec16-2 and sec23-1. p150 is encoded by SEC31, a gene isolated in a genetic screen for mutations that accumulate unprocessed forms of the secretory protein alpha-factor. The sec31-1 mutation was mapped by gap repair, and sequence analysis revealed an alanine to valine change at position 1239, near the carboxyl terminus. Sec31p is a phosphoprotein and treatment of the Sec31p-containing fraction with alkaline phosphatase results in a 50-75% inhibition of transport vesicle formation activity in an ER membrane budding assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号