首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently demonstrated that the very long 5'-untranslated region (5'-UTR) of the vascular endothelial growth factor (VEGF) mRNA contains two independent internal ribosome entry sites (IRES A and B). In the human sequence, four potential CUG translation initiation codons are located in between these IRES and are in frame with the classical AUG start codon. By in vitro translation and COS-7 cell transfections, we demonstrate that a high mol wt VEGF isoform [called large VEGF (L-VEGF)] is generated by an alternative translation initiation process, which occurs at the first of these CUG codons. Using a bicistronic strategy, we show that the upstream IRES B controls the translation initiation of L-VEGF. This isoform is 206 amino acids longer than the classical AUG-initiated form. With a specific antibody raised against this NH2 extension, we show that the L-VEGF is present in different mouse tissues or in transfected COS-7 cells. We also demonstrate that L-VEGF is cleaved into two fragments: a 23-kDa NH2-specific fragment and a fragment with an apparent size similar to that of the classical AUG-initiated form. This cleavage requires the integrity of a hydrophobic sequence located in the central part of the L-VEGF molecule. This sequence actually plays the role of signal peptide in the classical AUG-initiated form. The AUG-initiated form and the COOH cleavage product of the L-VEGF are both secreted. In contrast, the large isoform and its NH2 fragment present an intracellular localization. These data unravel a further level of complexity in the regulation of VEGF expression.  相似文献   

2.
Cricket paralysis-like viruses have a dicistronic positive-strand RNA genome. These viruses produce capsid proteins through internal ribosome entry site (IRES)-mediated translation. The IRES element of one of these viruses, Plautia stall intestine virus (PSIV), forms a pseudoknot immediately upstream from the capsid coding sequence, and initiates translation from other than methionine. Previously, we estimated that the IRES element of PSIV consists of seven stem-loops using the program MFOLD; however, experimental evidence of the predicted structures was not shown, except for stem-loop VI, which was responsible for formation of the pseudoknot. To determine the whole structure of the PSIV-IRES element, we introduced compensatory mutations into the upstream MFOLD-predicted helical segments. Mutation analysis showed that stem-loop V exists as predicted, but stem-loop IV is shorter than predicted. The structure of stem-loop III is different from predicted, and stem-loops I and II are not necessary for IRES activity. In addition, we identified two new pseudoknots in the IRES element of PSIV. The complementary sequence segments that are responsible for formation of the two pseudoknots are also observed in cricket paralysis virus (CrPV) and CrPV-like viruses such as Drosophila C virus (DCV), Rhopalosiphum padi virus (RhPV), himetobi P virus (HiPV), Triatoma virus (TrV), and black queen-cell virus (BQCV), although each sequence is distinct in each virus. Considering the three pseudoknots, we constructed a tertiary structure model of the PSIV-IRES element. This structural model is applicable to other CrPV-like viruses, indicating that other CrPV-like viruses can also initiate translation from other than methionine.  相似文献   

3.
Fibroblast growth factor 1 (FGF-1) is a powerful angiogenic factor whose gene structure contains four promoters, giving rise to a process of alternative splicing resulting in four mRNAs with alternative 5' untranslated regions (5' UTRs). Here we have identified, by using double luciferase bicistronic vectors, the presence of internal ribosome entry sites (IRESs) in the human FGF-1 5' UTRs, particularly in leaders A and C, with distinct activities in mammalian cells. DNA electrotransfer in mouse muscle revealed that the IRES present in the FGF-1 leader A has a high activity in vivo. We have developed a new regulatable TET OFF bicistronic system, which allowed us to rule out the possibility of any cryptic promoter in the FGF-1 leaders. FGF-1 IRESs A and C, which were mapped in fragments of 118 and 103 nucleotides, respectively, are flexible in regard to the position of the initiation codon, making them interesting from a biotechnological point of view. Furthermore, we show that FGF-1 IRESs A of murine and human origins show similar IRES activity profiles. Enzymatic and chemical probing of the FGF-1 IRES A RNA revealed a structural domain conserved among mammals at both the nucleotide sequence and RNA structure levels. The functional role of this structural motif has been demonstrated by point mutagenesis, including compensatory mutations. These data favor an important role of IRESs in the control of FGF-1 expression and provide a new IRES structural motif that could help IRES prediction in 5' UTR databases.  相似文献   

4.
Poliovirus translation is initiated at the internal ribosome entry site (IRES). Most likely involving the action of standard initiation factors, this highly structured cis element in the 5" noncoding region of the viral RNA guides the ribosome to an internal silent AUG. The actual start codon for viral protein synthesis further downstream is then reached by ribosomal scanning. In this study we show that two of the secondary structure elements of the poliovirus IRES, domain V and, to a minor extent, domain VI, are the determinants for binding of the eukaryotic initiation factor eIF4B. Several mutations in domain V which are known to greatly affect poliovirus growth also seriously impair the binding of eIF4B. The interaction of eIF4B with the IRES is not dependent on the presence of the polypyrimidine tract-binding protein, which also binds to the poliovirus IRES. In contrast to its weak interaction with cellular mRNAs, eIF4B remains tightly associated with the poliovirus IRES during the formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. These results indicate that the interaction of eIF4B with the 3" region of the poliovirus IRES may be directly involved in translation initiation.  相似文献   

5.
A number of RNA-containing viruses such as hepatitis C (HCV) and poliovirus (PV) that infect human beings and cause serious diseases use a common mechanism for synthesis of viral proteins, termed internal ribosome entry site (IRES)-mediated translation. This mode of translation initiation involves entry of 40S ribosome internally to the 5' untranslated region (UTR) of viral RNA. Cap-dependent translation of cellular mRNAs, on the other hand, requires recognition of mRNA 5' cap by the translation machinery. In this review, we discuss two inhibitors that specifically inhibit viral IRES-mediated translation without interfering with cellular cap-dependent translation. We present evidence, which suggest that one of these inhibitors, a small RNA (called IRNA) originally isolated from the yeast Saccharomyces cerevisiae, inhibits viral IRES-mediated translation by sequestering both noncanonical transacting factors and canonical initiation factors required for IRES-mediated translation. The other inhibitor, a small peptide from the lupus autoantigen La (called LAP), appears to block binding of cellular transacting factors to viral IRES elements. These results suggest that it might be possible to target viral IRES-mediated translation for future development of therapeutic agents effective against a number of RNA viruses including HCV that exclusively use cap-independent translation for synthesis of viral proteins.  相似文献   

6.
Fibroblast growth factor 2 (FGF-2) is a powerful mitogen involved in proliferation, differentiation, and survival of various cells including neurons. FGF-2 expression is translationally regulated; in particular, the FGF-2 mRNA contains an internal ribosome entry site (IRES) allowing cap-independent translation. Here, we have analyzed FGF-2 IRES tissue specificity ex vivo and in vivo by using a dual luciferase bicistronic vector. This IRES was active in most transiently transfected human and nonhuman cell types, with a higher activity in p53 -/- osteosarcoma and neuroblastoma cell lines. Transgenic mice were generated using bicistronic transgenes with FGF-2 IRES or encephalomyocarditis virus (EMCV) IRES. Measurements of luciferase activity revealed high FGF-2 IRES activity in 11-d-old embryos (E11) but not in the placenta; activity was high in the heart and brain of E16. FGF-2 IRES activity was low in most organs of the adult, but exceptionally high in the brain. Such spatiotemporal variations were not observed with the EMCV IRES. These data, demonstrating the strong tissue specificity of a mammalian IRES in vivo, suggest a pivotal role of translational IRES- dependent activation of FGF-2 expression during embryogenesis and in adult brain. FGF-2 IRES could constitute, thus, a powerful tool for gene transfer in the central nervous system.  相似文献   

7.
8.
Translation of hepatitis C virus (HCV) RNA is initiated via the internal ribosome entry site (IRES), located within the 5' untranslated region. Although the secondary structure of this element has been predicted, little information on the tertiary structure is available. Here we report the first structural characterization of the HCV IRES using electron microscopy. In vitro transcribed RNA appeared as particles with characteristic morphology and gold labeling using a specific oligonucleotide confirmed them to be HCV IRES. Dimerization of the IRES by hybridization with tandem repeat oligonucleotides allowed the identification of domain III and an assignment of domains II and IV to distinct regions within the molecule. Using immunogold labeling, the pyrimidine tract binding protein (PTB) was shown to bind to domain III. Structure-function relationships based on the flexible hinge between domains II and III are suggested. Finally, the architecture of the HCV IRES was seen to be markedly different from that of a picornavirus, foot-and-mouth disease virus (FMDV).  相似文献   

9.
Vagner S  Galy B  Pyronnet S 《EMBO reports》2001,2(10):893-898
Studies on the control of eukaryotic translation initiation by a cap-independent recruitment of the 40S ribosomal subunit to internal messenger RNA sequences called internal ribosome entry sites (IRESs) have shown that these sequence elements are present in a growing list of viral and cellular RNAs. Here we discuss their prevalence, mechanisms whereby they may function and their uses in regulating gene expression.  相似文献   

10.
11.
The hepatitis C virus (HCV) internal ribosome entry site (IRES) is a highly structured RNA element that directs cap-independent translation of the viral polyprotein. Morpholino antisense oligonucleotides directed towards stem loop IIId drastically reduced HCV IRES activity. Mutagenesis studies of this region showed that the GGG triplet (nucleotides 266 through 268) of the hexanucleotide apical loop of stem loop IIId is essential for IRES activity both in vitro and in vivo. Sequence comparison showed that apical loop nucleotides (UUGGGU) were absolutely conserved across HCV genotypes and the GGG triplet was strongly conserved among related Flavivirus and Pestivirus nontranslated regions. Chimeric IRES elements with IIId derived from GB virus B (GBV-B) in the context of the HCV IRES possess translational activity. Mutations within the IIId stem loop that abolish IRES activity also affect the RNA structure in RNase T(1)-probing studies, demonstrating the importance of correct RNA folding to IRES function.  相似文献   

12.
The insulin-like growth factor I receptor (IGF-IR) is a heterotetrameric receptor mediating the effects of insulin-like growth I and other growth factors. This receptor is encoded by an mRNA containing an unusually long, G-C-rich, and highly structured 5' untranslated region. Using bicistronic constructs, we demonstrated here that the 5' untranslated region of the IGF-IR allows translation initiation by internal ribosome entry and therefore constitutes an internal ribosome entry site. In vitro cross-linking revealed that this internal ribosome entry site binds a protein of 57 kDa. Immunoprecipitation of UV cross-linked proteins proved that this protein was the polypyrimidine tract-binding protein, a well known regulator of picornavirus mRNA translation. The efficiency of translation of the endogenous IGF-IR mRNA is not affected by rapamycin, which is a potent inhibitor of cap-dependent translation. This result provides evidence that the endogenous IGF-IR mRNA is translated, at least in part, through a cap-independent mechanism. This is the first report of a growth factor receptor containing sequence elements that allow translation initiation to occur by internal initiation. Because the IGF-IR has a pivotal function in the cell cycle, this mechanism of translation regulation could play a crucial role in the control of cell proliferation and differentiation.  相似文献   

13.
Spahn CM  Jan E  Mulder A  Grassucci RA  Sarnow P  Frank J 《Cell》2004,118(4):465-475
Internal initiation of protein synthesis in eukaryotes is accomplished by recruitment of ribosomes to structured internal ribosome entry sites (IRESs), which are located in certain viral and cellular messenger RNAs. An IRES element in cricket paralysis virus (CrPV) can directly assemble 80S ribosomes in the absence of canonical initiation factors and initiator tRNA. Here we present cryo-EM structures of the CrPV IRES bound to the human ribosomal 40S subunit and to the 80S ribosome. The CrPV IRES adopts a defined, elongate structure within the ribosomal intersubunit space and forms specific contacts with components of the ribosomal A, P, and E sites. Conformational changes in the ribosome as well as within the IRES itself show that CrPV IRES actively manipulates the ribosome. CrPV-like IRES elements seem to act as RNA-based translation factors.  相似文献   

14.
Regulation of homocysteine, a sulfur-containing amino acid that is a risk factor for cardiovascular diseases, is poorly understood. Methionine synthase (MS) is a key enzyme that clears intracellular homocysteine, and its activity is induced by its cofactor, vitamin B12, at a translational level. In this study, we demonstrate that translation of MS, which has a long and highly structured 5'-untranslated region, is initiated from an internal ribosome entry site (IRES), which is modulated by B12. The minimal IRES element spans 71 bases immediately upstream of the initiation codon. Electrophoretic mobility shift analysis reveals the presence of a B12 -dependent protein-RNA complex and suggests the possibility that B12-dependent increase of IRES efficiency is mediated via a protein. Modulation of the IRES-dependent translation of an essential gene by the cofactor of the encoded enzyme represents a novel example of a gene-nutrient interaction.  相似文献   

15.
Eukaryotic translation initiation factor 4GI (eIF4GI) is an essential scaffolding protein required to recruit the 43 S complex to the 5'-end of mRNA during translation initiation. We have previously demonstrated that eIF4GI protein expression is translationally regulated. This regulation is mediated by cis-acting RNA elements, including an upstream open reading frame and an IRES that directs synthesis of five eIF4GI protein isoforms via alternative AUG initiation codon selection. Here, we further characterize eIF4GI IRES function and show that eIF4GI is expressed from several distinct mRNAs that vary via alternate promoter use and alternate splicing. Several mRNA variants contain the IRES element. We found that IRES activity mapped to multiple regions within the eIF4GI RNA sequence, but not within the 5'-UTR per se. However, the 5'-UTR enhanced IRES activity in vivo and played a role in initiation codon selection. The eIF4GI IRES was active when transfected into cells in an RNA form, and thus, does not require nuclear processing events for its function. However, IRES activity was found to be dependent upon the presence, in cis, of a 5' m7guanosine-cap. Despite this requirement, the eIF4GI IRES was activated by 2A protease cleavage of eIF4GI, in vitro, and retained the ability to promote translation during poliovirus-mediated inhibition of cap-dependent translation. These data indicate that intact eIF4GI protein is not required for the de novo synthesis of eIF4GI, suggesting its expression can continue under stress or infection conditions where eIF4GI is cleaved.  相似文献   

16.
17.
The RNA genome of Seneca Valley virus (SVV), a recently identified picornavirus, contains an internal ribosome entry site (IRES) element which has structural and functional similarity to that from classical swine fever virus (CSFV) and hepatitis C virus, members of the Flaviviridae. The SVV IRES has an absolute requirement for the presence of a short region of virus-coding sequence to allow it to function either in cells or in rabbit reticulocyte lysate. The IRES activity does not require the translation initiation factor eIF4A or intact eIF4G. The predicted secondary structure indicates that the SVV IRES is more closely related to the CSFV IRES, including the presence of a bipartite IIId domain. Mutagenesis of the SVV IRES, coupled to functional assays, support the core elements of the IRES structure model, but surprisingly, deletion of the conserved IIId(2) domain had no effect on IRES activity, including 40S and eIF3 binding. This is the first example of a picornavirus IRES that is most closely related to the CSFV IRES and suggests the possibility of multiple, independent recombination events between the genomes of the Picornaviridae and Flaviviridae to give rise to similar IRES elements.  相似文献   

18.
Our previous study indicated that specificity protein-1 (Sp1) is accumulated during hypoxia in an internal ribosomal entry site (IRES)-dependent manner. Herein, we found that the Sp1 was induced strongly at the protein level, but not in the mRNA level, in lung tumor tissue, indicating that translational regulation might contribute to the Sp1 accumulation during tumorigenesis. A further study showed that the translation of Sp1 was dramatically induced through an IRES-dependent pathway. RNA immunoprecipitation analysis of proteins bound to the 5′-untranslated region (5′-UTR) of Sp1 identified interacting protein — nucleolin. Knockdown of nucleolin significantly inhibited IRES-mediated translation of Sp1, suggesting that nucleolin positively facilitates Sp1 IRES activation. Further analysis of the interaction between nucleolin and the 5′-UTR of Sp1 mRNA revealed that the GAR domain was important for IRES-mediated translation of Sp1. Moreover, gefitinib, and LY294002 and MK2206 compounds inhibited IRES-mediated Sp1 translation, implying that activation of the epithelial growth factor receptor (EGFR) pathway via Akt activation triggers the IRES pathway. In conclusion, EGFR activation-mediated nucleolin phosphorylated at Thr641 and Thr707 was recruited to the 5′-UTR of Sp1 as an IRES trans-acting factor to modulate Sp1 translation during lung cancer formation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号