首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PCR-single-strand conformation polymorphism (SSCP) technique was used to assess the diversity and distribution of Rieske nonheme iron oxygenases of the toluene/biphenyl subfamily in soil DNA and bacterial isolates recovered from sites contaminated with benzene, toluene, ethylbenzene, and xylenes (BTEX). The central cores of genes encoding the catalytic alpha subunits were targeted, since they are responsible for the substrate specificities of these enzymes. SSCP functional genotype fingerprinting revealed a substantial diversity of oxygenase genes in three differently BTEX-contaminated soil samples, and sequence analysis indicated that in both the soil DNA and the bacterial isolates, genes for oxygenases related to the isopropylbenzene (cumene) dioxygenase branch of the toluene/biphenyl oxygenase subfamily were predominant among the detectable genotypes. The peptide sequences of the two most abundant alpha subunit sequence types differed by only five amino acids (residues 258, 286, 288, 289, and 321 according to numbering in cumene dioxygenase alpha subunit CumA1 of Pseudomonas fluorescens IP01). However, a strong correlation between sequence type and substrate utilization pattern was observed in isolates harboring these genes. Two of these residues were located at positions contributing, according to the resolved crystal structure of cumene dioxygenase from Pseudomonas fluorescens IP01, to the inner surface of the substrate-binding pocket. Isolates containing an alpha subunit with isoleucine and leucine at positions 288 and 321, respectively, were capable of degrading benzene and toluene, whereas isolates containing two methionine substitutions were found to be incapable of degrading toluene, indicating that the more bulky methionine residues significantly narrowed the available space within the substrate-binding pocket.  相似文献   

2.
Benzene dioxygenase and toluene dioxygenase from Pseudomonas putida have similar catalytic properties, structures, and gene organizations, but they differ in substrate specificity, with toluene dioxygenase having higher activity toward alkylbenzenes. The catalytic iron-sulfur proteins of these enzymes consist of two dissimilar subunits, α and β; the α subunit contains a [2Fe-2S] cluster involved in electron transfer, the catalytic nonheme iron center, and is also responsible for substrate specificity. The amino acid sequences of the α subunits of benzene and toluene dioxygenases differ at only 33 of 450 amino acids. Chimeric proteins and mutants of the benzene dioxygenase α subunit were constructed to determine which of these residues were primarily responsible for the change in specificity. The protein containing toluene dioxygenase C-terminal region residues 281 to 363 showed greater substrate preference for alkyl benzenes. In addition, we identified four amino acid substitutions in this region, I301V, T305S, I307L, and L309V, that particularly enhanced the preference for ethylbenzene. The positions of these amino acids in the α subunit structure were modeled by comparison with the crystal structure of naphthalene dioxygenase. They were not in the substrate-binding pocket but were adjacent to residues that lined the channel through which substrates were predicted to enter the active site. However, the quadruple mutant also showed a high uncoupled rate of electron transfer without product formation. Finally, the modified proteins showed altered patterns of products formed from toluene and ethylbenzene, including monohydroxylated side chains. We propose that these properties can be explained by a more facile diffusion of the substrate in and out of the substrate cavity.  相似文献   

3.
The protein components of the 2-nitrotoluene (2NT) and nitrobenzene dioxygenase enzyme systems from Acidovorax sp. strain JS42 and Comamonas sp. strain JS765, respectively, were purified and characterized. These enzymes catalyze the initial step in the degradation of 2-nitrotoluene and nitrobenzene. The identical shared reductase and ferredoxin components were monomers of 35 and 11.5 kDa, respectively. The reductase component contained 1.86 g-atoms iron, 2.01 g-atoms sulfur, and one molecule of flavin adenine dinucleotide per monomer. Spectral properties of the reductase indicated the presence of a plant-type [2Fe-2S] center and a flavin. The reductase catalyzed the reduction of cytochrome c, ferricyanide, and 2,6-dichlorophenol indophenol. The ferredoxin contained 2.20 g-atoms iron and 1.99 g-atoms sulfur per monomer and had spectral properties indicative of a Rieske [2Fe-2S] center. The ferredoxin component could be effectively replaced by the ferredoxin from the Pseudomonas sp. strain NCIB 9816-4 naphthalene dioxygenase system but not by that from the Burkholderia sp. strain LB400 biphenyl or Pseudomonas putida F1 toluene dioxygenase system. The oxygenases from the 2-nitrotoluene and nitrobenzene dioxygenase systems each had spectral properties indicating the presence of a Rieske [2Fe-2S] center, and the subunit composition of each oxygenase was an α3β3 hexamer. The apparent Km of 2-nitrotoluene dioxygenase for 2NT was 20 μM, and that for naphthalene was 121 μM. The specificity constants were 7.0 μM−1 min−1 for 2NT and 1.2 μM−1 min−1 for naphthalene, indicating that the enzyme is more efficient with 2NT as a substrate. Diffraction-quality crystals of the two oxygenases were obtained.  相似文献   

4.
Bacterial isolates from soils contaminated with (chlorinated) aromatic compounds, which degraded biphenyl/chlorinated biphenyls (CB) and belonged to the genera Rhodococcus and Pseudomonas, were studied. Analysis of the 16S rRNA gene sequences was used to determine the phylogenetic position of the isolates. The Rhodococcus cells were found to contain plasmids of high molecular mass (220–680 kbp). PCR screening for the presence of the bphA1 gene, a marker indicating the possibility for induction of 2,3-dioxygenase (biphenyl/toluene dioxygenase subfamily), revealed the presence of the bphA1 genes with 99–100% similarity to the homologous genes of bacteria of the relevant species in all pseudomonad and most Rhodococcus isolates. A unique bphA1 gene, which had not been previously reported for the genus, was identified in Rhodococcus sp. G10. The absence of specific amplification of the bphA1 genes in some biphenyl-degrading bacteria (Rhodococcus sp. B7b, B106a, G12a, P2kr, P2(51), and P2m), as well as in an active biphenyl degrader Rhodococcus ruber P25, indicated the absence of the genes encoding the proteins of the biphenyl/toluene dioxygenase subfamily and participation of the enzymes other than this protein family in biphenyl/CB degradation.  相似文献   

5.
The aim of this study was to analyze the structural and functional changes occurring in a polychlorinated-biphenyl (PCB)-contaminated soil ecosystem after the introduction of a suitable host plant for rhizoremediation (Salix viminalis). We have studied the populations and phylogenetic distribution of key bacterial groups (Alpha- and Betaproteobacteria, Acidobacteria, and Actinobacteria) and the genes encoding iron-sulfur protein α (ISPα) subunits of the toluene/biphenyl dioxygenases in soil and rhizosphere by screening gene libraries using temperature gradient gel electrophoresis. The results, based on the analysis of 415 clones grouped into 133 operational taxonomic units that were sequence analyzed (>128 kbp), show that the rhizospheric bacterial community which evolved from the native soil community during the development of the root system was distinct from the soil community for all groups studied except for the Actinobacteria. Proteobacteria were enriched in the rhizosphere and dominated both in rhizosphere and soil. There was a higher than expected abundance of Betaproteobacteria in the native and in the planted PCB-polluted soil. The ISPα sequences retrieved indicate a high degree of catabolic and phylogenetic diversity. Many sequences clustered with biphenyl dioxygenase sequences from gram-negative bacteria. A distinct cluster that was composed of sequences from this study, some previously described environmental sequences, and a putative ISPα from Sphingomonas wittichii RW1 seems to contain greater diversity than the presently recognized toluene/biphenyl dioxygenase subfamily. Moreover, the rhizosphere selected for two ISPα sequences that accounted for almost 60% of the gene library and were very similar to sequences harbored by Pseudomonas species.  相似文献   

6.
Bacterial three-component dioxygenase systems consist of reductase and ferredoxin components which transfer electrons from NAD(P)H to a terminal oxygenase. In most cases, the oxygenase consists of two different subunits (α and β). To assess the contributions of the α and β subunits of the oxygenase to substrate specificity, hybrid dioxygenase enzymes were formed by coexpressing genes from two compatible plasmids in Escherichia coli. The activities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenases containing four different β subunits were tested with four substrates (indole, naphthalene, 2,4-dinitrotoluene, and 2-nitrotoluene). In the active hybrids, replacement of small subunits affected the rate of product formation but had no effect on the substrate range, regiospecificity, or enantiomeric purity of oxidation products with the substrates tested. These studies indicate that the small subunit of the oxygenase is essential for activity but does not play a major role in determining the specificity of these enzymes.  相似文献   

7.
Our abilities to detect and enumerate pollutant-biodegrading microorganisms in the environment are rapidly advancing with the development of molecular genetic techniques. Techniques based on multiplex and real-time PCR amplification of aromatic oxygenase genes were developed to detect and quantify aromatic catabolic pathways, respectively. PCR primer sets were identified for the large subunits of aromatic oxygenases from alignments of known gene sequences and tested with genetically well-characterized strains. In all, primer sets which allowed amplification of naphthalene dioxygenase, biphenyl dioxygenase, toluene dioxygenase, xylene monooxygenase, phenol monooxygenase, and ring-hydroxylating toluene monooxygenase genes were identified. For each primer set, the length of the observed amplification product matched the length predicted from published sequences, and specificity was confirmed by hybridization. Primer sets were grouped according to the annealing temperature for multiplex PCR permitting simultaneous detection of various genotypes responsible for aromatic hydrocarbon biodegradation. Real-time PCR using SYBR green I was employed with the individual primer sets to determine the gene copy number. Optimum polymerization temperatures for real-time PCR were determined on the basis of the observed melting temperatures of the desired products. When a polymerization temperature of 4 to 5°C below the melting temperature was used, background fluorescence signals were greatly reduced, allowing detection limits of 2 × 102 copies per reaction mixture. Improved in situ microbial characterization will provide more accurate assessment of pollutant biodegradation, enhance studies of the ecology of contaminated sites, and facilitate assessment of the impact of remediation technologies on indigenous microbial populations.  相似文献   

8.
The crystal structure of the terminal component of the cumene dioxygenase multicomponent enzyme system of Pseudomonas fluorescens IP01 (CumDO) was determined at a resolution of 2.2 A by means of molecular replacement by using the crystal structure of the terminal oxygenase component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 (NphDO). The ligation of the two catalytic centers of CumDO (i.e., the nonheme iron and Rieske [2Fe-2S] centers) and the bridging between them in neighboring catalytic subunits by hydrogen bonds through a single amino acid residue, Asp231, are similar to those of NphDO. An unidentified external ligand, possibly dioxygen, was bound at the active site nonheme iron. The entrance to the active site of CumDO is different from the entrance to the active site of NphDO, as the two loops forming the lid exhibit great deviation. On the basis of the complex structure of NphDO, a biphenyl substrate was modeled in the substrate-binding pocket of CumDO. The residues surrounding the modeled biphenyl molecule include residues that have already been shown to be important for its substrate specificity by a number of engineering studies of biphenyl dioxygenases.  相似文献   

9.
The TecA chlorobenzene dioxygenase and the TodCBA toluene dioxygenase exhibit substantial sequence similarity yet have different substrate specificities. Escherichia coli cells producing recombinant TecA enzyme dioxygenate and simultaneously eliminate a halogen substituent from 1,2,4,5-tetrachlorobenzene but show no activity toward benzene, whereas those producing TodCBA dioxygenate benzene but not tetrachlorobenzene. A hybrid TecA dioxygenase variant containing the large α-subunit of the TodCBA dioxygenase exhibited a TodCBA dioxygenase specificity. Acquisition of dehalogenase activity was achieved by replacement of specific todC1 α-subunit subsequences by equivalent sequences of the tecA1 α-subunit. Substrate transformation specificities and rates by E. coli resting cells expressing hybrid systems were analyzed by high-performance liquid chromatography. This allowed the identification of both a single amino acid and potentially interacting regions required for dechlorination of tetrachlorobenzene. Hybrids with extended substrate ranges were generated that exhibited activity toward both benzene and tetrachlorobenzene. The regions determining substrate specificity in (chloro)benzene dioxygenases appear to be different from those previously identified in biphenyl dioxygenases.  相似文献   

10.
The oxidative degradation of biphenyl and polychlorinated biphenyls (PCBs) is initiated in Pandoraea pnomenusa B-356 by biphenyl dioxygenase (BPDOB356). BPDOB356, a heterohexameric (αβ)3 Rieske oxygenase (RO), catalyzes the insertion of dioxygen with stereo- and regioselectivity at the 2,3-carbons of biphenyl, and can transform a broad spectrum of PCB congeners. Here we present the X-ray crystal structures of BPDOB356 with and without its substrate biphenyl 1.6-Å resolution for both structures. In both cases, the Fe(II) has five ligands in a square pyramidal configuration: H233 Nε2, H239 Nε2, D386 Oδ1 and Oδ2, and a single water molecule. Analysis of the active sites of BPDOB356 and related ROs revealed structural features that likely contribute to the superior PCB-degrading ability of certain BPDOs. First, the active site cavity readily accommodates biphenyl with minimal conformational rearrangement. Second, M231 was predicted to sterically interfere with binding of some PCBs, and substitution of this residue yielded variants that transform 2,2′-dichlorobiphenyl more effectively. Third, in addition to the volume and shape of the active site, residues at the active site entrance also apparently influence substrate preference. Finally, comparison of the conformation of the active site entrance loop among ROs provides a basis for a structure-based classification consistent with a phylogeny derived from amino acid sequence alignments.  相似文献   

11.
Biotransformations with recombinant Escherichia coli expressing the genes encoding 2-nitrotoluene 2,3-dioxygenase (2NTDO) from Pseudomonas sp. strain JS42 demonstrated that 2NTDO catalyzes the dihydroxylation and/or monohydroxylation of a wide range of aromatic compounds. Extremely high nucleotide and deduced amino acid sequence identity exists between the components from 2NTDO and the corresponding components from 2,4-dinitrotoluene dioxygenase (2,4-DNTDO) from Burkholderia sp. strain DNT (formerly Pseudomonas sp. strain DNT). However, comparisons of the substrates oxidized by these dioxygenases show that they differ in substrate specificity, regiospecificity, and the enantiomeric composition of their oxidation products. Hybrid dioxygenases were constructed with the genes encoding 2NTDO and 2,4-DNTDO. Biotransformation experiments with these hybrid dioxygenases showed that the C-terminal region of the large subunit of the oxygenase component (ISPα) was responsible for the enzyme specificity differences observed between 2NTDO and 2,4-DNTDO. The small subunit of the terminal oxygenase component (ISPβ) was shown to play no role in determining the specificities of these dioxygenases.  相似文献   

12.
The oxygenase component of toluene dioxygenase from Pseudomonas putida F1 is an iron-sulfur protein (ISPTOL) consisting of α (TodC1) and β (TodC2) subunits. Purified TodC1 gave absorbance and electron paramagnetic resonance spectra identical to those given by purified ISPTOL. TodC1 was reduced by NADH and catalytic amounts of ReductaseTOL and FerredoxinTOL. Reduced TodC1 did not oxidize toluene, and catalysis was strictly dependent on the presence of purified TodC2.  相似文献   

13.
The terminal oxygenase component of toluene dioxygenase from Pseudomonas putida F1 is an iron-sulfur protein (ISP(TOL)) that requires mononuclear iron for enzyme activity. Alignment of all available predicted amino acid sequences for the large (alpha) subunits of terminal oxygenases showed a conserved cluster of potential mononuclear iron-binding residues. These were between amino acids 210 and 230 in the alpha subunit (TodC1) of ISP(TOL). The conserved amino acids, Glu-214, Asp-219, Tyr-221, His-222, and His-228, were each independently replaced with an alanine residue by site-directed mutagenesis. Tyr-266 in TodC1, which has been suggested as an iron ligand, was treated in an identical manner. To assay toluene dioxygenase activity in the presence of TodC1 and its mutant forms, conditions for the reconstitution of wild-type ISP(TOL) activity from TodC1 and purified TodC2 (beta subunit) were developed and optimized. A mutation at Glu-214, Asp-219, His-222, or His-228 completely abolished toluene dioxygenase activity. TodC1 with an alanine substitution at either Tyr-221 or Tyr-266 retained partial enzyme activity (42 and 12%, respectively). In experiments with [14C]toluene, the two Tyr-->Ala mutations caused a reduction in the amount of Cis-[14C]-toluene dihydrodiol formed, whereas a mutation at Glu-214, Asp-219, His-222, or His-228 eliminated cis-toluene dihydrodiol formation. The expression level of all of the mutated TWO proteins was equivalent to that of wild-type TodC1 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analyses. These results, in conjunction with the predicted amino acid sequences of 22 oxygenase components, suggest that the conserved motif Glu-X3-4,-Asp-X2-His-X4-5-His is critical for catalytic function and the glutamate, aspartate, and histidine residues may act as mononuclear iron ligands at the site of oxygen activation.  相似文献   

14.
Engineering of hybrid gene clusters between the toluene metabolic tod operon and the biphenyl metabolic bph operon greatly enhanced the rate of biodegradation of trichloroethylene. Escherichia coli cells carrying a hybrid gene cluster composed of todC1 (the gene encoding the large subunit of toluene terminal dioxygenase in Pseudomonas putida F1), bphA2 (the gene encoding the small subunit of biphenyl terminal dioxygenase in Pseudomonas pseudoalcaligenes KF707), bphA3 (the gene encoding ferredoxin in KF707), and bphA4 (the gene encoding ferredoxin reductase in KF707) degraded trichloroethylene much faster than E. coli cells carrying the original toluene dioxygenase genes (todC1C2BA) or the original biphenyl dioxygenase genes (bphA1A2A3A4).  相似文献   

15.
Mycobacterium sp. strain PYR-1 degrades high-molecular-weight polycyclic hydrocarbons (PAHs) primarily through the introduction of both atoms of molecular oxygen by a dioxygenase. To clone the dioxygenase genes involved in PAH degradation, two-dimensional (2D) gel electrophoresis of PAH-induced proteins from cultures of Mycobacterium sp. strain PYR-1 was used to detect proteins that increased after phenanthrene, dibenzothiophene, and pyrene exposure. Comparison of proteins from induced and uninduced cultures on 2D gels indicated that at least six major proteins were expressed (105, 81, 52, 50, 43, and 13 kDa). The N-terminal sequence of the 50-kDa protein was similar to those of other dioxygenases. A digoxigenin-labeled oligonucleotide probe designed from this protein sequence was used to screen dioxygenase-positive clones from a genomic library of Mycobacterium sp. strain PYR-1. Three clones, each containing a 5,288-bp DNA insert with three genes of the dioxygenase system, were obtained. The genes in the DNA insert, from the 5′ to the 3′ direction, were a dehydrogenase, the dioxygenase small (β)-subunit, and the dioxygenase large (α)-subunit genes, arranged in a sequence different from those of genes encoding other bacterial dioxygenase systems. Phylogenetic analysis showed that the large α subunit did not cluster with most of the known α-subunit sequences but rather with three newly described α subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. The genes from Mycobacterium sp. strain PYR-1 were subcloned and overexpressed in Escherichia coli with the pBAD/ThioFusion system. The functionality of the genes for PAH degradation was confirmed in a phagemid clone containing all three genes, as well as in plasmid subclones containing the two genes encoding the dioxygenase subunits.  相似文献   

16.
Sphingobium yanoikuyae B1 utilizes both polycyclic aromatic hydrocarbons (biphenyl, naphthalene, and phenanthrene) and monocyclic aromatic hydrocarbons (toluene, m- and p-xylene) as its sole source of carbon and energy for growth. The majority of the genes for these intertwined monocyclic and polycyclic aromatic pathways are grouped together on a 39 kb fragment of chromosomal DNA. However, this gene cluster is missing several genes encoding essential enzymatic steps in the aromatic degradation pathway, most notably the genes encoding the oxygenase component of the initial polycyclic aromatic hydrocarbon (PAH) dioxygenase. Transposon mutagenesis of strain B1 yielded a mutant blocked in the initial oxidation of PAHs. The transposon insertion point was sequenced and a partial gene sequence encoding an oxygenase component of a putative PAH dioxygenase identified. A cosmid clone from a genomic library of S. yanoikuyae B1 was identified which contains the complete putative PAH oxygenase gene sequence. Separate clones expressing the genes encoding the electron transport components (ferredoxin and reductase) and the PAH dioxygenase were constructed. Incubation of cells expressing the dioxygenase enzyme system with biphenyl or naphthalene resulted in production of the corresponding cis-dihydrodiol confirming PAH dioxygenase activity. This demonstrates that a single multicomponent dioxygenase enzyme is involved in the initial oxidation of both biphenyl and naphthalene in S. yanoikuyae B1.  相似文献   

17.
The solvent-tolerant strain Pseudomonas putida DOT-T1E has been engineered for biotransformation of toluene into 4-hydroxybenzoate (4-HBA). P. putida DOT-T1E transforms toluene into 3-methylcatechol in a reaction catalyzed by toluene dioxygenase. The todC1C2 genes encode the α and β subunits of the multicomponent enzyme toluene dioxygenase, which catalyzes the first step in the Tod pathway of toluene catabolism. A DOT-T1EΔtodC mutant strain was constructed by homologous recombination and was shown to be unable to use toluene as a sole carbon source. The P. putida pobA gene, whose product is responsible for the hydroxylation of 4-HBA into 3,4-hydroxybenzoate, was cloned by complementation of a Pseudomonas mendocina pobA1 pobA2 double mutant. This pobA gene was knocked out in vitro and used to generate a double mutant, DOT-T1EΔtodCpobA, that was unable to use either toluene or 4-HBA as a carbon source. The tmo and pcu genes from P. mendocina KR1, which catalyze the transformation of toluene into 4-HBA through a combination of the toluene 4-monoxygenase pathway and oxidation of p-cresol into the hydroxylated carboxylic acid, were subcloned in mini-Tn5Tc and stably recruited in the chromosome of DOT-T1EΔtodCpobA. Expression of the tmo and pcu genes took place in a DOT-T1E background due to cross-activation of the tmo promoter by the two-component signal transduction system TodST. Several independent isolates that accumulated 4-HBA in the supernatant from toluene were analyzed. Differences were observed in these clones in the time required for detection of 4-HBA and in the amount of this compound accumulated in the supernatant. The fastest and most noticeable accumulation of 4-HBA (12 mM) was found with a clone designated DOT-T1E-24.  相似文献   

18.
We investigated induction of biphenyl dioxygenase in the psychrotolerant polychlorinated biphenyl (PCB) degrader Pseudomonas strain Cam-1 and in the mesophilic PCB degrader Burkholderia strain LB400. Using a counterselectable gene replacement vector, we inserted a lacZ-Gmr fusion cassette between chromosomal genes encoding the large subunit (bphA) and small subunit (bphE) of biphenyl dioxygenase in Cam-1 and LB400, generating Cam-10 and LB400-1, respectively. Potential inducers of bphA were added to cell suspensions of Cam-10 and LB400-1 incubated at 30°C, and then beta-galactosidase activity was measured. Biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately six times greater than the basal level in cells incubated with pyruvate. In contrast, the beta-galactosidase activities in LB400-1 incubated with biphenyl and in LB400-1 incubated with pyruvate were indistinguishable. At a concentration of 1 mM, most of the 40 potential inducers tested were inhibitory to induction by biphenyl of beta-galactosidase activity in Cam-10. The exceptions were naphthalene, salicylate, 2-chlorobiphenyl, and 4-chlorobiphenyl, which induced beta-galactosidase activity in Cam-10, although at levels that were no more than 30% of the levels induced by biphenyl. After incubation for 24 h at 7°C, biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately four times greater than the basal level in cells incubated with pyruvate. The constitutive level of beta-galactosidase activity in LB400-1 grown at 15°C was approximately five times less than the level in LB400-1 grown at 30°C. Thus, there are substantial differences in the effects of physical and chemical environmental conditions on genetic regulation of PCB degradation in different bacteria.  相似文献   

19.
Comamonas sp. strain JS765 can grow with nitrobenzene as the sole source of carbon, nitrogen, and energy. We report here the sequence of the genes encoding nitrobenzene dioxygenase (NBDO), which catalyzes the first step in the degradation of nitrobenzene by strain JS765. The components of NBDO were designated ReductaseNBZ, FerredoxinNBZ, OxygenaseNBZα, and OxygenaseNBZβ, with the gene designations nbzAa, nbzAb, nbzAc, and nbzAd, respectively. Sequence analysis showed that the components of NBDO have a high level of homology with the naphthalene family of Rieske nonheme iron oxygenases, in particular, 2-nitrotoluene dioxygenase from Pseudomonas sp. strain JS42. The enzyme oxidizes a wide range of substrates, and relative reaction rates with partially purified OxygenaseNBZ revealed a preference for 3-nitrotoluene, which was shown to be a growth substrate for JS765. NBDO is the first member of the naphthalene family of Rieske nonheme iron oxygenases reported to oxidize all of the isomers of mono- and dinitrotoluenes with the concomitant release of nitrite.  相似文献   

20.
Biphenyl dioxygenase is the enzyme that catalyzes the stereospecific dioxygenation of the aromatic ring. This enzyme has attracted the attention of researchers due to its ability to oxidize polychlorinated biphenyls, which is one of the serious environmental contaminants. We determined the crystal structure of the terminal oxygenase component of the biphenyl dioxygenase (BphA1A2) derived from Rhodococcus strain sp. RHA1 in substrate-free and complex forms. These crystal structures revealed that the substrate-binding pocket makes significant conformational changes upon substrate binding to accommodate the substrate into the pocket. Our analysis of the crystal structures suggested that the residues in the substrate-binding pocket can be classified into three groups, which, respectively, seem to be responsible for the catalytic reaction, the orientation/conformation of the substrate, and the conformational changes of the substrate-binding pocket. The cooperative actions of residues in the three groups seem to determine the substrate specificity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号