首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Carrot root cells were transformed with the coding or 5' noncoding regions of the carrot vacuolar H+ ATPase A subunit cDNA cloned in the antisense orientation behind the cauliflower mosaic virus 35S promoter. Bafilomycin-sensitive ATPase, H(+)-pumping, and 14C-O-methyl-glucose uptake activities were specifically inhibited in the tonoplast fractions of mutant cell lines. Protein gel blotting confirmed that the expression of the A subunit was inhibited in the tonoplast fraction, but not in the Golgi fraction. Two-dimensional protein gel blots of total microsomes of wild-type and control transformant cell lines revealed two major immunoreactive polypeptides in the acidic pI range. In contrast, highly purified tonoplast membranes contained only the less acidic polypeptide. Because the less acidic polypeptide was preferentially diminished in the two antisense cell lines, we infer that the antisense constructs specifically blocked expression of a tonoplast-specific isoform of the V-ATPase A subunit in carrot. Regenerated plants containing the antisense constructs exhibited altered leaf morphologies and reduced cell expansion. The altered phenotype was correlated with the presence of the antisense construct.  相似文献   

2.
The vacuolar-type, proton-translocating ATPase (V-ATPase) is a multisubunit enzyme responsible for organelle acidification in eukaryotic cells. Many organisms have evolved V-ATPase subunit isoforms that allow for increased specialization of this critical enzyme. Differential targeting of the V-ATPase to specific subcellular organelles occurs in eukaryotes from humans to budding yeast. In Saccharomyces cerevisiae, the two subunit a isoforms are the only difference between the two V-ATPase populations. Incorporation of Vph1p or Stv1p into the V-ATPase dictates the localization of the V-ATPase to the vacuole or late Golgi/endosome, respectively. A duplication event within fungi gave rise to two subunit a genes. We used ancestral gene reconstruction to generate the most recent common ancestor of Vph1p and Stv1p (Anc.a) and tested its function in yeast. Anc.a localized to both the Golgi/endosomal network and vacuolar membrane and acidified these compartments as part of a hybrid V-ATPase complex. Trafficking of Anc.a did not require retrograde transport from the late endosome to the Golgi that has evolved for retrieval of the Stv1p isoform. Rather, Anc.a localized to both structures through slowed anterograde transport en route to the vacuole. Our results suggest an evolutionary model that describes the differential localization of the two yeast V-ATPase isoforms.  相似文献   

3.
4.
CD39-like ectoapyrases are involved in protein and lipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. By using a two-hybrid screen, we found that an activator subunit (Vma13p) of yeast vacuolar H(+)-ATPase (V-ATPase) binds to the cytoplasmic domain of Ynd1p, a yeast ectoapyrase. Interaction of Ynd1p with Vma13p was demonstrated by direct binding and co-immunoprecipitation. Surprisingly, the membrane-bound ADPase activity of Ynd1p in a vma13Delta mutant was drastically increased compared with that of Ynd1p in VMA13 cells. A similar increase in the apyrase activity of Ynd1p was found in a vma1Delta mutant, in which the catalytic subunit A of V-ATPase is missing, and the membrane peripheral subunits including Vma13p are dissociated from the membranes. However, the E286Q mutant of VMA1, which assembles inactive V-ATPase complex including Vma13p in the membrane, retained wild type levels of Ynd1p activity, demonstrating that the presence of Vma13p rather than the function of V-ATPase in the membrane represses Ynd1p activity. These results suggest that association of Vma13p with the cytoplasmic domain of Ynd1p regulates its apyrase activity in the Golgi lumen.  相似文献   

5.
6.
The 100-kDa "a" subunit of the vacuolar proton-translocating ATPase (V-ATPase) is encoded by two genes in yeast, VPH1 and STV1. The Vph1p-containing complex localizes to the vacuole, whereas the Stv1p-containing complex resides in some other intracellular compartment, suggesting that the a subunit contains information necessary for the correct targeting of the V-ATPase. We show that Stv1p localizes to a late Golgi compartment at steady state and cycles continuously via a prevacuolar endosome back to the Golgi. V-ATPase complexes containing Vph1p and Stv1p also differ in their assembly properties, coupling of proton transport to ATP hydrolysis, and dissociation in response to glucose depletion. To identify the regions of the a subunit that specify these different properties, chimeras were constructed containing the cytosolic amino-terminal domain of one isoform and the integral membrane, carboxyl-terminal domain from the other isoform. Like the Stv1p-containing complex, the V-ATPase complex containing the chimera with the amino-terminal domain of Stv1p localized to the Golgi and the complex did not dissociate in response to glucose depletion. Like the Vph1p-containing complex, the V-ATPase complex containing the chimera with the amino-terminal domain of Vph1p localized to the vacuole and the complex exhibited normal dissociation upon glucose withdrawal. Interestingly, the V-ATPase complex containing the chimera with the carboxyl-terminal domain of Vph1p exhibited a higher coupling of proton transport to ATP hydrolysis than the chimera containing the carboxyl-terminal domain of Stv1p. Our results suggest that whereas targeting and in vivo dissociation are controlled by sequences located in the amino-terminal domains of the subunit a isoforms, coupling efficiency is controlled by the carboxyl-terminal region.  相似文献   

7.
Vacuolar proton-translocating ATPases (V-ATPase) are multisubunit enzyme complexes located in the membranes of eukaryotic cells regulating cytoplasmic pH. So far, nothing is known about the genomic organization and chromosomal location of the various subunit genes in higher eukaryotes. Here we describe the isolation and analysis of a cDNA coding for the 54- and 56-kDa porcine V-ATPase subunit alpha and beta isoforms. We have determined the genomic structure of the V-ATPase subunit gene spanning at least 62 kb on Chromosome (Chr) 4q14-q16. It consists of 14 exons with sizes ranging from 54 bp to 346 bp, with a non-coding first exon and an alternatively spliced seventh exon leading to two isoforms. The 5′ end of the V-ATPase cDNA was isolated by RACE-PCR. The V-ATPase alpha isoform mRNA, lacking the seventh exon, has an open reading frame of 1395 nucleotides encoding a hydrophilic protein of 465 amino acids with a calculated molecular mass of 54.2 kDa and a pI of 7.8, whereas the beta isoform has a length of 1449 nucleotides encoding a protein of 483 amino acids with a calculated molecular mass of 55.8 kDa. Amino acid and DNA sequence comparison revealed that the porcine V-ATPase subunit exhibits a significant homology to the VMA13 subunit of Saccharomyces cerevisiae V-ATPase complex and V-ATPase subunit of Caenorhabditis elegans. Received: 14 May 1998 / Accepted: 20 October 1998  相似文献   

8.
The yeast vacuolar proton-translocating ATPase (V-ATPase) is a multisubunit complex comprised of peripheral membrane subunits involved in ATP hydrolysis and integral membrane subunits involved in proton pumping. The yeast vma21 mutant was isolated from a screen to identify mutants defective in V-ATPase function. vma21 mutants fail to assemble the V-ATPase complex onto the vacuolar membrane: peripheral subunits accumulate in the cytosol and the 100-kDa integral membrane subunit is rapidly degraded. The product of the VMA21 gene (Vma21p) is an 8.5-kDa integral membrane protein that is not a subunit of the purified V-ATPase complex but instead resides in the endoplasmic reticulum. Vma21p contains a dilysine motif at the carboxy terminus, and mutation of these lysine residues abolishes retention in the endoplasmic reticulum and results in delivery of Vma21p to the vacuole, the default compartment for yeast membrane proteins. Our findings suggest that Vma21p is required for assembly of the integral membrane sector of the V-ATPase in the endoplasmic reticulum and that the unassembled 100-kDa integral membrane subunit present in delta vma21 cells is rapidly degraded by nonvacuolar proteases.  相似文献   

9.
Previous UV cross-linking studies demonstrated that, upon integration of the U2 snRNP into the spliceosome, a 14 kDa protein (p14) interacts directly with the branch adenosine, the nucleophile for the first transesterification step of splicing. We have identified the cDNA encoding this protein by microsequencing a 14 kDa protein isolated from U2-type spliceosomes. This protein contains an RNA recognition motif and is highly conserved across species. Antibodies raised against this cDNA-encoded protein precipitated the 14 kDa protein cross-linked to the branch adenosine, confirming the identity of the p14 cDNA. A combination of immunoblotting, protein microsequencing and immunoprecipitation revealed that p14 is a component of both 17S U2 and 18S U11/U12 snRNPs, suggesting that it contributes to the interaction of these snRNPs with the branch sites of U2- and U12-type pre-mRNAs, respectively. p14 was also shown to be a subunit of the heteromeric splicing factor SF3b and to interact directly with SF3b155. Immuno precipitations indicated that p14 is present in U12-type spliceosomes, consistent with the idea that branch point selection is similar in the major and minor spliceosomes.  相似文献   

10.
Subunit a of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase) is responsible for both proton translocation and subcellular localization of this highly conserved molecular machine. Inclusion of the Vph1p isoform causes the V-ATPase complex to traffic to the vacuolar membrane, whereas incorporation of Stv1p causes continued cycling between the trans-Golgi and endosome. We previously demonstrated that this targeting information is contained within the cytosolic, N-terminal portion of V-ATPase subunit a (Stv1p). To identify residues responsible for sorting of the Golgi isoform of the V-ATPase, a random mutagenesis was performed on the N terminus of Stv1p. Subsequent characterization of mutant alleles led to the identification of a short peptide sequence, W(83)KY, that is necessary for proper Stv1p localization. Based on three-dimensional homology modeling to the Meiothermus ruber subunit I, we propose a structural model of the intact Stv1p-containing V-ATPase demonstrating the accessibility of the W(83)KY sequence to retrograde sorting machinery. Finally, we characterized the sorting signal within the context of a reconstructed Stv1p ancestor (Anc.Stv1). This evolutionary intermediate includes an endogenous W(83)KY sorting motif and is sufficient to compete with sorting of the native yeast Stv1p V-ATPase isoform. These data define a novel sorting signal that is both necessary and sufficient for trafficking of the V-ATPase within the Golgi/endosomal network.  相似文献   

11.
Liu X  Wang C  Li N  Zhang X  Zheng Y  Cao X 《Life sciences》2006,79(19):1828-1838
The vacuolar proton-ATPase (V-ATPase) is a ubiquitous ATP-driven H(+) transporter that functions in numerous cell processes. Accumulating evidence shows important roles of V-ATPase in tumor metastasis and antigen presentation of dendritic cells (DC). A novel V-ATPase associated protein, designated as DVA9.2 (dendritic cell-derived V-ATPase associated protein of 9.2 kDa), has been identified from a human DC cDNA library by large-scale random sequencing. Full length cDNA of DVA9.2 encodes an 81-residue protein that shares 70-80% homology with human V-ATPase subunit M9.2. Distant relationship is also found with Vma21p, a yeast protein required for V-ATPase assembly. DVA9.2 contains a conserved domain, ATP synthase subunit H (pafm05493), and two membrane-spanning helices. DVA9.2 mRNA is detectable in several human tumor cell lines as well as some human normal cells and tissues. Moreover, the inducible expression of DVA9.2 mRNA in DC during maturation is observed. DVA9.2 displays integration with membrane and main localization in lysosome, endoplasmic reticulum and Golgi-associated organelles, only less at the plasma membrane. In addition, DVA9.2 is co-localized with V(0)-sector subunit a. Silencing of DVA9.2 by small interfering RNA (siRNA) does not affect the V-ATPase activity in cell membrane fractions or attenuate the migration and invasion in breast cancer MDA-MB-231 cells. These results indicate that DVA9.2, as a novel V-ATPase-associated protein, is not essential for the activity of V-ATPase complex and may be involved in functions of DC.  相似文献   

12.
In an immunological screening of a mouse testicular cDNA library with a human CREST serum we isolated five overlapping cDNA clones encoding the mouse homolog of a Golgi coatomer complex protein (accession number AF043120), designated beta'-COP in bovine and p102 in humans. We generated antibodies against this protein which specifically recognize the Golgi apparatus of mouse spermatocytes. FISH analyses assigned the beta'-COP gene Copb2 to mouse Chromosome 9, region E3-F1. Our results demonstrate that CREST sera can contain antibody components against Golgi proteins as well as against nuclear proteins.  相似文献   

13.
Plasma membrane V-ATPase isolated from midgut and Malpighian tubules of the tobacco hornworm, Manduca sexta, contains a novel prominent 20-kDa polypeptide. Based on N-terminal protein sequencing, we cloned a corresponding cDNA. The deduced hydrophobic protein consisted of 88 amino acids with a molecular mass of only 9.7 kDa. Immunoblots of the recombinant 9.7-kDa polypeptide, using a monoclonal anti- body to the 20-kDa polypeptide, confirmed that the correct cDNA had been cloned. The 20-kDa polypeptide is glycosylated, as deduced from lectin staining. Treatment with N-glycosidase A resulted in the appearance of two additional protein bands of 16 and 10 kDa which both were immunoreactive to the 20-kDa polypeptide-specific monoclonal antibody. Thus, extensive N-glycosylation of the novel Vo subunit M9.7 accounts for half of its molecular mass observed in SDS-polyacrylamide gel electrophoresis. M9.7 exhibits some similarities to the yeast protein Vma21p which resides in the endoplasmic reticulum and is required for the assembly of the Vo complex. However, as deduced from immunoblots as well as from activities of the V-ATPase and endoplasmic reticulum marker enzymes in different membrane preparations, M9.7 is, in contrast to the yeast polypeptide, a constitutive subunit of the mature plasma membrane V-ATPase of M. sexta.  相似文献   

14.
We have used a serum from a patient with Sj?gren's syndrome containing high titer (100,000) anti-Golgi autoantibodies and lower titer (20,000) anti-nuclear autoantibodies to characterize the Golgi complex. The Sj?gren's syndrome serum immunoprecipitated a number of components of molecular mass 35-230 kDa from detergent extracts of [35S]methionine-labeled HeLa cells; at high dilution, the serum precipitated one major 230-kDa component. Using the Sj?gren's syndrome serum, cDNA clones encoding the Golgi autoantigen were isolated from a lambda gt11 HeLa cell cDNA library. Autoantibodies from the Sj?gren's syndrome serum, affinity purified from a recombinant bacterial fusion protein generated from one of the cDNA clones, showed Golgi staining of human, mouse, and chicken cells by immunofluorescence. The purified autoantibodies immunoprecipitated and immunoblotted a 230-kDa component. A rabbit antiserum raised to the recombinant fusion protein specifically stained the Golgi complex by immunofluorescence and reacted with a 230-kDa protein by immunoprecipitation and immunoblotting. The 230-kDa protein was recovered in both the 100,000 x g sedimentable and soluble fractions in cell lysates and in the aqueous phase of Triton X-114 extracts. The 230-kDa autoantigen was dissociated from the Golgi complex by 15-min brefeldin A treatment, dissociation kinetics similar to that of mannosidase II. However, unlike mannosidase II, autoantigen staining was markedly reduced after drug treatment. Removal of brefeldin A resulted in reassociation of the autoantigen with the Golgi complex. The epitopes recognized by the affinity purified human and rabbit antibodies were ultrastructurally localized to the cytosolic face of one side of the Golgi stack, probably the trans-face. Taken together, the 230-kDa protein is a conserved, peripheral membrane component specifically associated with one Golgi compartment. We suggest that this peripheral Golgi protein may have a role in the compartment-specific structural organization of the Golgi or in sorting and transport of proteins.  相似文献   

15.
The vacuolar H(+)-ATPase (V-ATPase) is responsible for acidifying endomembrane compartments in eukaryotic cells. Although a 100 kDa subunit is common to many V-ATPases, it is not detected in a purified and active pump from oat (Ward J.M. and Sze H. (1992) Plant Physiol. 99, 925-931). A 100 kDa subunit of the yeast V-ATPase is encoded by VPH1. Immunostaining revealed a Vph1p-related polypeptide in oat membranes, thus the role of this polypeptide was investigated. Membrane proteins were detergent-solubilized and size-fractionated, and V-ATPase subunits were identified by immunostaining. A 100 kDa polypeptide was not associated with the fully assembled ATPase; however, it was part of an approximately 250 kDa V0 complex including subunits of 36 and 16 kDa. Immunostaining with an affinity-purified antibody against the oat 100 kDa protein confirmed that the polypeptide was part of a 250 kDa complex and that it had not degraded in the approximately 670 kDa holoenzyme. Co-immunoprecipitation with a monoclonal antibody against A subunit indicated that peripheral subunits exist as assembled V1 subcomplexes in the cytosol. The free V1 subcomplex became attached to the detergent-solubilized V0 sector after mixing, as subunits of both sectors were co-precipitated by an antibody against subunit A. The absence of this polypeptide from the active enzyme suggests that, unlike the yeast Vph1p, the 100 kDa polypeptide in oat is not required for activity. Its association with the free Vo subcomplex would support a role of this protein in V-ATPase assembly and perhaps in sorting.  相似文献   

16.
Immunocytochemical evidence of an association between the regulatory subunit RII of the cAMP-dependent protein kinase (cAMP-PK) and the Golgi apparatus in several cell types has been reported. In order to identify endogenous Golgi proteins binding RII, a fraction enriched in Golgi vesicles was isolated from human lymphoblasts. Only the RII beta isoform was detected in the Golgi-rich fraction, although RII alpha has also been found to be present in these cells. A 85 kDa RII-binding protein was identified in Golgi vesicles using a [32P]RII overlay of Western blots. The existence of an endogenous RII beta-p85 complex in isolated Golgi vesicles was demonstrated by two independent means: (i) co-immunoprecipitation of both proteins under non-denaturing conditions with an antibody against RII beta and (ii) co-purification of RII beta-p85 complexes on a cAMP-analogue affinity column. p85 was phosphorylated by both endogenous and purified catalytic subunits of cAMP-pKII. Extraction experiments and protease protection experiments indicated that p85 is an integral membrane protein although it partitioned atypically during Triton X-114 phase separation. We propose that p85 anchors RII beta to the Golgi apparatus of human lymphoblasts and thereby defines the Golgi substrate targets most accessible to phosphorylation by C subunit. This mechanism may be relevant to the regulation of processes involving the Golgi apparatus itself, such as membrane traffic and secretion, but also relevant to nearby nuclear events dependent on C subunit.  相似文献   

17.
A vanadium-accumulating ascidian, Ascidia sydneiensis samea, expresses vacuolar-type H+-ATPases (V-ATPases) on the vacuole membrane of the vanadium-containing blood cells known as vanadocytes. Previously, we showed that the contents of their vacuoles are extremely acidic and that a V-ATPase-specific inhibitor, bafilomycin A1, neutralized the contents of the vacuoles. To understand the function of V-ATPase in vanadocytes, we isolated complementary DNA encoding subunit C of V-ATPase from vanadocytes because this subunit has been known to be responsible for the assembly of V-ATPases and to regulate the ATPase activity of V-ATPases. The cloned cDNA was 1443 nucleotides in length, and encoded a putative 384 amino acid protein. By expressing the ascidian cDNA for subunit C under the control of a galactose-inducible promoter, the pH-sensitive phenotype of the corresponding vma5 mutant of a budding yeast was rescued. This result showed that the ascidian cDNA for subunit C functioned in yeast cells. Received August 11, 2000; accepted March 5, 2001.  相似文献   

18.
The yeast V-ATPase belongs to a family of V-type ATPases present in all eucaryotic organisms. In Saccharomyces cerevisiae the V-ATPase is localized to the membrane of the vacuole as well as the Golgi complex and endosomes. The V-ATPase brings about the acidification of these organelles by the transport of protons coupled to the hydrolysis of ATP. In yeast, the V-ATPase is composed of 13 subunits consisting of a catalytic V1 domain of peripherally associated proteins and a proton-translocating V0 domain of integral membrane proteins. The regulatory subunit, Vma13p, was the first V-ATPase subunit to have its crystal structure determined. In addition to proteins forming the functional V-ATPase complex, three ER-localized proteins facilitate the assembly of the V0 subunits following their translation and insertion into the membrane of the ER. Homologues of the Vma21p assembly factor have been identified in many higher eukaryotes supporting a ubiquitous assembly pathway for this important enzyme complex.  相似文献   

19.
The vacuolar proton-translocating ATPase (V-ATPase) plays a major role in organelle acidification and works together with other ion transporters to maintain pH homeostasis in eukaryotic cells. We analyzed a requirement for V-ATPase activity in protein trafficking in the yeast secretory pathway. Deficiency of V-ATPase activity caused by subunit deletion or glucose deprivation results in missorting of newly synthesized plasma membrane proteins Pma1 and Can1 directly from the Golgi to the vacuole. Vacuolar mislocalization of Pma1 is dependent on Gga adaptors although no Pma1 ubiquitination was detected. Proper cell surface targeting of Pma1 was rescued in V-ATPase-deficient cells by increasing the pH of the medium, suggesting that missorting is the result of aberrant cytosolic pH. In addition to mislocalization of the plasma membrane proteins, Golgi membrane proteins Kex2 and Vrg4 are also missorted to the vacuole upon loss of V-ATPase activity. Because the missorted cargos have distinct trafficking routes, we suggest a pH dependence for multiple cargo sorting events at the Golgi.  相似文献   

20.
The roles of the components of the Sec34p protein complex in intracellular membrane trafficking, first identified in the yeast Saccharomyces cerevisiae, have yet to be characterized in higher eukaryotes. We cloned a human cDNA whose predicted amino acid sequence showed 41% similarity to yeast Sec34p with homology throughout the entire coding region. Affinity-purified antibodies raised against the human SEC34 protein (hSec34p) recognized a cellular protein of 94 kDa in both soluble and membrane fractions. Like yeast Sec34p, cytosolic hSec34p migrated with an apparent molecular mass of 300 kDa on a glycerol velocity gradient, suggesting that it is part of a protein complex. Immunofluorescence microscopy localized hSec34p to the Golgi compartment in cells of all species examined, where it co-localized well with the cis/medial Golgi marker membrin and partially co-localized with cis-Golgi network marker p115 and trans-Golgi marker TGN38. The co-localization with membrin was maintained at 15 degrees C and after microtubule depolymerization with nocodazole. During transport of the tsO45 vesicular stomatitis virus G protein through the Golgi, there was significant overlap with the hSec34p compartment. Green fluorescent protein-hSec34 expressed in HeLa cells was restricted to Golgi cisternae, and its membrane association was sensitive to brefeldin A treatment. Taken together, our findings indicate that hSec34p is part of a peripheral membrane protein complex localized on cis/medial Golgi cisternae where it may participate in tethering intra-Golgi transport vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号