首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foley T  Beale SI 《Plant physiology》1982,70(5):1495-1502
γ,δ-Dioxovaleric acid (DOVA) has been proposed as a precursor to heme and chlorophyll in plants and algae. DOVA transaminase activity was found in extracts of the unicellular green alga Euglena gracilis Klebs strain Z Pringsheim. Optimum conversion of DOVA to δ-aminolevulinic acid (ALA) occurred at pH 6.8. ALA formation was linear with time for at least 30 minutes at 37° C and was proportional to amount of cell extract in the incubation mixture. Boiled cell extract was inactive. DOVA transaminase from either wild-type or aplastidic derivative strain W14ZNaIL ran as a single band in agarose gel permeation chromatography, with a calculated molecular weight of 98,000 ± 3,000. l-Glutamic acid was the most effective amino donor. d-Glutamic acid was inactive. Km values for l-glutamic acid and DOVA were 11 and 1.1 millimolar, respectively. Pyridoxal phosphate stimulated activity maximally at 30 micromolar, and (aminooxy)acetate was strongly inhibitory. Glyoxylic acid was a competitive inhibitor with respect to DOVA, with an inhibition constant of 0.62 millimolar. Wild-type and aplastidic cells vielded equal activity, 31 ± 1 nanomoles ALA per 30 minutes per 107 cells, whether grown in light or dark. DOVA transaminase could not be separated from glyoxylate transaminase activity by agarose gel permeation or diethylaminoethyl-cellulose column chromatography. In all fractions, glyoxylate transaminase activity was at least 75 times greater than DOVA transaminase activity. DOVA transamination appears to be catalyzed by glyoxylate transaminase, and not to be of physiological significance with respect to chlorophyll synthesis in Euglena.  相似文献   

2.
δ-Aminolevulinic acid accumulated in the culture medium when Agmenellum quadruplicatum strain PR-6 was incubated in the presence of levulinic acid, a competitive inhibitor of δ-aminolevulinic acid dehydratase, and specifically labeled glutamate and glycine. The δ-aminolevulinic acid was purified using Dowex 50W-X8 and cleaved by periodate to yield succinic acid and formaldehyde. The distribution of radioactivity in the two fragments suggested that in blue-green algae the carbon skeleton of δ-aminolevulinic acid is derived directly from glutamate. However the possibility of the pathway of δ-aminolevulinic acid synthesis, from glycine and succinyl-coenzyme A also functioning in blue-green algae was not eliminated as uptake of glycine was minimal.  相似文献   

3.
Extracts from plant chloroplasts and algae catalyze the conversion of glutamate to δ-aminolevulinic acid (ALA) in the first committed step of the tetrapyrrole biosynthetic pathway leading to chlorophylls, hemes, and bilins. The conversion requires ATP, Mg2+, and NADPH as cofactors. Soluble extracts from Chlorella vulgaris have now been resolved into four macromolecular fractions, all of which are required to reconstitute activity. One fraction contains a low molecular weight RNA which can be separated from the protein components in an active high-speed supernatant by treatment with 1 molar NaCl followed by precipitation of the proteins with (NH4)2SO4 at 70% saturation. The proteins recovered from the (NH4)2SO4 precipitate are reactivated by addition of a fraction containing tRNAs isolated from Chlorella by phenol-chloroform extraction and DEAE cellulose chromatography. Three required protein fractions were resolved from the RNA-depleted (NH4)2SO4 precipitate by serial affinity chromatography on Reactive Blue 2-Sepharose and 2′,5′-ADP-agarose. Glycerol was found to stabilize the enzyme activity during the separation process. The majority of the glutamate:tRNA ligase activity was associated with the fraction which was retained by Blue-Sepharose and not retained by ADP-agarose, in agreement with the reported properties of the affinity ligands. The active material in the fraction not retained by Blue-Sepharose eluted as a single component on gel filtration chromatography, with an apparent molecular weight of 67,000. The active component in the RNA fraction also eluted as a single component on gel filtration chromatography.  相似文献   

4.
Formation of the chlorophyll and heme precursor δ-aminolevulinic acid (ALA) from glutamate in soluble extracts of Chlorella vulgaris, Euglena gracilis, and Cyanidium caldarium was stimulated by addition of low molecular weight RNA derived from greening algae or plant tissue. Enzyme extracts were prepared for the ALA formation assay by high-speed centrifugation, partial RNA depletion, and gel filtration through Sephadex G-25. RNA was extracted from greening barley epicotyls, greening cucumber cotyledon chloroplasts, and growing cells of Chlorella, Euglena, Chlamydomonas reinhardtii, and Anacystis nidulans, freed of protein, and fractionated on DEAE-cellulose to yield an active component corresponding to the tRNA-containing fraction. RNA from homologous and heterologous species stimulated ALA formation when added to enzyme extracts, and the degree of stimulation was proportional to the amount of RNA added. Algal enzyme extracts were stimulated by algal RNAs interchangeably, with the exception of RNA prepared from aplastidic Euglena, which did not stimulate ALA production. RNA from greening cucumber cotyledon chloroplasts and greening barley epicotyls stimulated ALA formation in algal enzyme incubations. In contrast, tRNA from Escherichia coli, both nonspecific and glutamate-specific, as well as wheat germ, bovine liver, and yeast tRNA, failed to reconstitute ALA formation. Moreover, E. coli tRNA inhibited ALA formation by algal extracts, both in the presence and absence of added algal RNA. Chlorella extracts were capable of catalyzing aminoacyl bond formation between glutamate and both the activity reconstituting and nonreconstituting RNAs, indicating that the inability of some RNAs to stimulate ALA formation was not due to their inability to serve as glutamyl acceptors. The first step in the ALA-forming reaction sequence has been proposed to be activation of glutamate via aminoacyl bond formation with a specific tRNA, analogous to the first step in peptide bond formation. Our results suggest that the RNA that is required for ALA formation may be functionally distinct from the glutamyl-tRNA species involved in protein synthesis.  相似文献   

5.
The heme and chlorophyll precursor δ-aminolevulinic acid acid (ALA) is formed in plants and algae from glutamate in a process that requires at least three enzyme components plus a low molecular weight RNA which co-purifies with the tRNA fraction during DEAE-cellulose column chromatography. RNA that is effective in the in vitro ALA biosynthetic system was extracted from several plant and algal species that form ALA via this route. In all cases, the effective RNA contained the UUC glutamate anticodon, as determined by its specific retention on an affinity resin containing an affine ligand directed against this anticodon. Construction of the affinity resin was based on the fact that the UUC glutamate anticodon is complementary to the GAA phenylalanine anticodon. By covalently linking the 3′ terminus of yeast tRNAPhe(GAA) to hydrazine-activated polyacrylamide gel beads, a resin carrying an affine ligand specific for the anticodon of tRNAGlu(UUC) was obtained. Column chromatography of plant and algal RNA extracts over this resin yielded a fraction that was highly enriched in the ability to stimulate ALA formation from glutamate when added to enzyme extracts of the unicellular green alga Chlorella vulgaris. Enhancement of ALA formation per A260 unit added was as much as 50 times greater with the affinity-purified RNA than with the RNA before affinity purification. The affinity column selectively retained RNA which supported ALA formation upon chromatography of RNA extracts from species of the diverse algal groups Chlorophyta (Chlorella Vulgaris), Euglenophyta (Euglena gracilis), Rhodophyta (Cyanidium caldarium), and Cyanophyta (Synechocystis sp. PCC 6803), and a higher plant (spinach). Other glutamate-accepting tRNAs that were not retained by the affinity column were ineffective in supporting ALA formation. These results indicate that possession of the UUC glutamate anticodon is a general requirement for RNA to participate in the conversion of glutamate to ALA in plants and algae.  相似文献   

6.
We have examined the acid-soluble products formed during incubation of labeled substrate protein from T4-infected cells with unlabeled phage-infected cell extracts. If the substrate protein is prepared from cells infected with a T4 mutant blocked in cleavage of phage head precursor proteins, the products formed in vitro include a peptide indistinguishable by several criteria from one of the T4 internal peptides. Denatured as well as undenatured protein can serve as the substrate for the formation of this peptide. As expected, this peptide is not formed if protein from either uninfected cells or cells infected with wild-type T4 is used as substrate. The formation of this peptide in vitro is dependent on a factor present in extracts of phage-infected cells but absent from extracts of uninfected cells.  相似文献   

7.
Intact developing chloroplasts isolated from greening cucumber (Cucumis sativus L. var Beit Alpha) cotyledons were found to contain all the enzymes necessary for the synthesis of chlorophyllide. Glutamate was converted to Mg-protoporphyrin IX (monomethyl ester) and protoclorophyllide. δ-Aminolevulinic acid and protoporphyrin IX were converted to Mg-protoporphyrin IX, Mg-protoporphyrin IX monomethyl ester, protochlorophyllide and chlorophyllide a. The conversion of δ-aminolevulinic acid or protoporphyrin IX to Mg-protoporphyrin IX (monomethyl ester) was inhibited by AMP and p-chloromercuribenzene sulfonate. Light stimulated the formation of Mg-protoporphyrin IX from all three substrates. In the case of δ-aminolevulinic acid and protoporphyrin IX, light could be replaced by exogenous ATP. In the case of glutamate, both ATP and reducing power were necessary to replace light. With all three substrates, glutamate, δ-aminolevulinic acid, and protoporphyrin IX, the stimulation of Mg-protoporphyrin IX accumulation in the light was abolished by DCMU, and this DCMU block was overcome by added ATP and reducing power.  相似文献   

8.
Koshiba T  Matsuyama H 《Plant physiology》1993,102(4):1319-1324
The formation of a product from tryptophan that had the same retention time as that of authentic indole-3-acetic acid (IAA) on high performance liquid chromatography was detected in crude extracts of maize (Zea mays) coleoptiles. The product was identified as IAA by mass spectrometry. The IAA-forming activity was co-purified with an indole-3-acetaldehyde (IAAld) oxidase activity by chromatography on hydrophobic and gel filtration (GPC-100) columns. During purification, the IAA-forming activity, rather than that of IAAld oxidase, decreased; but when hemoprotein obtained from the same tissue was added, activity recovered to the same level as that of IAAld oxidase. The promotive activity of the hemoprotein was confirmed by the result that the activity coincided with amounts of the hemoprotein after GPC-100 column chromatography. The hemoprotein was characterized and identified as a cytosolic ascorbate peroxidase (T. Koshiba [1993] Plant Cell Physiol [in press]). The reaction of the IAA-forming activity was apparently one step from tryptophan. The activity was inhibited by 2-mercaptoethanol. The optimum temperature for the IAA-forming system as well as for the IAAld oxidase was 50 to 60[deg]C, and the acitivity at 30[deg]C was one-third to one-half of that at 60[deg]C. The system did not discriminate the L- and D-enantiomers of tryptophan.  相似文献   

9.
δ-Aminolevulinic acid was accumulated by greening cucumber (Cucumis sativus L. var. Alpha green) cotyledons, barley (Hordeum sativum var. Numar) leaves, and bean (Phaseolus vulgaris L. var. Red Kidney) leaves in the presence of various 14C-labeled precursors and levulinic acid, a competitive inhibitor of δ-aminolevulinic acid dehydrase. The radioactivity in the accumulated δ-aminolevulinic acid was measured.  相似文献   

10.
δ-Aminolevulinic acid dehydrase activity in cucumber (Cucumis sativus L. var. Alpha green) cotyledons did not change as the tissue was allowed to green for 24 hours. δ-Aminolevulinic acid accumulated in greening cucumber cotyledons, and barley (Hordeum sativum L. var. Numar) and bean (Phaseolus vulgaris L. var. Red Kidney) leaves incubated in the presence of levulinic acid, a specific competitive inhibitor of δ-aminolevulinic acid dehydrase. The rate of δ-aminolevulinic acid accumulation in levulinic acid-treated cucumber cotyledons paralleled the rate of chlorophyll accumulation in the controls, and the quantity of δ-aminolevulinic acid accumulated compensated for the decrease in chlorophyll accumulation. When levulinic acid-treated cucumber cotyledons were returned to darkness, δ-aminolevulinic acid accumulation ceased.  相似文献   

11.
Mau YH  Wang WY 《Plant physiology》1988,86(3):793-797
The first committed intermediate of chlorophyll biosynthesis, δ-aminolevulinic acid (ALA), is synthesized from glutamate in the plant cell. The last step of ALA synthesis is a transamination reaction which converts glutamate-1-semialdehyde (GSA) to ALA. The mechanism of the transamination was examined by using glutamate, specifically labeled with either 1-13C or 15N, as substrate for ALA synthesis. After incubating with crude enzymes extracted from Chlamydomonas reinhardtii, the distribution of labels in purified ALA molecules was examined by nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. We found that both isotopes were present in the same ALA molecule. We interpret the results to mean that intermolecular transamination occurs during the conversion of GSA to ALA.  相似文献   

12.
Abstract: The effects of arachidonic acid and phorbol esters in the Ca2+-dependent release of glutamate evoked by 4-aminopyridine (4-AP) in rat cerebrocortical synaptosomes were studied. In the absence of arachidonic acid, high concentrations (500 n M ) of 4β-phorbol dibutyrate (4β-PDBu) were required to enhance the release of glutamate. However, in the presence of arachidonic acid, low concentrations of 4β-PDBu (1–50 n M ) were effective in potentiating glutamate exocytosis. This potentiation of glutamate release by phorbol esters was not observed with the methyl ester of arachidonic acid, which does not activate protein kinase C. Moreover, pretreatment of synaptosomes with the protein kinase inhibitor staurosporine also prevented the stimulatory effect by arachidonic acid and phorbol esters. These results suggest that the activation of protein kinase C by both arachidonic acid and phorbol esters may play a role in the potentiation of glutamate exocytosis.  相似文献   

13.
砂生槐是我国西藏高原一种特有植物,是一种极为宝贵的药用植物资源.我们首次从砂生槐种子中获得氯仿、95%乙醇、75%乙醇和水提取物,用琼脂扩散实验测定其抑菌活性和用MTT法测定其对肿瘤细胞的细胞毒效应,表明氯仿提取物和95%乙醇提取物具有广谱的抑菌活性,抑菌活性较强的是氯仿提取物.各种提取物显示出浓度依赖性的细胞毒效应,氯仿、95%乙醇、75%乙醇和水提取物对胃癌SGC-7901细胞系的LC50分别是4.5、1.4、1.9和41.7 mg/mL,抑制胃癌SGC-7901细胞增殖作用较强的成分是砂生槐种子95%乙醇提取物.这一发现为开发砂生槐这一宝贵植物资源的药用价值提供了重要的依据.  相似文献   

14.
We have isolated a cDNA, Eg7, corresponding to a Xenopus maternal mRNA, which is polyadenylated in mature oocytes and deadenylated in early embryos. This maternal mRNA encodes a protein, pEg7, whose expression is strongly increased during oocyte maturation. The tissue and cell expression pattern of pEg7 indicates that this protein is only readily detected in cultured cells and germ cells. Immunolocalization in Xenopus cultured cells indicates that pEg7 concentrates onto chromosomes during mitosis. A similar localization of pEg7 is observed when sperm chromatin is allowed to form mitotic chromosomes in cytostatic factor-arrested egg extracts. Incubating these extracts with antibodies directed against two distinct parts of pEg7 provokes a strong inhibition of the condensation and resolution of mitotic chromosomes. Biochemical experiments show that pEg7 associates with Xenopus chromosome-associated polypeptides C and E, two components of the 13S condensin.  相似文献   

15.
The universal tetrapyrrole precursor δ-aminolevulinic acid (ALA) is formed from glutamate (Glu) in algae and higher plants. In the postulated reaction sequence, Glu-tRNA is produced by a Glu-tRNA synthetase, and the product serves as a substrate for a reduction step catalyzed by a pyridine nucleotide-requiring Glu-tRNA dehydrogenase. The reduced intermediate is then converted into ALA by a transaminase. An RNA and three enzyme fractions required for ALA formation from Glu have been isolated from soluble Chlorella extracts. The recombined fractions catalyzed ALA production from Glu or Glu-tRNA. The fraction containing the synthetase produced Glu-tRNA from Glu and tRNA in the presence of ATP and Mg2+. The isolated product of this reaction served as substrate for ALA production by the partially reconstituted enzyme system lacking the synthetase fraction and incapable of producing ALA from Glu. The production of ALA from Glu-tRNA by this partially reconstituted system did not require free Glu or ATP, and was not affected by added ATP. These results show that (a) free Glu-tRNA is an intermediate in the formation of ALA from Glu, (b) ATP is required only in the first step of the reaction sequence, and NADPH only in a later step, (c) Glu-tRNA production is the essential reaction catalyzed by one of the enzyme fractions, (d) this enzyme fraction is active in the absence of the other enzymes and is not required for activity of the others. The specific Glu-tRNA synthetase required for ALA formation has an approximate molecular weight of 73,000 ± 5,000 as determined by Sephadex G-100 gel filtration and native polyacrylamide gel electrophoresis. Other Glu-tRNA synthetases were present in the cell extracts but were ineffective in the the ALA-forming process.  相似文献   

16.
Harel E  Ne'eman E 《Plant physiology》1983,72(4):1062-1067
Intact plastids from greening maize (Zea mays L.) leaves converted [14C]glutamate and [14C]2-ketoglutarate (KG) to [14C]5-aminolevulinic acid (ALA). Glutamate appeared to be the immediate precursor of ALA, while KG was first converted to glutamate, as shown by the effect of various inhibitors of amino acid metabolism. Plastids from greening leaves contained markedly higher activity as compared with etioplasts or chloroplasts. The synthesis of ALA by intact plastids was light dependent. The enzyme system resides in the stroma of plastids or may be lightly bound to membranes. The solubilized system showed maximal activity around pH 7.9 and required Mg2+, ATP, and NADPH although dependence on the latter was not clear-cut. A relatively high level of activity could be extracted from etioplasts. Maximal activity was obtained from plastids of leaves which had been illuminated for 90 minutes, after which activity declined sharply. The enzyme system solubilized from plastids also catalyzed the conversion of putative glutamate 1-semialdehyde to ALA in a reaction which was not dependent on the addition of an amino donor.

The system in maize greatly resembled the one which had been reported from barley. It is suggested that this system is the one responsible for the biosynthesis of ALA destined for chlorophyll formation.

  相似文献   

17.
Mayer SM  Beale SI 《Plant physiology》1991,97(3):1094-1102
Wild-type Euglena gracillis cells synthesize the key chlorophyll precursor, δ-aminolevulinic acid (ALA), from glutamate in their plastids. The synthesis requires transfer RNAGlu (tRNAGlu) and the three enzymes, glutamyl-tRNA synthetase, glutamyl-tRNA reductase, and glutamate-1-semialdehyde aminotransferase. Non-greening mutant Euglena strain W14ZNaIL does not synthesize ALA from glutamate and is devoid of the required tRNAGlu. Other cellular tRNAGlus present in the mutant cells were capable of being charged with glutamate, but the resulting glutamyl-tRNAs did not support ALA synthesis. Surprisingly, the mutant cells contain all three of the enzymes, and their cell extracts can convert glutamate to ALA when supplemented with tRNAGlu obtained from wild-type cells. Activity levels of the three enzymes were measured in extracts of cells grown under a number of light conditions. All three activities were diminished in extracts of cells grown in complete darkness, and full induction of activity required 72 hours of growth in the light. A light intensity of 4 microeinsteins per square meter per second was sufficient for full induction. Blue light was as effective as white light, but red light was ineffective, in inducing extractable enzyme activity above that of cells grown in complete darkness, indicating that the light control operates via the nonchloroplast blue light receptor in the mutant cells. Of the three enzyme activities, the one that is most acutely affected by light is glutamate-1-semialdehyde aminotransferase, as has been previously shown for wild-type Euglena cells. These results indicate that the enzymes required for ALA synthesis from glutamate are present in an active form in the nongreening mutant cells, even though they cannot participate in ALA formation in these cells because of the absence of the required tRNAGlu, and that the activity of all three enzymes is regulated by light. Because the absence of plastid tRNAGlu precludes the synthesis of proteins within the plastids, the three enzymes must be synthesized in the cytoplasm and their genes encoded in the nucleus in Euglena.  相似文献   

18.
An insertional transposon mutation in the sll0606 gene was found to lead to a loss of photoautotrophy but not photoheterotrophy in the cyanobacterium Synechocystis sp. PCC 6803. Complementation analysis of this mutant (Tsll0606) indicated that an intact sll0606 gene could fully restore photoautotrophic growth. Gene organization in the vicinity of sll0606 indicates that it is not contained in an operon. No electron transport activity was detected in Tsll0606 using water as an electron donor and 2,6-dichlorobenzoquinone as an electron acceptor, indicating that Photosystem II (PS II) was defective. Electron transport activity using dichlorophenol indolephenol plus ascorbate as an electron donor to methyl viologen, however, was the same as observed in the control strain. This indicated that electron flow through Photosystem I was normal. Fluorescence induction and decay parameters verified that Photosystem II was highly compromised. The quantum yield for energy trapping by Photosystem II (FV/FM) in the mutant was less than 10% of that observed in the control strain. The small variable fluorescence yield observed after a single saturating flash exhibited aberrant QA reoxidation kinetics that were insensitive to dichloromethylurea. Immunological analysis indicated that whereas the D2 and CP47 proteins were modestly affected, the D1 and CP43 components were dramatically reduced. Analysis of two-dimensional blue native/lithium dodecyl sulfate-polyacrylamide gels indicated that no intact PS II monomer or dimers were observed in the mutant. The CP43-less PS II monomer did accumulate to detectable levels. Our results indicate that the Sll0606 protein is required for the assembly/stability of a functionally competent Photosystem II.  相似文献   

19.
徐轶  孙越 《Acta Botanica Sinica》2002,44(10):1194-1202
在拟南芥 (Arabidopsisthaliana (L .)Heynh .)叶发育研究中 ,as2是一个经典突变体。as2典型的表型是叶片开裂或形成一种小叶状结构。遗传学和分子生物学实验证明 ,AS2基因具有抑制KNOX基因在叶中表达的功能。在本文中 ,我们着重研究了新得到的在Landsbergerecta (Ler)遗传背景下的as2突变体。除了前人报道过的as2表型外 ,新as2突变体的部分叶柄长在叶片的下方 ,形成一种荷叶状结构 ,更严重的甚至长成花丝状叶结构。这两种结构都反映了不正常的叶腹背轴极性分化。在我们所收集到的as2等位突变体中 ,只有在Ler背景下这两种结构才以高频率出现。我们通过图位克隆方法分离了AS2基因。该基因编码一个含有亮氨酸拉链结构的蛋白。在拟南芥中 ,AS2同源基因共 4 3个 ,除AS2外 ,其他基因的功能都不清楚。AS2在叶和花中表达 ,在茎中无表达 ,这种表达模式和as2突变体的表型是吻合的。  相似文献   

20.
在拟南芥(Arabidopsis thaliana (L.) Heynh.)叶发育研究中,as2是一个经典突变体.as2典型的表型是叶片开裂或形成一种小叶状结构.遗传学和分子生物学实验证明,AS2基因具有抑制KNOX基因在叶中表达的功能.在本文中,我们着重研究了新得到的在Landsberg erecta (Ler)遗传背景下的as2突变体.除了前人报道过的as2表型外,新as2突变体的部分叶柄长在叶片的下方,形成一种荷叶状结构,更严重的甚至长成花丝状叶结构.这两种结构都反映了不正常的叶腹背轴极性分化.在我们所收集到的as2等位突变体中,只有在Ler背景下这两种结构才以高频率出现.我们通过图位克隆方法分离了AS2基因.该基因编码一个含有亮氨酸拉链结构的蛋白.在拟南芥中,AS2同源基因共43个,除AS2外,其他基因的功能都不清楚.AS2在叶和花中表达,在茎中无表达,这种表达模式和as2突变体的表型是吻合的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号