首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Concentrations of ketone bodies, free fatty acids and chloride in fed, 24–120h-starved and alloxan-diabetic rats were determined in plasma and striated muscle. Plasma glucose concentrations were also measured in these groups of animals. 2. Intracellular metabolite concentrations were calculated by using chloride as an endogenous marker of extracellular space. 3. The mean intracellular ketone-body concentrations (±s.e.m.) were 0.17±0.02, 0.76±0.11 and 2.82±0.50μmol/ml of water in fed, 48h-starved and alloxan-diabetic rats, respectively. Mean (intracellular water concentration)/(plasma water concentration) ratios were 0.47, 0.30 and 0.32 in fed, 48h-starved and alloxan-diabetic rats respectively. The relationship between ketone-body concentrations in the plasma and intracellular compartments appeared to follow an asymptotic pattern. 4. Only intracellular 3-hydroxybutyrate concentrations rose during starvation whereas concentrations of both 3-hydroxybutyrate and acetoacetate were elevated in the alloxan-diabetic state. 5. During starvation plasma glucose concentrations were lowest at 48h, and increased with further starvation. 6. There was no significant difference in the muscle intracellular free fatty acid concentrations of fed, starved and alloxan-diabetic rats. Mean free fatty acid intramuscular concentrations (±s.e.m.) were 0.81±0.08, 0.98±0.21 and 0.91±0.10μmol/ml in fed, 48h-starved and alloxan-diabetic states. 7. The intracellular ketosis of starvation and the stability of free fatty acid intracellular concentrations suggests that neither muscle membrane permeability nor concentrations of free fatty acids per se are major factors in limiting ketone-body oxidation in these states.  相似文献   

2.
1. Lipogenesis in vivo has been studied in mice given a 250mg. meal of [U-14C]glucose (2·5μc) or given an intraperitoneal injection of 25μg. of [U-14C]glucose (2·0μc). 2. The ability to convert a [U-14C]glucose meal into fatty acid was not significantly depressed by 6–7hr. of starvation. In contrast, incorporation of 14C into fatty acid in the liver after the intraperitoneal dose of [14C]glucose was depressed by 80% and by more than 90% by 1 and 2hr. of starvation respectively. Carcass fatty acid synthesis from the [U-14C]glucose meal was not depressed by 12hr. of starvation, whereas from the tracer dose of [U-14C]glucose the depression in incorporation was 80% after 6hr. of starvation. 3. Re-feeding for 3 days, after 3 days' starvation, raised fatty acid synthesis and cholesterol synthesis in the liver fivefold and tenfold respectively above the levels in non-starved control mice. These increases were associated with an increased amount of both fatty acid and cholesterol in the liver. 4. After 18hr. of starvation incorporation of a [U-14C]glucose meal into carcass and liver glycogen were both increased threefold.  相似文献   

3.
Utilization of endogenous lipid by the isolated perfused rat heart   总被引:5,自引:5,他引:0  
1. The lipids of the rat heart have been studied with regard to amount, classes present and fatty acid composition of free fatty acids, triglycerides and phospholipids. Myocardial lipid contained 300μmoles of total fatty acid/g. dry wt. of which only 2–4μmoles were free; the remainder was esterified, chiefly as phospholipid. Neutral esters, of which triglyceride was the principal form, made up 15% of the total fatty acids. 2. When normal hearts were perfused with a nutrient-free medium until exhaustion, the triglyceride concentration declined from 43 to 13μmoles/g. dry wt. The content of phospholipids, partial glycerides and cholesteryl esters did not change. When the lipids of the rat heart were labelled with [1-14C]palmitate before perfusion with non-nutrient medium, radioactivity disappeared from the triglyceride, diglyceride and free fatty acid fractions, but not from the phospholipid or other ester classes. 3. These experiments support the view that only a small fraction of the total cardiac lipid, principally triglycerides and to a smaller extent diglycerides, is available as a source of fuel in the absence of exogenous substrate.  相似文献   

4.
1. Superovulated rat ovary slices from rats treated with 20μg. of luteininzing hormone/100g. body wt. 2hr. before death and from control animals have been incubated in vitro. Output of Δ4-3-oxo steroids (0·2μmole/g. wet wt./hr. in control tissue) was linear for 4hr., and was increased by approx. 70% in slices from luteinizing hormone-treated rats. Rate of oxygen consumption (90·0±4·6μmoles/g. wet wt./hr.) was linear for 3hr. and unaltered by luteinizing hormone treatment or addition of glucose (1mg./ml.) to the medium. 2. In slices from control animals, steady-state rate of glucose uptake was 78·0±2·9μg. atoms of carbon/g. wet wt./hr.; steady-state rates of lactate output, pyruvate output and incorporation of [U-14C]-glucose carbon atoms into carbon dioxide and total lipid extract were 60·7±0·9, 2·4±0·1, 18·0±1·1 and 0·7±0·1μg. atom of carbon/g. wet wt./hr. and accounted for 104·5±1·9% of the glucose uptake. In slices from luteinizing hormone-treated rats, glucose uptake and outputs of lactate, pyruvate and [14C]carbon dioxide were increased by approx. 25%, and 108·4±3·2% of the glucose uptake could be accounted for. 3. The total lipid extract was separated by thin-layer chromatography and saponification. Of the 14C incorporated into this fraction during incubation with [U-14C]glucose 97% was found in the fractions containing glyceride glycerol and less than 3% in the fractions containing sterols, steroids or fatty acids. Appreciable quantities of 14C were incorporated into these lipid fractions from [1-14C]acetate. 4. From a consideration of the tissue glycogen content, the specific activities of [14C]lactate and glucose 6-phosphate (C-1) derived from [1-14C]-, [6-14C]- and [U-14C]-glucose, and the ratio of [14C]carbon dioxide yields from [1-14C]glucose and [6-14C]glucose, it was concluded that there was no appreciable glycogenolysis or flow through the pentose phosphate cycle. 5. In ovary slices from both control and luteinizing hormone-treated animals, glucose in vitro raised the incorporation rate of 14C from [1-14C]acetate into sterols and steroids. Luteinizing hormone in vivo stimulated the incorporation rate in vitro but only in the presence of glucose. 6. In slices incubated in medium containing [3H]water, [14C]sorbitol and glucose (1mg./ml.), the total water space (865±7·1μl./g.) and the extracellular water space (581±22μl./g.) were unchanged by luteinizing hormone treatment in vivo but the glucose space was raised from 540±23·6μl./g. to 639±31·3μl./g. 7. Luteinizing hormone treatment was found to lower the tissue concentration of the hexose monophosphates and to increase the total activity of hexokinase, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and possibly of phosphofructokinase. 8. The kinetic properties of a partially purified preparation of phosphofructokinase were found to be qualitatively similar to those from other mammalian tissues. 9. The results are discussed with reference to both the role of glucose metabolism in steroidogenesis and the mechanism by which luteinizing hormone increases the rate of glucose uptake.  相似文献   

5.
1. The maximum activity of hexokinase in lymphocytes is similar to that of 6-phosphofructokinase, but considerably greater than that of phosphorylase, suggesting that glucose rather than glycogen is the major carbohydrate fuel for these cells. Starvation increased slightly the activities of some of the glycolytic enzymes. A local immunological challenge in vivo (a graft-versus-host reaction) increased the activities of hexokinase, 6-phosphofructokinase, pyruvate kinase and lactate dehydrogenase, confirming the importance of the glycolytic pathway in cell division. 2. The activities of the ketone-body-utilizing enzymes were lower than those of hexokinase or 6-phosphofructokinase, unlike in muscle and brain, and were not affected by starvation. It is suggested that the ketone bodies will not provide a quantitatively important alternative fuel to glucose in lymphocytes. 3. Of the enzymes of the tricarboxylic acid cycle whose activities were measured, that of oxoglutarate dehydrogenase was the lowest, yet its activity (about 4.0μmol/min per g dry wt. at 37°C) was considerably greater than the flux through the cycle (0.5μmol/min per g calculated from oxygen consumption by incubated lymphocytes). The activity was decreased by starvation, but that of citrate synthase was increased by the local immunological challenge in vivo. It is suggested that the rate of the cycle would increase towards the capacity indicated by oxoglutarate dehydrogenase in proliferating lymphocytes. 4. Enzymes possibly involved in the pathway of glutamine oxidation were measured in lymphocytes, which suggests that an aminotransferase reaction(s) (probably aspartate aminotransferase) is important in the conversion of glutamate into oxoglutarate rather than glutamate dehydrogenase, and that the maximum activity of glutaminase is markedly in excess of the rate of glutamine utilization by incubated lymphocytes. The activity of glutaminase is increased by both starvation and the local immunological challenge in vivo. This last finding suggests that metabolism of glutamine via glutaminase is important in proliferating lymphocytes.  相似文献   

6.
1. 0.5mm-Palmitate stimulated incorporation of [U-14C]glucose into glyceride glycerol and fatty acids in normal fat cells in a manner dependent upon the glucose concentration. 2. In the presence of insulin the incorporation of 5mm-glucose into glyceride fatty acids was increased by concentrations of palmitate, adrenaline and 6-N-2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate up to 0.5mm, 0.5μm and 0.5mm respectively. Higher concentrations of these agents produced progressive decreases in the rate of glucose incorporation into fatty acids. 3. The effects of palmitate and lipolytic agents upon the measured parameters of glucose utilization were similar, suggesting that the effects of lipolytic agents are mediated through increased concentrations of free fatty acids. 4. In fat cells from 24h-starved rats, maximal stimulation of glucose incorporation into fatty acids was achieved with 0.25mm-palmitate. Higher concentrations of palmitate were inhibitory. In fat cells from 72h-starved rats, palmitate only stimulated glucose incorporation into fatty acids at high concentrations of palmitate (1mm and above). 5. The ability of fat cells to incorporate glucose into glyceride glycerol in the presence of palmitate decreased with increasing periods of starvation. 6. It is suggested that low concentrations of free fatty acids stimulate fatty acid synthesis from glucose by increasing the utilization of ATP and cytoplasmic NADH for esterification of these free fatty acids. When esterification of free fatty acids does not keep pace with their provision, inhibition of fatty acid synthesis occurs. Provision of free fatty acids far in excess of the esterification capacity of the cells leads to uncoupling of oxidative phosphorylation and a secondary stimulation of fatty acid synthesis from glucose.  相似文献   

7.
Biological slimes (biofilms) collected from the wet end of paper and board machines were examined by electron microscopy and analyzed for fatty acid composition, neutral sugar composition, and ATP. Electron microscopy revealed minuscule prokaryotic organisms (diameter, 0.2 to 0.4 μm). Larger cells morphologically resembling Sphaerotilus and Leptothrix spp. were found in slimes from machines using recycled fiber or unbleached pulp. The bacteria were embedded in a slimy matrix and often contained reserve materials microscopically resembling poly-β-hydroxybutyrate and glycogen. Fatty acid analysis of the slimes revealed bacterial signature fatty acids in concentrations equivalent to the presence of 2 × 1010 to 2.6 × 1012 (average, 7 × 1011) bacterial cells (live and dead) per g (dry weight) of slime. The slimes contained several known components of bacterial polysaccharides in addition to glucose, indicating that the slime body consisted of bacterial polysaccharides. The slimes contained uronic acids equivalent to a binding capacity of 12.5 to 50 μmol of divalent cations per g (dry weight) of slime. The uronic acid-containing polysaccharides may be responsible for the accumulation of heavy metals in the slime. Calculation of the ATP contents of the slimes resulted in an estimate of 5 × 1012 cells per g (dry weight) of slime when calibrated with pure bacterial cultures isolated from the slimes. From electron micrographs, an estimate ranging from 1 × 1010 to 1.5 × 1012 (average, 4 × 1011) cells per g (dry weight) of slime was obtained.  相似文献   

8.
1. Substrate cycling of fructose 6-phosphate through reactions catalysed by phosphofructokinase and fructose diphosphatase was estimated in bumble-bee (Bombus affinis) flight muscle in vivo. 2. Estimations of substrate cycling of fructose 6-phosphate and of glycolysis were made from the equilibrium value of the 3H/14C ratio in glucose 6-phosphate as well as the rate of 3H release to water after the metabolism of [5-3H,U-14C]glucose. 3. In flight, the metabolism of glucose proceeded exclusively through glycolysis (20.4μmol/min per g fresh wt.) and there was no evidence for substrate cycling. 4. In the resting bumble-bee exposed to low temperatures (5°C), the pattern of glucose metabolism in the flight muscle was altered so that substrate cycling was high (10.4μmol/min per g fresh wt.) and glycolysis was decreased (5.8μmol/min per g fresh wt.). 5. The rate of substrate cycling in the resting bumble-bee flight muscle was inversely related to the ambient temperature, since at 27°, 21° and 5°C the rates of substrate cycling were 0, 0.48 and 10.4μmol/min per g fresh wt. respectively. 6. Calcium ions inhibited fructose diphosphatase of the bumble-bee flight muscle at concentrations that were without effect on phosphofructokinase. The inhibition was reversed by the presence of a Ca2+-chelating compound. It is proposed that the rate of fructose 6-phosphate substrate cycling could be regulated by changes in the sarcoplasmic Ca2+ concentration associated with the contractile process.  相似文献   

9.
The phenotypic and genotypic adaptation of a freshwater sedimentary microbial community to elevated (22 to 217 μg g [dry weight] of sediment−1) levels of polycyclic aromatic hydrocarbons (PAHs) was determined by using an integrated biomolecular approach. Central to the approach was the use of phospholipid fatty acid (PLFA) profiles to characterize the microbial community structure and nucleic acid analysis to quantify the frequency of degradative genes. The study site was the Little Scioto River, a highly impacted, channelized riverine system located in central Ohio. This study site is a unique lotic system, with all sampling stations having similar flow and sediment characteristics both upstream and downstream from the source of contamination. These characteristics allowed for the specific analysis of PAH impact on the microbial community. PAH concentrations in impacted sediments ranged from 22 to 217 μg g (dry weight) of sediment−1, while PAH concentrations in ambient sediments ranged from below detection levels to 1.5 μg g (dry weight) of sediment−1. Total microbial biomass measured by phospholipid phosphate (PLP) analysis ranged from 95 to 345 nmol of PLP g (dry weight) of sediment−1. Nucleic acid analysis showed the presence of PAH-degradative genes at all sites, although observed frequencies were typically higher at contaminated sites. Principal component analysis of PLFA profiles indicated that moderate to high PAH concentrations altered microbial community structure and that seasonal changes were comparable in magnitude to the effects of PAH pollution. These data indicate that this community responded to PAH contamination at both the phenotypic and the genotypic level.  相似文献   

10.
The content of assimilable organic carbon has been proposed to control the growth of microbes in drinking water. However, recent results have shown that there are regions where it is predominantly phosphorus which determines the extent of microbial growth in drinking waters. Even a very low concentration of phosphorus (below 1 μg of P liter−1) can promote extensive microbial growth. We present here a new sensitive method to determine microbially available phosphorus concentrations in water down to 0.08 μg of P liter−1. The method is a bioassay in which the analysis of phosphorus in a water sample is based on maximum growth of Pseudomonas fluorescens P17 when the energy supply and inorganic nutrients, with the exception of phosphorus, do not limit bacterial growth. Maximum growth (CFU) in the water sample is related to the concentration of phosphorus with the factor 373,200 ± 9,400 CFU/μg of PO4-P. A linear relationship was found between cell growth and phosphorus concentration between 0.05 to 10 μg of PO4-P liter−1. The content of microbially available phosphorus in Finnish drinking waters varied from 0.1 to 10.2 μg of P liter−1 (median, 0.60 μg of P liter−1).  相似文献   

11.

Background

Turkey is the main apricot producer in the world and apricots have been produced under both dry and irrigated conditions in the country. In this study, phenolic compounds and vitamins in fruits of one wild (Zerdali) and three main apricot cultivars (‘Cataloglu’, ‘Hacihaliloglu’ and ‘Kabaasi’) grown in both dry and irrigated conditions in Malatya provinces in Turkey were investigated.

Results

The findings indicated that higher content of phenolic compounds and vitamins was found in apricot fruits grown in irrigated conditions. Among the cultivars, ‘Cataloglu’ had the highest rutin contents both in irrigated and dry farming conditions as 2855 μg in irrigated and 6952 μg per 100 g dried weight base in dry conditions and the highest chlorogenic acid content in irrigated and dry farming conditions were measured in fruits of ‘Hacıhaliloglu’ cultivar as 7542 μg and 15251 μg per 100 g dried weight base. Vitamin C contents in homogenates of fruit flesh and skin was found to be higher than β-caroten, retinol, vitamin E and lycopen contents in apricot fruits both in irrigated and dry farming conditions.

Conclusion

The results suggested that apricot fruits grown in both dry and irrigated conditions had high health benefits phytochemicals and phytochemical content varied among cultivars and irrigation conditions as well. However, more detailed biological and pharmacological studies are needed for the demonstration and clarification of health benefits of apricot fruits.  相似文献   

12.
Microbial communities in biofilms grown for 4 and 11 weeks under the flow of drinking water supplemented with 0, 1, 2, and 5 μg of phosphorus liter−1 and in drinking and warm waters were compared by using phospholipid fatty acids (PLFAs) and lipopolysaccharide 3-hydroxy fatty acids (LPS 3-OH-FAs). Phosphate increased the proportion of PLFAs 16:1ω7c and 18:1ω7c and affected LPS 3-OH-FAs after 11 weeks of growth, indicating an increase in gram-negative bacteria and changes in their community structure. Differences in community structures between biofilms and drinking and warm waters can be assumed from PLFAs and LPS 3-OH-FAs, concomitantly with adaptive changes in fatty acid chain length, cyclization, and unsaturation.  相似文献   

13.
1. The influence of ethanol on the metabolism of perfused livers from normal rats and rats in various stages of development of dietary cirrhosis was studied. A choline-deficient, low-protein and high-fat diet was used. Results were obtained on oxygen consumption and carbon dioxide production, on glucose release and uptake by the liver and on changes in the concentrations of lactate and pyruvate and of β-hydroxybutyrate and acetoacetate in the perfusion medium. 2. Oxygen consumption and carbon dioxide production were lower in fatty and cirrhotic livers than in normal livers. Ethanol had no effect on the oxygen consumption of any of the various livers. After addition of ethanol to the perfusion medium carbon dioxide production ceased almost completely in normal livers. Only a slight decrease in the carbon dioxide production occurred in fatty and cirrhotic livers. 3. With every type of liver glucose was released from the liver into the perfusion medium during the initial control period. This release continued after the addition of ethanol to the perfusion medium in experiments with normal and fatty livers, whereas with cirrhotic livers a marked uptake of glucose from the medium was found. A simultaneous release of the glycolytic end products lactate and pyruvate into the medium occurred. 4. The production of ketone bodies was equal in normal and early fatty livers (6 weeks on the fat diet). It was smaller in late fatty livers (3–4 months on the fatty diet) and in cirrhotic livers. 5. The lactate/pyruvate concentration ratio in the perfusion medium increased from 11 to 67 with normal livers, from 12 to 16 with early fatty livers, from 13 to 26 with late fatty livers and from 21 to 55 with cirrhotic livers when the livers were perfused with a medium containing ethanol. The β-hydroxybutyrate/acetoacetate concentration ratio increased from 1·2 to 8·4 in normal livers, from 2·0 to 2·8 in early fatty livers, from 1·2 to 2·4 in late fatty livers and from 2·1 to 4·0 in cirrhotic livers when ethanol was added to the medium. 6. The effects of ethanol on liver metabolism during the development of dietary cirrhosis are discussed and related to human fatty liver and cirrhosis during chronic ethanol consumption.  相似文献   

14.
1. The kinetic properties of the soluble and particulate hexokinases from rat heart have been investigated. 2. For both forms of the enzyme, the Km for glucose was 45μm and the Km for ATP 0·5mm. Glucose 6-phosphate was a non-competitive inhibitor with respect to glucose (Ki 0·16mm for the soluble and 0·33mm for the particulate enzyme) and a mixed inhibitor with respect to ATP (Ki 80μm for the soluble and 40μm for the particulate enzyme). ADP and AMP were competitive inhibitors with respect to ATP (Ki for ADP was 0·68mm for the soluble and 0·60mm for the particulate enzyme; Ki for AMP was 0·37mm for the soluble and 0·16mm for the particulate enzyme). Pi reversed glucose 6-phosphate inhibition with both forms at 10mm but not at 2mm, with glucose 6-phosphate concentrations of 0·3mm or less for the soluble and 1mm or less for the particulate enzyme. 3. The total activity of hexokinase in normal hearts and in hearts from alloxan-diabetic rats was 21·5μmoles of glucose phosphorylated/min./g. dry wt. of ventricle at 25°. The temperature coefficient Q10 between 22° and 38·5° was 1·93; the ratio of the soluble to the particulate enzyme was 3:7. 4. The kinetic data have been used to predict rates of glucose phosphorylation in the perfused heart at saturating concentrations of glucose from measured concentrations of ATP, glucose 6-phosphate, ADP and AMP. These have been compared with the rates of glucose phosphorylation measured with precision in a small-volume recirculation perfusion apparatus, which is described. The correlation between predicted and measured rates was highly significant and their ratio was 1·07. 5. These findings are consistent with the control of glucose phosphorylation in the perfused heart by glucose 6-phosphate concentration, subject to certain assumptions that are discussed in detail.  相似文献   

15.
A field study was conducted to compare the formationand bacterial communities of rhizosheaths of wheat grown under wheat-cotton and wheat-rice rotation and to study the effects of bacterial inoculation on plant growth. Inoculation of Azospirillum sp. WS-1 and Bacillus sp. T-34 to wheat plants increased root length, root and shoot dry weight and dry weight of rhizosheathsoil when compared to non-inoculated control plants, and under both crop rotations. Comparing both crop rotations, root length, root and shoot dry weight and dry weight of soil attached with roots were higher under wheat-cotton rotation. Organic acids (citric acid, malic acid, acetic acid and oxalic acid) were detected in rhizosheaths from both rotations, with malic acid being most abundant with 24.8±2 and 21.3±1.5 μg g-1 dry soil in wheat-cotton and wheat-rice rotation, respectively. Two sugars (sucrose, glucose) were detected in wheat rhizosheath under both rotations, with highest concentrations of sucrose (4.08±0.5 μg g-1and 7.36±1.0 μg g-1) and glucose (3.12±0.5 μg g-1 and 3.01± μg g-1) being detected in rhizosheaths of non-inoculated control plants under both rotations. Diversity of rhizosheath-associated bacteria was evaluated by cultivation, as well as by 454-pyrosequencing of PCR-tagged 16S rRNA gene amplicons. A total of 14 and 12 bacterial isolates predominantly belonging to the genera Arthrobacter, Azospirillum, Bacillus, Enterobacter and Pseudomonaswere obtained from the rhizosheath of wheat grown under wheat-cotton and wheat-rice rotation, respectively. Analysis of pyrosequencing data revealed Proteobacteria, Bacteriodetes and Verrucomicrobia as the most abundant phyla in wheat-rice rotation, whereas Actinobacteria, Firmicutes, Chloroflexi, Acidobacteria, Planctomycetes and Cyanobacteria were predominant in wheat-cotton rotation. From a total of 46,971 sequences, 10.9% showed ≥97% similarity with 16S rRNA genes of 32 genera previously shown to include isolates with plant growth promoting activity (nitrogen fixation, phosphate-solubilization, IAA production). Among these, the most predominant genera were Arthrobacter, Azoarcus, Azospirillum, Bacillus, Cyanobacterium, Paenibacillus, Pseudomonas and Rhizobium.  相似文献   

16.
The effect of insulin-induced hypoglycemia on serum thyroid hormone concentrations was studied in nine healthy individuals. Before, during and after the hypoglycemia blood samples were taken for measurement of the concentrations of glucose, thyroxine (T4), triiodothyronine (T3), reverse triiodothyronine (rT3), catecholamines and pituitary hormones.There was no change in the mean serum T4 level (± the standard error of the mean) of 67 ± 2 μg/l. However, the T3 concentrations rose from a mean basal level of 1.86 ± 0.06 μg/l to a mean peak of 2.51 ± 0.21 μg/l (P < 0.01) at 45 minutes after the insulin injection, and the rT3 concentrations fell from a mean basal level of 0.184 ± 0.008 μg/l to a mean nadir of 0.171 ± 0.022 μg/l (not a significant change). The mean peak epinephrine level was 545 ± 103 ng/l and it occurred between 30 and 45 minutes after the insulin injection; the mean peak norepinephrine level was 584 ± 114 ng/l and it occurred between 30 and 90 minutes after the injection. The growth hormone levels reached a mean peak of 26.1 ± 4.8 μg/l and the plasma cortisol levels rose to 215 ± 9 μg/l. The mean basal prolactin level was 8.5 ± 0.9 μg/l; in five subjects there was a rise to a mean peak of 50.6 ± 14.6 μg/l, whereas in the remaining four no significant increase occurred. No correlation was found between the changes in the serum T3 concentration and any of the other factors studied.It was concluded that acute hypoglycemia is associated with a rapid increase in the serum T3 concentration.  相似文献   

17.
Nitrosomonas europaea and Nitrobacter winogradskyi (strain “Engel”) were grown in ammonia-limited and nitrite-limited conditions, respectively, in a retentostat with complete biomass retention at 25°C and pH 8. Fitting the retentostat biomass and oxygen consumption data of N. europaea and N. winogradskyi to the linear equation for substrate utilization resulted in up to eight-times-lower maintenance requirements compared to the maintenance energy demand (m) calculated from chemostat experiments. Independent of the growth rate at different stages of such a retention culture, the maximum specific oxygen consumption rate measured by mass spectrometric analysis of inlet and outlet gas oxygen content always amounted to approximately 45 μmol of O2 mg−1 of biomass-C · h−1 for both N. europaea and N. winogradskyi. When bacteria were starved for different time periods (up to 3 months), the spontaneous respiratory activity after an ammonia or nitrite pulse decreased with increasing duration of the previous starvation time period, but the observed decrease was many times faster for N. winogradskyi than for N. europaea. Likewise, the velocity of resuscitation decreased with extended time periods of starvation. The increase in oxygen consumption rates during resuscitation referred to the reviving population only, since in parallel no significant increase in the cell concentrations was detectable. N. europaea more readily recovers from starvation than N. winogradskyi, explaining the occasionally observed nitrite accumulation in the environment after ammonia becomes available. From chloramphenicol (100 μg · ml−1) inhibition experiments with N. winogradskyi, it has been concluded that energy-starved cells must have a lower protein turnover rate than nonstarved cells. As pointed out by Stein and Arp (L. Y. Stein and D. J. Arp, Appl. Environ. Microbiol. 64:1514–1521, 1998), nitrifying bacteria in soil have to cope with extremely low nutrient concentrations. Therefore, a chemostat is probably not a suitable tool for studying their physiological properties during a long-lasting nutrient shortage. In comparison with chemostats, retentostats offer a more realistic approach with respect to substrate provision and availability.  相似文献   

18.
Astaxanthin extracted from Pomacea canaliculata eggs was made into free-form astaxanthin powder (FFAP) and its effects on lipid metabolism, liver function, antioxidants activities and astaxanthin absorption rate were investigated. 45 hamsters were split into 5 groups and fed with normal diet, high-cholesterol control (0.2% cholesterol), 1.6FFAP (control+1.6% FFAP), 3.2FFAP (control+3.2% FFAP) and 8.0FFAP (control+8.0% FFAP), respectively, for 6 weeks. FFAP diets significantly decreased the liver total cholesterol, triglyceride levels and increased liver fatty acids (C20:5n3; C22:6n3) compositions. It decreased plasma alanine aminotransferase and aspartate aminotransferase. In terms of anti-oxidative activities, we found 8.0 FFAP diet significantly decreased plasma and liver malonaldehyde (4.96±1.96 μg TEP eq./mL and 1.56±0.38 μg TEP eq./g liver) and liver 8-isoprostane levels (41.48±13.69 μg 8-ISOP/g liver). On the other hand, it significantly increased liver catalase activity (149.10±10.76 μmol/min/g liver), Vitamin C (2082.97±142.23 μg/g liver), Vitamin E (411.32±81.67 μg/g liver) contents, and glutathione levels (2.13±0.42 mg GSH eq./g liver). Furthermore, 80% of astaxanthin absorption rates in all FFAP diet groups suggest FFAP is an effective form in astaxanthin absorption. Finally, astaxanthin was found to re-distribute to the liver and eyes in a dose dependent manner. Taken together, our results suggested that the appropriate addition of FFAP into high cholesterol diets increases liver anti-oxidative activity and reduces the concentration of lipid peroxidase and therefore, it may be beneficial as a material in developing healthy food.  相似文献   

19.
Seven different strains of Saccharomyces cerevisiae were tested for the ability to maintain their fermentative capacity during 24 h of carbon or nitrogen starvation. Starvation was imposed by transferring cells, exponentially growing in anaerobic batch cultures, to a defined growth medium lacking either a carbon or a nitrogen source. After 24 h of starvation, fermentative capacity was determined by addition of glucose and measurement of the resulting ethanol production rate. The results showed that 24 h of nitrogen starvation reduced the fermentative capacity by 70 to 95%, depending on the strain. Carbon starvation, on the other hand, provoked an almost complete loss of fermentative capacity in all of the strains tested. The absence of ethanol production following carbon starvation occurred even though the cells possessed a substantial glucose transport capacity. In fact, similar uptake capacities were recorded irrespective of whether the cells had been subjected to carbon or nitrogen starvation. Instead, the loss of fermentative capacity observed in carbon-starved cells was almost surely a result of energy deprivation. Carbon starvation drastically reduced the ATP content of the cells to values well below 0.1 μmol/g, while nitrogen-starved cells still contained approximately 6 μmol/g after 24 h of treatment. Addition of a small amount of glucose (0.1 g/liter at a cell density of 1.0 g/liter) at the initiation of starvation or use of stationary-phase instead of log-phase cells enabled the cells to preserve their fermentative capacity also during carbon starvation. The prerequisites for successful adaptation to starvation conditions are probably gradual nutrient depletion and access to energy during the adaptation period.  相似文献   

20.
We describe, for the first time the use of hydrogel-forming microneedle (MN) arrays for minimally-invasive extraction and quantification of drug substances and glucose from skin in vitro and in vivo. MN prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) (11.1% w/w) and poly(ethyleneglycol) 10,000 daltons (5.6% w/w) and crosslinked by esterification swelled upon skin insertion by uptake of fluid. Post-removal, theophylline and caffeine were extracted from MN and determined using HPLC, with glucose quantified using a proprietary kit. In vitro studies using excised neonatal porcine skin bathed on the underside by physiologically-relevant analyte concentrations showed rapid (5 min) analyte uptake. For example, mean concentrations of 0.16 μg/mL and 0.85 μg/mL, respectively, were detected for the lowest (5 μg/mL) and highest (35 μg/mL) Franz cell concentrations of theophylline after 5 min insertion. A mean concentration of 0.10 μg/mL was obtained by extraction of MN inserted for 5 min into skin bathed with 5 μg/mL caffeine, while the mean concentration obtained by extraction of MN inserted into skin bathed with 15 μg/mL caffeine was 0.33 μg/mL. The mean detected glucose concentration after 5 min insertion into skin bathed with 4 mmol/L was 19.46 nmol/L. The highest theophylline concentration detected following extraction from a hydrogel-forming MN inserted for 1 h into the skin of a rat dosed orally with 10 mg/kg was of 0.363 μg/mL, whilst a maximum concentration of 0.063 μg/mL was detected following extraction from a MN inserted for 1 h into the skin of a rat dosed with 5 mg/kg theophylline. In human volunteers, the highest mean concentration of caffeine detected using MN was 91.31 μg/mL over the period from 1 to 2 h post-consumption of 100 mg Proplus® tablets. The highest mean blood glucose level was 7.89 nmol/L detected 1 h following ingestion of 75 g of glucose, while the highest mean glucose concentration extracted from MN was 4.29 nmol/L, detected after 3 hours skin insertion in human volunteers. Whilst not directly correlated, concentrations extracted from MN were clearly indicative of trends in blood in both rats and human volunteers. This work strongly illustrates the potential of hydrogel-forming MN in minimally-invasive patient monitoring and diagnosis. Further studies are now ongoing to reduce clinical insertion times and develop mathematical algorithms enabling determination of blood levels directly from MN measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号