首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Isopentenyl diphosphate isomerase: A checkpoint to isoprenoid biosynthesis   总被引:1,自引:0,他引:1  
Even if the isopentenyl diphosphate (IPP) isomerases have been discovered in the 50s, it is only in the last decade that the genetical, enzymatical, structural richness and cellular importance of this large family of crucial enzymes has been uncovered. Present in all living kingdoms, they can be classified in two subfamilies: type 1 and type 2 IPP isomerases, which show clearly distinct characteristics. They all perform the regulatory isomerization of isopentenyl diphosphate into dimethylallyl diphosphate, a key rate-limiting step of the terpenoid biosynthesis, via a protonation/deprotonation mechanism. Due to their importance in the isoprenoid metabolism and the increasing interest of industry devoted to terpenoid production, it is foreseen that the biotechnological development of such enzymes should be under intense scrutiny in the near future.  相似文献   

2.
Farnesyl diphosphate (FPP) synthase (FPS: EC.2.5.1.1, EC.2.5.1.10) catalyzes the formation of FPP from isopentenyl diphosphate and dimethylallyl diphosphate via two successive condensation reactions. A cDNA designated CrFPS, encoding a protein showing high similarities with trans-type short FPS isoforms, was isolated from the Madagascar periwinkle (Catharanthus roseus). This cDNA was shown to functionally complement the lethal FPS deletion mutant in the yeast Saccharomyces cerevisiae. At the subcellular level, while short FPS isoforms are usually described as cytosolic proteins, we showed, using transient transformations of C. roseus cells with yellow fluorescent protein-fused constructs, that CrFPS is targeted to peroxisomes. This finding is discussed in relation to the subcellular distribution of FPS isoforms in plants and animals and opens new perspectives towards the understanding of isoprenoid biosynthesis.  相似文献   

3.
Prenylation reactions contribute considerably to the diversity of natural products. Polyprenylated secondary metabolites include hyperforin which is both quantitatively and pharmacologically a major constituent of the medicinal plant Hypericum perforatum (St. John's wort). Cell cultures of the related species Hypericum calycinum were found to contain a prenyltransferase activity which is likely to catalyze the first prenylation step in hyperforin biosynthesis. The enzyme was soluble and dependent on a divalent cation, with Fe2+ leading to maximum activity (Km=3.8 mM). The preferred prenyl donor was DMAPP (Km=0.46 mM) and the preferred prenyl acceptor was phlorisobutyrophenone (Km=0.52 mM). A broad pH optimum from 6.5 to 8.5 and a temperature optimum from 35 to 40 degrees C were observed. The formation of hyperforins in H. calycinum cell cultures was preceded by an increase in dimethylallyltransferase activity, with the maximum specific activity being 3.6 microkat/kg protein.  相似文献   

4.
We and others have recently shown that the major molecular target of nitrogen-containing bisphosphonate drugs is farnesyl diphosphate synthase, an enzyme in the mevalonate pathway. In an in vitro screen, we discovered a bisphosphonate, NE21650, that potently inhibited farnesyl diphosphate synthase but, unlike other N-BPs investigated, was also a weak inhibitor of isopentenyl diphosphate isomerase. NE21650 was a more potent inhibitor of protein prenylation in osteoclasts and macrophages, and a more potent inhibitor of bone resorption in vitro, than alendronate, despite very similar IC(50) values for inhibition of farnesyl diphosphate synthase. Our observations show that minor changes to the structure of bisphosphonates allow inhibition of more than one enzyme in the mevalonate pathway and suggest that loss of protein prenylation due to inhibition of more than one enzyme in the mevalonate pathway may lead to an increase in antiresorptive potency compared to bisphosphonates that only inhibit farnesyl diphosphate synthase.  相似文献   

5.
阪崎克罗诺杆菌(Cronobacter sakazakii)是一种革兰氏阴性菌,能够合成类胡萝卜素。与普遍存在的类胡萝卜素合成基因簇(crtEXYIBZ)不同,C.sakazakii类胡萝卜素合成基因簇(crtE-idiXYIBZ)中含有异戊二烯焦磷酸异构酶编码基因idi,其功能有待进一步研究。本研究构建了C.sakazakii BAA-894/pWSK29-idi、E.coli DH5α/pWSK29-EBI和DH5α/pWSK29-iEBI三株菌。通过分析发现BAA-894/pWSK29-idi的类胡萝卜素产量比BAA-894/pWSK29高出80%;DH5α/pWSK29-iEBI的番茄红素产量比DH5α/pWSK29-EBI高出60%。本研究结果说明C.sakazakii中异戊二烯焦磷酸异构酶(IDI)对于类胡萝卜素的合成起着增强作用。  相似文献   

6.
7.
Two Arabidopsis thaliana cDNAs (IPP1 and IPP2) encoding isopentenyl diphosphate isomerase (IPP isomerase) were isolated by complementation of an IPP isomerase mutant strain of Saccharomyces cerevisiae. Both cDNAs encode enzymes with an amino terminus that may function as a transit peptide for localization in plastids. At least 31 amino acids from the amino terminus of the IPP1 protein and 56 amino acids from the amino terminus of the IPP2 protein are not essential for enzymatic activity. Genomic DNA blot analysis confirmed that IPP1 and IPP2 are derived from a small gene family in A. thaliana. Based on northern analysis expression of both cDNAs occurs predominantly in roots of mature A. thaliana plants grown to the pre-flowering stage.  相似文献   

8.
Isopentenyl diphosphate isomerase (IDI, EC 5.3.3.2) catalyzes the revisable conversion of 5-carbon isopentenyl diphosphate and its isomer dimethylallyl diphosphate, which are the essential precursors for isoprenoids, including carotenoids. Here we report on the cloning and characterization of a novel cDNA encoding IDI from sweet potato. The full-length cDNA is 1155 bp with an ORF of 892 bp encoding a polypeptide of 296 amino acids, which was designated as IbIDI (GenBank Acc. No: DQ150100). The computational molecular weight is 33.8 kDa and the theoretical isoelectric point is 5.76. The deduced amino acid sequence of IbIDI is similar to the known plant IDIs. The tissue expression analysis revealed that IbIDI expressed at higher level in sweet-potato’s mature leaves and tender leaves than that in tubers, meanwhile, no expression signal could be detected in veins. Recombinant IbIDI was heterologously expressed in engineered Escherichia coli which led to the reconstruction of the carotenoid pathway. In the engineered E. coli, IbIDI could take the role of Arabidopsis IDI gene to produce the orange β-carotene. In summary, cloning and characterization of the novel IDI gene from sweet potato will facilitate our understanding of the molecular genetical mechanism of carotenoid biosynthesis and promote the metabolic engineering studies of carotenoid in sweet potato.  相似文献   

9.
In the early times of isoprenoid research, a single pathway was found for the formation of the C5 monomer, isopentenyl diphosphate (IPP), and this acetate/mevalonate pathway was supposed to occur ubiquitously in all living organisms. Now, 40 years later, a totally different IPP biosynthesis route has been detected in eubacteria, green algae and higher plants. In this new pathway glyceraldehyde 3-phosphate (GAP) and pyruvate are precursors of isopentenyl diphosphate, but not acetyl-CoA and mevalonic acid. In green tissues of three higher plants it was shown that all chloroplastbound isoprenoids (β-carotene, phytyl chains of chlorophylls and nona-prenyl chain of plastoquinone-9) are formed via the GAP/pyruvate pathway, whereas the cytoplasmic sterols are formed via the acetate/mevalonate pathway. Also, isoprene, emitted by various plants at high light conditions by action of the plastid-bound isoprene synthase, is formed via the new GAP/pyruvate pathway. Thus, in higher plants, there exist two separate and biochemically different IPP biosynthesis pathways: (1) the novel alternative GAP/pyruvate pathway apparently bound to the plastidic compartment and (2) the classical cytoplasmic acetate/mevalonate pathway. This new GAP/pyruvate pathway for IPP formation allows a reasonable interpretation of previous odd results concerning the biosynthesis of chloroplast isoprenoids, which, so far, had mainly been interpreted assuming compartmentation differences. The novel GAP/pyruvate pathway for IPP formation in plastids appears as a heritage of their prokaryotic, endosymbiotic ancestors.  相似文献   

10.
Mycobacterium tuberculosis (Mtb) has a highly complex cell wall, which is required for both bacterial survival and infection. Cell wall biosynthesis is dependent on decaprenyl diphosphate as a glyco-carrier, which is hence an essential metabolite in this pathogen. Previous biochemical studies indicated (E)-geranyl diphosphate (GPP) is required for the synthesis of decaprenyl diphosphate. Here we demonstrate that Rv0989c encodes the “missing” GPP synthase, representing the first such enzyme to be characterized from bacteria, and which presumably is involved in decaprenyl diphosphate biosynthesis in Mtb. Our investigation also has revealed previously unrecognized substrate plasticity of the farnesyl diphosphate synthases from Mtb, resolving previous discrepancies between biochemical and genetic studies of cell wall biosynthesis.  相似文献   

11.
The incorporation of [14C]mevalonate and [14C]isopentenyl diphosphate into geranylgeranyl diphosphate was investigated in in vitro systems from Cucurbita pepo (pumpkin) endosperm and from Avena sativa etioplasts. Mevalonate incorporation was effectively inhibited in the pumpkin system by geranylgeranyl diphosphate and geranylgeranyl monophosphate but less effectively by phytyl diphosphate or inorganic diphosphate. Membrane lipids, geranyllinalool, or lecithin enhanced mevalonate incorporation in the Cucurbita system. Incorporation of isopentenyl diphosphate was also enhanced by lecithin and inhibited by geranylgeranyl diphosphate in the Cucurbita system. No lipid enhancement was found in the Avena system; inhibition by GGPP required a much higher GGPP concentration than in the Cucurbita system.  相似文献   

12.
In the malaria parasite Plasmodium falciparum isoprenoid precursors are synthesised inside a plastid-like organelle (apicoplast) by the mevalonate independent 1-deoxy-d-xylulose-5-phosphate (DOXP) pathway. The last reaction step of the DOXP pathway is catalysed by the LytB enzyme which contains a [4Fe-4S] cluster. In this study, LytB of P. falciparum was shown to be catalytically active in the presence of an NADPH dependent electron transfer system comprising ferredoxin and ferredoxin-NADP(+) reductase. LytB and ferredoxin were found to form a stable protein complex. These data suggest that the ferredoxin/ferredoxin-NADP(+) reductase redox system serves as the physiological electron donor for LytB in the apicoplast of P. falciparum.  相似文献   

13.
Type 2 isopentenyl diphosphate:dimethylallyl diphosphate isomerase requires redox co-enzymes, i.e., flavin mononucleotide (FMN) and NAD(P)H, for activity, although it catalyzes a non-redox reaction. Spectrometric studies and enzyme assays under anaerobic conditions indicate that FMN is reduced through the reaction and is sufficient for activity. The sole function of NAD(P)H appears to be the reduction of FMN since it could be replaced by an alternate reducing agent. When the enzyme was reconstructed with a flavin analogue, no activity was detected, suggesting that the isomerase reaction proceeds via a radical transfer mechanism.  相似文献   

14.
A farnesyl diphosphate synthase gene (FPPS2), which contains 11 introns and 12 exons, was isolated from the apple cultivar “White Winter Pearmain”. When it was compared to our previously reported FPPS1, its each intron size was different, its each exon size was the same as that of FPPS1 gene, 30 nucleotide differences were found in its coding sequence. Based on these nucleotide differences, specific primers were designed to perform expression analysis; the results showed that it expressed in both fruit and leaf, its expression level was obviously lower than that of FPPS1 gene in fruit which was stored at 4 °C for 5 weeks. This is the first report concerning two FPPS genes and their expression comparison in apples.  相似文献   

15.
Tie-Zhong Cui 《FEBS letters》2010,584(4):652-873
The length of the isoprenoid-side chain in ubiquinone, an essential component of the electron transport chain, is defined by poly-prenyl diphosphate synthase, which comprises either homomers (e.g., IspB in Escherichia coli) or heteromers (e.g., decaprenyl diphosphate synthase (Dps1) and D-less polyprenyl diphosphate synthase (Dlp1) in Schizosaccharomyces pombe and in humans). We found that expression of either dlp1 or dps1 recovered the thermo-sensitive growth of an E. coli ispBR321A mutant and restored IspB activity and production of Coenzyme Q-8. IspB interacted with Dlp1 (or Dps1), forming a high-molecular weight complex that stabilized IspB, leading to full functionality.

Structured summary:

MINT-7385426:Dlp1 (uniprotkb:Q86YH6) and IspB (uniprotkb:P0AD57) physically interact (MI:0915) by blue native page (MI:0276)MINT-7385083, MINT-7385058:IspB (uniprotkb:P0AD57) and IspB (uniprotkb:P0AD57) bind (MI:0407) by blue native page (MI:0276)MINT-7385413:Dlp1 (uniprotkb:O13851) and IspB (uniprotkb:P0AD57) physically interact (MI:0915) by blue native page (MI:0276)MINT-7385024:IspB (uniprotkb:P0AD57) physically interacts (MI:0915) with Dps1 (uniprotkb:O43091) by pull down (MI:0096)MINT-7385041:IspB (uniprotkb:P0AD57) physically interacts (MI:0915) with Dlp1 (uniprotkb:O13851) by pull down (MI:0096)MINT-7385388:IspB (uniprotkb:P0AD57) and Dps1 (uniprotkb:O43091) physically interact (MI:0915) by blue native page (MI:0276)  相似文献   

16.
The volatile oil from peppermint (Mentha piperita L.) is composed primarily of monoterpenes with less than 2% sesquiterpenes. However, radioactivity from mevalonate-2-14C is incorporated into caryophyllene and other sesquiterpene hydrocarbons much more extensively than into monoterpenes by peppermint cuttings. Both mono- and sesquiterpenes show maximum incorporation of label after 6 hr (0·03% vs. 0·33% of the physiological isomer) and lose 75% of the incorporated label after an additional 6 hr. Caryophyllene derived from mevalonate-2-14C after 6 hr of incorporation was chemically degraded. The isoprenoid origin of caryophyllene was confirmed, and preferential labelling of the isopentenyl pyrophosphate derived portions of the molecule was noted. On the basis of such evidence it appears that separate sites may exist for the biosynthesis of mono- and sesquiterpenes and that an endogenous dimethylallyl pyrophosphate pool may participate in the biosynthesis of sesquiterpenes in peppermint.  相似文献   

17.
Zhang C  Liu L  Xu H  Wei Z  Wang Y  Lin Y  Gong W 《Journal of molecular biology》2007,366(5):1437-1446
Type I isopentenyl diphosphate (IPP): dimethylally diphosphate (DMAPP) isomerase is an essential enzyme in human isoprenoid biosynthetic pathway. It catalyzes isomerization of the carbon-carbon double bonds in IPP and DMAPP, which are the basic building blocks for the subsequent biosynthesis. We have determined two crystal structures of human IPP isomerase I (hIPPI) under different crystallization conditions. High similarity between structures of human and Escherichia coli IPP isomerases proves the conserved catalytic mechanism. Unexpectedly, one of the hIPPI structures contains a natural substrate analog ethanol amine pyrophosphate (EAPP). Based on this structure, a water molecule is proposed to be the direct proton donor for IPP and different conformations of IPP and DMAPP bound in the enzyme are also proposed. In addition, structures of human IPPI show a flexible N-terminal alpha-helix covering the active pocket and blocking the entrance, which is absent in E. coli IPPI. Besides, the active site conformation is not the same in the two hIPPI structures. Such difference leads to a hypothesis that substrate binding induces conformational change in the active site. The inhibition mechanism of high Mn(2+) concentrations is also discussed.  相似文献   

18.
Bajguz A  Asami T 《Phytochemistry》2005,66(15):1787-1796
The effect of the brassinosteroid (BR) 24-epibrassinolide (epiBL; 10(-13)-10(-6)M) on growth and levels of chlorophylls, carotenoids, sugars and protein in Wolffia arrhiza after 7 days of cultivation is reported. Application of epiBL to W. arrhiza cultures stimulates the growth and increases the content of photosynthetic pigments, sugar and protein. The greatest effect of epiBL is observed at a concentration of 10(-9)M. We tested the action of Brz2001, a specific BR biosynthesis inhibitor, in the range of 10(-6)-10(-4)M. Addition of Brz2001 to W. arrhiza cultures inhibits their growth after 7 days of cultivation. The inhibition of growth could be reversed by the addition of epiBL. Moreover, there was not complete recovery to the level of control, especially at 5 x 10(-5)-10(-4)M Brz2001. The effects of treatment with 10(-9)M epiBL mixed with a mevalonate pathway inhibitor (mevinolin), or a 2-methylerythritol 4-phosphate pathway inhibitor (clomazone), were also investigated. Mevinolin did not inhibit growth of W. arrhiza after 7 days of cultivation. However, clomazone did. Addition of epiBL overcame this inhibition. These results suggest that the mevalonate pathway may not function well in W. arrhiza and that biosynthesis of BRs through the non-mevalonate pathway in W. arrhiza could be possible.  相似文献   

19.
Treatment of a Cinchona robusta How. cell suspension culture with a homogenate of Phytophthora cinnamomi resulted in cessation of growth and a rapid induction of the biosynthesis of anthraquinone-type phytoalexins. The strongest induction of anthraquinone biosynthesis was obtained when the elicitor was added in the early growth phase of the growth cycle. The accumulation of anthraquinones was accompanied by a tri-phasic response in the activity of isopentenyl diphosphate (IPP) isomerase (EC 5.3.3.2): phase I was characterised by a rapid induction of activity, reaching a maximum at 12 h after elicitation. During phase II, IPP isomerase rapidly decreased to levels below those found in untreated cells. At phase III, IPP isomerase activity increased again, reaching a second maximum at about 72 h after elicitation. During phase I, the activity of farnesyl diphosphate synthase (EC 2.5.1.10) was found to be suppressed. Extraction and assay conditions were optimised for IPP isomerase. The presence of Mn2+ in the incubation buffer resulted in a marked increase in the activity of the enzymes obtained from cells in phase I. The induction of IPP isomerase in combination with a concomitant inhibition of farnesyl diphosphate synthase might result in an efficient channeling of C5-precursors into phytoalexin biosynthesis. Received: 23 August 1996 / Accepted: 20 March 1997  相似文献   

20.
Phosphoglucose isomerase (PGI) is an enzyme of glycolysis that interconverts glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P) but, outside the cell, is a multifunctional cytokine. High-resolution crystal structures of the enzyme from mouse have been determined in native form and in complex with the inhibitor erythrose 4-phosphate, and with the substrate glucose 6-phosphate. In the substrate-bound structure, the glucose sugar is observed in both straight-chain and ring forms. This structure supports a specific role for Lys518 in enzyme-catalyzed ring opening and we present a "push-pull" mechanism in which His388 breaks the O5-C1 bond by donating a proton to the ring oxygen atom and, simultaneously, Lys518 abstracts a proton from the C1 hydroxyl group. The reverse occurs in ring closure. The transition from ring form to straight-chain substrate is achieved through rotation of the C3-C4 bond, which brings the C1-C2 region into close proximity to Glu357, the base catalyst for the isomerization step. The structure with G6P also explains the specificity of PGI for glucose 6-phosphate over mannose 6-isomerase (M6P). To isomerize M6P to F6P requires a rotation of its C2-C3 bond but in PGI this is sterically blocked by Gln511.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号