首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthracnose, caused by the ascomycete fungus Colletotrichum scovillei, is a destructive disease in pepper. The fungus germinates and develops an infection structure called an appressorium on the plant surface. Several signaling cascades, including cAMP-mediated signaling and mitogen-activated protein kinase (MAPK) cascades, are involved in fungal development and pathogenicity in plant pathogenic fungi, but this has not been well studied in the fruit-infecting fungus C. scovillei. Ste50 is an adaptor protein interacting with multiple upstream components to activate the MAPK cascades. Here, we characterized the CsSTE50 gene of C. scovillei, a homolog of Magnaporthe oryzae MST50 that functions in MAPK cascades, by gene knockout. The knockout mutant ΔCsste50 had pleiotropic phenotypes in development and pathogenicity. Compared with the wild-type, the mutants grew faster and produced more conidia on regular agar but were more sensitive to osmotic stress. On artificial and plant surfaces, the conidia of the mutant showed significantly reduced germination and failed to form appressoria. The mutant was completely non-pathogenic on pepper fruits with or without wounds, indicating that pre-penetration and invasive growth were both defective in the mutant. Our results show that the adaptor protein CsSTE50 plays a role in vegetative growth, conidiation, germination, appressorium formation, and pathogenicity in C. scovillei.  相似文献   

2.
Pyrimorph is a novel fungicide with high activity against the plant pathogen Phytophthora capsici. We investigated the risk that P. capsici can develop resistance to pyrimorph. The baseline sensitivities of 226 P. capsici isolates, tested by mycelial growth inhibition, showed a unimodal distribution with a mean EC50 value of 1.4261 (±0.4002) µg/ml. Twelve pyrimorph-resistant mutants were obtained by repeated exposure to pyrimorph in vitro with a frequency of approximately 1×10−4. The resistance factors of the mutants ranged from 10.67 to 56.02. Pyrimorph resistance of the mutants was stable after 10 transfers on pyrimorph-free medium. Fitness in sporulation, cystospore germination, and pathogenicity in the pyrimorph-resistant mutants was similar to or less than that in the parental wild-type isolates. On detached pepper leaves and pepper plants treated with the recommended maximum dose of pyrimorph, however, virulence was greater for mutants with a high level of pyrimorph resistance than for the wild type. The results suggest that the risk of P. capsici developing resistance to pyrimorph is low to moderate. Among mutants with a high level of pyrimorph resistance, EC50 values for pyrimorph and CAA fungicides flumorph, dimethomorph, and mandipropamid were positively correlated. This indicated that point mutations in cellulose synthase 3 (CesA3) may confer resistance to pyrimorph. Comparison of CesA3 in isolates with a high level of pyrimorph resistance and parental isolates showed that an amino acid change from glutamine to lysine at position 1077 resulted in stable, high resistance in the mutants. Based on the point mutations, an allele-specific PCR method was developed to detect pyrimorph resistance in P. capsici populations.  相似文献   

3.
【目的】非核糖体多肽合成酶(NRPS)在植物病原真菌与其寄主互作过程中发挥着重要作用,明确Vm NRPS12基因在苹果树腐烂病菌致病过程中的功能,将为今后深入研究苹果树腐烂病菌NRPS作用机制提供理论依据。【方法】基于苹果树腐烂病菌全基因组数据,得到VmNRPS12基因。运用qRT-PCR技术分析VmNRPS12在侵染初期的表达水平,利用Double-joint PCR和PEG介导的原生质体转化获得该基因抗潮霉素的突变体,对突变体进行PCR检测及Southern blot验证得到敲除突变体,进一步通过重新导入该基因全长片段获得互补突变体,最后对野生型、敲除突变体和互补突变体进行菌落、产孢及致病力观察,对检测数据用SPSS软件进行差异显著性分析。【结果】定量分析显示该基因在侵染初期显著上调表达,且接种48 h后的表达量是对照的138.6倍。该基因的敲除突变体在营养生长及产孢方面与野生型菌株03-8相比无显著性差异,但致病力与野生型菌株03-8相比显著减弱,且互补突变体致病力近似恢复至野生型水平。【结论】VmNRPS12基因与苹果树腐烂病菌致病性相关。  相似文献   

4.
Colletotrichum orbiculare is the causative agent of anthracnose disease on cucurbitaceous plants. Several signaling pathways, including cAMP–PKA and mitogen-activating protein kinase (MAPK) pathways are involved in the infection-related morphogenesis and pathogenicity of C. orbiculare. However, upstream regulators of these pathways for this species remain unidentified. In this study, CoIRA1, encoding RAS GTPase activating protein, was identified by screening the Agrobacterium tumefaciens-mediated transformation (AtMT) mutant, which was defective in the pathogenesis of C. orbiculare. The coira1 disrupted mutant showed an abnormal infection-related morphogenesis and attenuated pathogenesis. In Saccharomyces cerevisiae, Ira1/2 inactivates Ras1/2, which activates adenylate cyclase, leading to the synthesis of cAMP. Increase in the intracellular cAMP levels in coira1 mutants and dominant active forms of CoRAS2 introduced transformants indicated that CoIra1 regulates intracellular cAMP levels through CoRas2. Moreover, the phenotypic analysis of transformants that express dominant active form CoRAS2 in the comekk1 mutant or a dominant active form CoMEKK1 in the coras2 mutant indicated that CoRas2 regulates the MAPK CoMekk1–Cmk1 signaling pathway. The CoRas2 localization pattern in vegetative hyphae of the coira1 mutant was similar to that of the wild-type, expressing a dominant active form of RFPCoRAS2. Moreover, we demonstrated that bimolecular fluorescence complementation (BiFC) signals between CoIra1 and CoRas2 were detected in the plasma membrane of vegetative hyphae. Therefore, it is likely that CoIra1 negatively regulates CoRas2 in vegetative hyphae. Furthermore, cytological analysis of the localization of CoIraI and CoRas2 revealed the dynamic cellular localization of the proteins that leads to proper assembly of F-actin at appressorial pore required for successful penetration peg formation through the pore. Thus, our results indicated that CoIra1 is involved in infection-related morphogenesis and pathogenicity by proper regulation of cAMP and MAPK signaling pathways through CoRas2.  相似文献   

5.
《Mycoscience》2020,61(2):85-94
A mitogen-activated protein kinase (MAPK) signaling pathway regulates specialized cellular responses to external stimuli. In Bipolaris maydis, a Chk1 MAPK orthologous to Fus3/Kss1 MAPKs of Saccharomyces cerevisiae is known to regulate various developmental processes, including the formation of appressoria. However, upstream factors that regulate the Chk1 cascade have not been well clarified. In this study, we identified and characterized the BmSte50 gene, an ortholog of the yeast Ste50 in B. maydis. Our yeast two-hybrid assay indicated that BmSte50 interacts with a MAPK kinase kinase BmSte11, a component of the Chk1 cascade. ΔBmSte50 strains exhibited a loss of pathogenicity due to a lack of appressorial formation. The mutants also showed a reduction in melanization, conidial production, and aerial-mycelial and sexual development. Such phenotypes of the mutants were consistent with those of the Chk1 cascade gene mutants previously reported. In addition, ΔBmSte50 strains indicated lower conidial germination efficiency than the wild type. Notably, a significant number of ΔBmSte50 conidia could be germinated, while the Chk1 cascade gene mutants were reported to lack conidial germination ability. Our results suggested that BmSte50 may act as an adaptor protein for the Chk1 cascade and is involved in the regulation of various cellular processes.  相似文献   

6.
7.
8.
In Colletotrichum lagenarium, RPK1 encoding the regulatory subunit of PKA is required for pathogenicity. From the rpkl mutant that forms small colonies, we isolated three growth-suppressor mutants. All rpk1-suppressor mutants are nonpathogenic and contain amino acid changes in the PKA catalytic subunit Cpkl. To assess the roles of cyclic AMP (cAMP) signaling in detail, we generated knockout mutants of CPK1 and the adenylate cyclase gene CAC1. The cpk1 and cac1 mutants are nonpathogenic on cucumber. Interestingly, both of the mutants germinated poorly, suggesting involvement of cAMP signaling in germination. Germination defect in the cpk1 and cac1 mutants is partially rescued by incubation of the conidia at lower concentrations. Germinating conidia of the cpk1 and cac1 mutants can form appressoria, but the appressoria formed by them are nonfunctional, like those of the rpk1 mutant. Cytological analysis indicates that the appressoria of the cpk1 mutant contain larger numbers of lipid bodies compared with the wild type, whereas lipid levels in the rpk1 mutants are lower, suggesting cAMP-mediated regulation of lipid metabolism for appressorium functionality. Furthermore, the cpk1 and cacl mutants have a defect in infectious growth in plant. In C. lagenarium, Cmkl mitogen-activated protein kinase (MAPK) regulates germination, appressorium formation, and infectious growth. These results suggest that cAMP signaling controls multiple steps of fungal infection in cooperative regulation with Cmkl MAPK in C. lagenarium.  相似文献   

9.
Plant pathogens secrete effector proteins to suppress plant immunity. However, the mechanism by which oomycete pathogens deliver effector proteins during plant infection remains unknown. In this report, we characterized a Phytophthora sojae vps1 gene. This gene encodes a homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene vps1 that mediates budding of clathrin-coated vesicles from the late Golgi, which are diverted from the general secretory pathway to the vacuole. PsVPS1-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation and were viable but had reduced extracellular protein activity. The PsVPS1-silenced mutants showed impaired hyphal growth, and the shapes of the vacuoles were highly fragmented. Silencing of PsVPS1 affected cyst germination as well as the polarized growth of germinated cysts. Silenced mutants showed impaired invasion of susceptible soybean plants regardless of wounding. These results suggest that PsVPS1 is involved in vacuole morphology and cyst development. Moreover, it is essential for the virulence of P. sojae and extracellular protein secretion.  相似文献   

10.
Ustilago maydis, a pathogen of maize, is a useful model for the analysis of mating, pathogenicity, and the morphological transition between budding and filamentous growth in fungi. As in other fungi, these processes are regulated by conserved signaling mechanisms, including the cyclic AMP (cAMP)/protein kinase A (PKA) pathway and at least one mitogen-activated protein kinase (MAP kinase) pathway. A current challenge is to identify additional factors that lie downstream of the cAMP pathway and that influence morphogenesis in U. maydis. In this study, we identified suppressor mutations that restored budding growth to a constitutively filamentous mutant with a defect in the gene encoding a catalytic subunit of PKA. Complementation of one suppressor mutation unexpectedly identified the ras2 gene, which is predicted to encode a member of the well-conserved ras family of small GTP-binding proteins. Deletion of the ras2 gene in haploid cells altered cell morphology, eliminated pathogenicity on maize seedlings, and revealed a role in the production of aerial hyphae during mating. We also used an activated ras2 allele to demonstrate that Ras2 promotes pseudohyphal growth via a MAP kinase cascade involving the MAP kinase kinase Fuz7 and the MAP kinase Ubc3. Overall, our results reveal an additional level of crosstalk between the cAMP signaling pathway and a MAP kinase pathway influenced by Ras2.  相似文献   

11.
The production of asexual spores plays a critical role in rice blast disease. However, the mechanisms of the genes involved in the conidiogenesis pathway are not well understood. F-box proteins are specific adaptors to E3 ubiquitin ligases that determine the fate of different substrates in ubiquitin-mediated protein degradation and play diverse roles in fungal growth regulation. Here, we identify a Saccharomyces cerevisiae Grr1 homolog, MoGrr1, in Magnaporthe oryzae. Targeted disruption of Mogrr1 resulted in defects in vegetative growth, melanin pigmentation, conidial production, and resistance to oxidative stress, and these mutants consequently exhibited attenuated virulence to host plants. Microscopy studies revealed that the inability to form conidiophores is responsible for the defect in conidiation. Although the Mogrr1 mutants could develop melanized appressoria from hyphal tips, the appressoria were unable to penetrate into plant tissues due to insufficient turgor pressure within the appressorium, thereby attenuating the virulence of the mutants. Quantitative RT-PCR results revealed significantly decreased expression of chitin synthase-encoding genes, which are involved in fungal cell wall integrity, in the Mogrr1 mutants. The Mogrr1 mutants also displayed reduced expression of central components of the MAP kinase and cAMP signaling pathways, which are required for appressorium differentiation. Furthermore, domain complementation analysis indicated that two putative protein-interacting domains in MoGrr1 play essential roles during fungal development and pathogenicity. Taken together, our results suggest that MoGrr1 plays essential roles in fungal development and is required for the full virulence of M. oryzae.  相似文献   

12.
The heterotrimeric G-protein pathway regulates cellular responses to a wide range of extracellular signals in virtually all eukaryotes. It also controls various developmental processes in the oomycete plant pathogen Phytophthora infestans, as was concluded from previous studies on the role of the G-protein α-subunit PiGPA1 in this organism. The expression of the P. infestans G-protein β-subunit gene Pigpb1 was induced in nutrient-starved mycelium before the onset of sporangium formation. The gene was hardly expressed in mycelium incubated in rich growth medium. The introduction of additional copies of Pigpb1 into the genome led to silencing of the gene and resulted in transformants deficient in PiGPB1. These Pigpb1-silenced mutants formed very few asexual spores (sporangia) when cultured in rye sucrose medium and produced a denser mat of aerial mycelium than the wild type. Partially Pigpb1-silenced mutants showed intermediate phenotypes with regard to sporulation, and a relatively large number of their sporangia were malformed. The results show that PiGPB1 is important for vegetative growth and sporulation and, therefore, for the pathogenicity of this organism.  相似文献   

13.
14.
【背景】暹罗炭疽菌(Colletotrichum siamense)是一种重要的病原真菌,可以引起炭疽病,给全球橡胶产业带来巨大的经济损失。Zn2Cys6型转录因子是真菌特有的锌指类转录因子,通常参与调控真菌的生长发育过程。【目的】在暹罗炭疽菌中鉴定了一个与稻瘟病菌Gcc1同源的Zn2Cys6型转录因子CsGcc1,并研究其功能。【方法】根据同源重组原理构建CsGCC1的基因敲除突变体,并通过营养生长、H2O2敏感性、分生孢子产生及萌发、玻璃纸试验和致病性分析,明确CsGcc1的功能。【结果】CsGcc1编码一个含有646个氨基酸的蛋白,而且含有一个GAL4结构域。CsGCC1基因在培养36 h的菌丝及分生孢子中具有较高的表达量。CsGCC1基因敲除突变株营养生长速率降低且对H2O2更加敏感。相较于野生型菌株,突变株的分生孢子产量、萌发率及附着胞形成率均降低。此外,CsGCC1的敲除可以明显降低分生孢子的穿透能力,突变株对橡胶叶片的致病力减弱。【结论】Zn2Cys6型转录因子CsGcc1参与调控暹罗炭疽菌的营养生长、氧化应激、分生孢子发育及致病性等过程。  相似文献   

15.
16.
17.
Burkholderia cenocepacia is a member of the Burkholderia cepacia complex, a group of metabolically versatile bacteria that have emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Previously a screen of transposon mutants in a rat pulmonary infection model identified an attenuated mutant with an insertion in paaE, a gene related to the phenylacetic acid (PA) catabolic pathway. In this study, we characterized gene clusters involved in the PA degradation pathway of B. cenocepacia K56-2 in relation to its pathogenicity in the Caenorhabditis elegans model of infection. We demonstrated that targeted-insertion mutagenesis of paaA and paaE, which encode part of the putative PA-coenzyme A (CoA) ring hydroxylation system, paaZ, coding for a putative ring opening enzyme, and paaF, encoding part of the putative beta-oxidation system, severely reduces growth on PA as a sole carbon source. paaA and paaE insertional mutants were attenuated for virulence, and expression of paaE in trans restored pathogenicity of the paaE mutant to wild-type levels. Interruption of paaZ and paaF slightly increased virulence. Using gene interference by ingested double-stranded RNA, we showed that the attenuated phenotype of the paaA and paaE mutants is dependent on a functional p38 mitogen-activated protein kinase pathway in C. elegans. Taken together, our results demonstrate that B. cenocepacia possesses a functional PA degradation pathway and that the putative PA-CoA ring hydroxylation system is required for full pathogenicity in C. elegans.  相似文献   

18.
19.
AtGALK2 belongs to galactokinase of GHMP family in Arabidopsis thaliana. Two homozygous T-DNA insertion mutants (Atgalk2-1 and Atgalk2-2) of the AtGALK2 gene were identified. The AtGALK2 gene was highly expressed in flowers and roots, but less in stems, leaves and petioles. It was found that the expression of AtGALK2 gene was induced by NaCl and ABA. The two Atgalk2 mutants showed higher germination activity when treated with ABA and NaCl than wild type (Col-0). Through comparing the results of seed germination, root growth, stomatal aperture, water loss, and proline accumulation between the Atgalk2 mutants and Col-0, it was found that Atgalk2 mutants showed less sensitive to ABA than Col-0. The expression levels of ABI1, ABI2, RAB18, ABF3, RD22, RD29A, and RD29B in the Atgalk2 mutants were higher than in Col-0. However, the expression level of OST1 in the Atgalk2 mutants was lower than in Col-0. Taken together, these results suggested AtGALK2 was required for abscisic acid regulation of seed germination, root growth and gene expression, and was involved in salt and osmotic stress response in the early development stage. This study provides important clues to galactokinase activities of GHMP family in ABA signaling and plant development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号