首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fritz  Geiser  Linda S.  Broome 《Journal of Zoology》1991,223(4):593-602
Mountain pygmy possums Burramys parvus (40 g) disappear from their Mt. Kosciusko boulder fields from May to October/November and it is assumed that they hibernate during this time. However, laboratory studies did not observe the characteristic hibernation pattern of placentals, which, throughout the hibernation season, show long bouts of torpor (several days to weeks) that are interrupted by short (< 1 day) normothermic periods. We investigated the pattern of hibernation in juvenile (N = 8) and adult (N = 8) male and female B. parvus in the laboratory at an air temperature that was similar to that in the field during winter. Adults commenced hibernation earlier and hibernated longer (about seven months) than juveniles (about five months). All adult individuals hibernated whereas only six of the eight juveniles did so. Hibernating animals showed distinct seasonal changes in the duration of torpor bouts. Torpor bouts were short (about five days) at the beginning, long (12–20 days) during the middle, and short again at the end of the hibernation season. Normothermic periods were usually shorter than one day. The pattern of the seasonal change of torpor bout duration differed between juveniles and adults and between sexes. Body temperature during mid-hibernation was regulated at about 2 ° c in females and 3 ° C in males and the metabolic rate was similar to that of hibernating placentals.  相似文献   

2.
Woolly dormice, Dryomys laniger Felten and Storch (Senckenbergiana Biol 49(6):429–435, 1968), are a small (20–30 g), omnivorous (mainly insectivorous), nocturnal glirid species endemic to Turkey. Although woolly dormice have been assumed to hibernate during winter, no information exists on body temperature patterns and use of torpor in the species. In the present study, we aimed to determine body temperature patterns and use of torpor in woolly dormice under controlled laboratory conditions. Accordingly, body temperature (Tb) of woolly dormice was recorded using surgically implanted Thermochron iButtons, small and inexpensive temperature-sensitive data loggers. Woolly dormice exhibited robust, unimodal daily Tb rhythmicity during the euthermic stage before the beginning of hibernation. They displayed short torpor before they began hibernation, although the tendency to enter short torpor was different among individuals. Woolly dormice began hibernation within 1–3 days after exposure to cold and darkness, i.e., on October 22–24, and ended hibernation in the first half of April. Hibernation consisted of a sequence of multiday torpor bouts, interrupted by euthermic intervals. Thus, the patterns of hibernation in woolly dormice were similar to those observed in classical hibernating mammals.  相似文献   

3.
《Mammalian Biology》2014,79(3):208-214
Little is known about strategies employed by small mammals to reduce energy expenditure during the summer. To understand whether ambient conditions impact euthermic energy demands in a small free-living hibernator, we measured metabolic rate of hazel dormice (Muscardinus avellanarius) in the field. Furthermore, we aimed to reveal which variables influence torpor use. Our results show that hazel dormice altered euthermic energy expenditure during summer but not as expected as a response to environmental conditions. Euthermic resting metabolic rate was lowest directly after emergence from hibernation and increased by about 95% until the end of August. A considerable part of this increase was presumably caused by the changing influence of gender and rain on energy demands during different months, variation in food quality and quantity, and reversible size changes of organs that had been atrophied during hibernation. Torpor use in hazel dormice occurred more frequently when it was colder, earlier during the day, and in lighter individuals. Torpor was used routinely in males and non-reproductive females. We show that torpor is used more frequently than previously suggested by studies that only used visual proof of torpor use by surveying nest boxes.  相似文献   

4.
Torpid common dormice (Muscardinus avellanarius) were found in nestboxes during all the activity period from early April until late October. Prevalence of torpor among dormice was highest in spring, decreased considerably in summer and increased again in October. The proportion of adult dormice that were torpid was inversely related to mean monthly air temperature, except in September, when dormice prepare for hibernation by accumulating fat reserves. In spring and summer, torpid dormice were found when ambient temperature was up to 14–15 °C and in the arousal phase of torpor – up to 19–20 °C. In autumn, dormice were active at much lower ambient temperatures compared to spring and summer, and only dormice that were fat enough and ready for hibernation were torpid. Torpor bouts usually lasted only until noon, but also in the afternoon during persistently low ambient temperatures in April and October. In April–July, torpor was more frequent among adult males than females (75% vs. 46%), and pregnant females were never found in deep torpor. Prevalence of torpor among young-of-the-year was lower compared to adult dormice at the same time. In October, the average weight of torpid young-of-the-year dormice was significantly higher compared to the weight of active dormice (22.3 vs. 17.5 g).

Zusammenfassung

Tagestorpor bei frei lebenden Haselmäusen (Muscardinus avellanarius) in LitauenHaselmäuse (Muscardinus avellanarius) im Torpor wurden während der gesamten aktiven Saison zwischen zeitigem April und Ende Oktober in Nistkästen gefunden. Im Frühjahr war die Torporfrequenz am höchsten, während des Sommers ging sie beträchtlich zurück, und im Oktober stieg sie wieder deutlich. Der Anteil an Haselmäusen im Torpor war umgekehrt abhängig von der mittleren Monatslufttemperatur, mit Ausnahme des Septembers, wo sich die Haselmäuse Fettreserven in Vorbereitung des Winterschlafes anlegen. Während des Frühlings und des Sommers konnten Haselmäuse im Torpor gefunden werden, wenn die Umgebungstemperatur bis 14–15 °C war, und in der Aufwachphase bei Temperaturen bis 19–20 °C. Im Herbst waren die Haselmäuse bei viel tieferen Temperaturen als im Sommer oder Frühjahr aktiv und nur die Haselmäuse die fett genug waren, um in den Winterschlaf gehen zu können, waren lethargisch. Die Torporphasen dauerten in der Regel nur bis zum Mittag, aber im April und Oktober während lang anhaltenden tiefen Umgebungstemperaturen auch bis in den Nachmittag hinein. Zwischen April und Juli konnten mehr adulte Männchen als Weibchen im Torpor nachgewiesen werden (75% vs 46%). Tragende Weibchen waren niemals im tiefen Torpor zu finden. Die Torporfrequenz war bei Haselmäusen in ihrem ersten Lebensjahr geringer als bei adulten im selben Zeitraum. Im Oktober war bei den lethargischen Jungtieren des Jahres das Durchschnittsgewicht höher als bei den aktiven Haselmäusen (22.3 vs. 17.5 g).  相似文献   

5.
Ageing can progress at different rates according to an individual's physiological state. Natural hypothermia, including torpor and hibernation, is a common adaptation of small mammals to survive intermittent or seasonal declines in environmental conditions. In addition to allowing energy savings, hypothermia and torpor have been associated with retarded ageing and increased longevity. We tested the hypothesis that torpor use slows ageing by measuring changes in the relative telomere length (RTL) of Djungarian hamsters, Phodopus sungorus, a highly seasonal rodent using spontaneous daily torpor, over 180 days of exposure to a short-day photoperiod and warm (approx. 20°C) or cold (approx. 9°C) air temperatures. Multi-model inference showed that change in RTL within individuals was best explained by positive effects of frequency of torpor use, particularly at low body temperatures, as well as the change in body mass and initial RTL. Telomere dynamics have been linked to future survival and proposed as an index of rates of biological ageing. Our results therefore support the hypothesis that daily torpor is associated with physiological changes that increase somatic maintenance and slow the processes of ageing.  相似文献   

6.
为研究冬眠季节的光照条件对贮脂类冬眠动物入眠的影响,在达乌尔黄鼠腹腔埋植体温记录元件iButton,在体重高峰后的下降阶段置于5℃和12L:12D的光照条件下,观察测定其冬眠模式和能量消耗。达乌尔黄鼠冬眠模式出现深冬眠型、少冬眠型和不冬眠型,蛰眠阵包括深冬眠阵、短冬眠阵和日眠阵。不同冬眠阵中最低体温、冬眠阵的持续时间、阵间产热的持续时间、冷却速率和复温速率差异显著;阵间产热的最高体温基本相同。平均每日能量消耗在日眠阵中最高、短冬眠阵中居中、深冬眠阵中最低。入眠时间多集中于黑暗时相,觉醒时间多集中于光照时相。本实验结果提示,在冬眠季节施加光照黑暗循环条件可减少达乌尔黄鼠冬眠的时间,升高阵间最低体温,缩短冬眠阵与阵间产热的持续时间,降低复温速率;增加冬眠期间能量消耗。入眠与觉醒受光照条件影响,具有明显的光暗节律。  相似文献   

7.
Caroline J.  Jones  Fritz  Geiser 《Journal of Zoology》1992,227(1):101-108
Deep and prolonged torpor in marsupials is only known from the pygmy possums, family Burramyidae. We investigated the pattern of torpor in the feathertail glider Acrobates pygmaeus (Acrobatidae) to determine whether members of other marsupial families also possess the ability of remaining torpid for several days with body temperatures (Tb) approaching 0°C. At high air temperatures (Ta) of 15 and 20°C, A. pygmaeus usually exhibited daily torpor. Torpor bouts at Ta 12°C usually lasted for about 2˙5 days and at Ta 8°C up to 5˙5 days. The metabolic rate during torpor was reduced to about 1% of that in normothermic, resting individuals. The Tb during torpor was regulated at about 2°C when Ta fell below about 0˙8 °C. Arousal from torpor was rapid and the mean fastest rewarming rate was 0˙88°C/min. While A. pygmaeus exhibited deep and prolonged torpor, its pattern differed somewhat from deep hibernation. Acrobates pygmaeus did not show prehibernation fattening and a subsequent prolonged hibernation period and it appears that prolonged torpor is used only in emergency situations.  相似文献   

8.
To assess the changes in thermoregulatory characteristics that accompany the seasonal expression of torpor we measured seasonal differences in body mass adjustments, body temperature (T b) and metabolic rate (MR) in both summer- and winter-acclimated individuals from a species of food-storing hibernator, the Eastern chipmunk (Tamias striatus). Torpor occurred only in the winter and was associated with lower normothermic T b, during inter-bout arousal periods than in the summer. Chipmunks increased body mass before the initiation of torpor in winter, and steadily lost mass as the hibernation season progressed. Torpor expression was correlated to initial mass gain, with the individuals who showed the largest mass increase in the fall showing the highest degree of torpor. Acclimation to winter-like conditions produced a decline in normothermic MR at all ambient temperatures examined. The findings indicate that torpor expression is accompanied by a decrease in T b and MR during normothermy, indicating that a conservation of energy metabolism occurs, not only in torpor, but also during the inter-bout arousal periods.  相似文献   

9.
Under laboratory conditions, rock elephant shrews, Elephantulus myurus, use daily torpor under both short and long photoperiod acclimation. However, use of heterothermy often differs under field and laboratory conditions. We investigated the use of torpor in free-ranging elephant shrews from May 2001 to May 2002. The elephant shrews were capable of daily torpor throughout the year, with torpor most prevalent during winter. We recorded two torpor bouts during early summer (November). We recorded a total of 467 torpor bouts during the year. The mean torpor minimum body temperature (Tbmin) for the whole year was 15.3 degrees +/-4.4 degrees C, and the mean bout length was 8.6+/-3.5 h. These values were in the range expected for daily heterotherms. However, there was some marginal overlap with hibernation characteristics; a few torpor bouts were longer than 24 h in duration, and Tbmin decreased below 10 degrees C. Torpor was highly correlated with low ambient temperature and photoperiod. Torpor was also correlated with invertebrate abundance after controlling for photoperiod effects. During the year in which this study was conducted, the rainfall was 14% below long-term average. Historical rainfall records show that summer rainfall during strong El Nino years is up to 40% below the long-term average. During these drought years, the frequency of summer torpor may be higher, highlighting the need for long-term physiological data in free-ranging animals.  相似文献   

10.
Torpor is usually associated with low ambient temperatures (T(a)) in winter, but in some species it is also used in summer, often in response to limited food availability. Since the seasonal expression of torpor of both placental and marsupial hibernators in the wild is poorly documented by quantitative data, we investigated torpor and activity patterns of the eastern pygmy-possum Cercartetus nanus (17.4 g) over two seasons. We used radio telemetry to track animals during winter (n=4) and summer (n=5) in a warm-temperate habitat and found that torpor was used in both seasons. In winter all animals entered periods of short-term hibernation (from 5 to 20 days) containing individual torpor bouts of up to 5.9 days. In summer, torpor bouts were always <1 day in duration, only used by males and were not related to daily mean T(a). Pygmy-possums entered torpor at night as T(a) cooled, and rewarmed during the afternoon as T(a) increased. Individuals interspersed torpor bouts with nocturnal activity and the percentage of the night animals were active was the same in summer and winter. Our study provides the first information on torpor patterns in free-ranging C. nanus, and shows that the use of torpor throughout the year is important for energy management in this species.  相似文献   

11.
Animals have to adapt to seasonal variations in food resources and temperature. Hibernation is one of the most efficient means used by animals to cope with harsh winter conditions, wherein survival is achieved through a significant decrease in energy expenditure. The hibernation period is constituted by a succession of torpor bouts (hypometabolism and decrease in body temperature) and periodic arousals (eumetabolism and euthermia). Some species feed during these periodic arousals, and thus show different metabolic adaptations to fat-storing species that fast throughout the hibernation period. Our study aims to define these metabolic adaptations, including hormone (insulin, glucagon, leptin, adiponectin, GLP-1, GiP) and metabolite (glucose, free fatty acids, triglycerides, urea) profiles together with body composition adjustments. Syrian hamsters were exposed to varied photoperiod and temperature conditions mimicking different phases of the hibernation cycle: a long photoperiod at 20 °C (LP20 group), a short photoperiod at 20 °C (SP20 group), and a short photoperiod at 8 °C (SP8). SP8 animals were sampled either at the beginning of a torpor bout (Torpor group) or at the beginning of a periodic arousal (Arousal group). We show that fat store mobilization in hamsters during torpor bouts is associated with decreased circulating levels of glucagon, insulin, leptin, and an increase in adiponectin. Refeeding during periodic arousals results in a decreased free fatty acid plasma concentration and an increase in glycemia and plasma incretin concentrations. Reduced incretin and increased adiponectin levels are therefore in accordance with the changes in nutrient availability and feeding behavior observed during the hibernation cycle of Syrian hamsters.  相似文献   

12.
Globodera ellingtonae was detected in Oregon in 2008. In order to make decisions regarding the regulation of this nematode, knowledge of its biology is required. We determined the host status of a diversity of potato (Solanum tuberosum) varieties in soil-based experiments and identified hatching stimulants in in vitro hatching assays. ‘Russet Burbank,’ ‘Desiree,’ ‘Modac,’ ‘Norland,’ ‘Umatilla,’ and ‘Yukon Gold’ were good hosts (RF > 14) for G. ellingtonae. Potato varieties ‘Maris Piper,’ ‘Atlantic,’ and ‘Satina,’ all which contain the Ro1 gene that confers resistance to G. rostochiensis, were not hosts for G. ellingtonae. In in vitro hatching assays, G. ellingtonae hatched readily in the presence of diffusates from potato (PRD) and tomato (Solanum lycopersicum; TRD). Egg hatch occurred in an average of between 87% and 90% of exposed cysts, with an average of between 144 and 164 juveniles emerging per cyst, from PRD- and TRD-treated cysts, respectively. This nematode hatched rapidly in the presence of PRD and TRD, with at least 66% of total hatch occurring by day 3 of exposure. There was no dose-response of egg hatch to concentrations of PRD or TRD ranging from 1:5 to 1:100 diffusate to water. When G. ellingtonae was exposed to root diffusates from 21 different plants, hatch occurred in 0% to 70% of exposed cysts, with an average of between 0 to 27 juveniles emerging per cyst. When root diffusate-exposed cysts were subsequently transferred to PRD to test viability, root diffusates from arugula (Eruca sativa), sudangrass (Sorghum bicolor subsp. drummondii), and common vetch (Vicia sativa) continued to inhibit egg hatch compared with the other root diffusates or water in which hatch occurred readily (60 to 182 juveniles emerging per cyst). Previously known hatching stimulants of G. rostochiensis and G. pallida, sodium metavanadate, sodium orthovanadate, and sodium thiocyanate, stimulated some egg hatch. Although, Globodera ellingtonae hatched readily in PRD and TRD and reproduced on potato, the pathogenicity of this nematode on potato remains to be determined.  相似文献   

13.
Testis size and spermatogenesis were monitored serially in individual golden-mantled ground squirrels before, during, and after the hibernation season. During hibernation, animals spent 81% of days in torpor at body temperatures of 3-4 degrees C. Torpor bouts of 6 days duration were interspersed with brief arousals from torpor during which animals were normothermic. In the 5 mo between December (when animals entered hibernation) and April (when torpor was spontaneously terminated), the estimated mass of testes increased gradually from 500 to 1100 mg, but spermatogenesis did not advance beyond pachytene spermatocytes, which were present before hibernation began. In contrast, during the month after torpor was terminated, testes increased rapidly to 3500 mg and after 31 days, spermatozoa were found in the epididymides. We suggest that the limited testis growth that occurred during the hibernation season was restricted to intervals during which squirrels were aroused from torpor. The major portion of gonadal growth and spermatogenesis in the laboratory, and presumably in the field, occurs after ground squirrels have regained the normothermic state. Since males are reproductively mature when first trapped in spring, these findings suggest that males are normothermic for several weeks before they emerge from their hibernacula in the spring.  相似文献   

14.
Torpor (i.e. the reduction of body temperature and metabolic rate for less than 24 h) and hibernation (i.e. torpor phases longer than 24 h) are among the most extreme adaptations to seasonality in primate habitats. Although widespread among mammals, this form of extreme thermoregulation is rare among primates and is reported only for species of the cheirogaleid family. Understanding their physiological ecology is crucial for many aspects of cheirogaleid socioecology like their social organization and their mating systems. This paper first provides an overview of published information on hibernation and torpor and identifies a patchy distribution for the occurrence of hibernation across genera, species and populations. Based on a review of published studies from the wild and from captivity, we then propose a possible explanation for variation in hibernation behavior among Microcebus species and populations. Accordingly, the amount of energy that can be saved during torpor early in the lean dry season, which is determined by the minimum ambient temperature will be decisive. Only where temperatures are low, early dry season torpor bouts will be long enough to save enough energy to build up fat reserves for longer bouts of hibernation. Finally, we summarize information on the causal factors for the occurrence of hibernation by analyzing sex differences within populations. Further physiological studies on other cheirogaleid species are needed to identify the phylogenetic origin of hibernation in primates.  相似文献   

15.
Ravens (Corvus corax) feed primarily on rich but ephemeral carcasses of large animals, which are usually defended by territorial pairs of adults. Non-breeding juveniles forage socially and aggregate in communal winter roosts, and these appear to function as ‘information centers’ regarding the location of the rare food bonanzas: individuals search independently of one another and pool their effort by recruiting each other at roosts. However, at a large raven roost in Newborough on Anglesey, North Wales, some juveniles have been observed recently to forage in ‘gangs’ and to roost separately from other birds. Here we adapt a general model of juvenile common raven foraging behavior where, in addition to the typical co-operative foraging strategy, such gang foraging behavior could be evolutionarily stable near winter raven roosts. We refocus the model on the conditions under which this newly documented, yet theoretically anticipated, gang-based foraging has been observed. In the process, we show formally how the trade off between search efficiency and social opportunity can account for the existence of the alternative social foraging tactics that have been observed in this species. This work serves to highlight a number of fruitful avenues for future research, both from a theoretical and empirical perspective.  相似文献   

16.
Hibernation is widely regarded as an adaptation to seasonal energy shortage, but the actual influence of energy availability on hibernation patterns is rarely considered. Here we review literature on the costs and benefits of torpor expression to examine the influence that energy may have on hibernation patterns. We first establish that the dichotomy between food- and fat-storing hibernators coincides with differences in diet rather than body size and show that small or large species pursuing either strategy have considerable potential scope in the amount of torpor needed to survive winter. Torpor expression provides substantial energy savings, which increase the chance of surviving a period of food shortage and emerging with residual energy for early spring reproduction. However, all hibernating mammals periodically arouse to normal body temperatures during hibernation. The function of these arousals has long been speculated to involve recovery from physiological costs accumulated during metabolic depression, and recent physiological studies indicate these costs may include oxidative stress, reduced immunocompetence, and perhaps neuronal tissue damage. Using an optimality approach, we suggest that trade-offs between the benefits of energy conservation and the physiological costs of metabolic depression can explain both why hibernators periodically arouse from torpor and why they should use available energy to minimize the depth and duration of their torpor bouts. On the basis of these trade-offs, we derive a series of testable predictions concerning the relationship between energy availability and torpor expression. We conclude by reviewing the empirical support for these predictions and suggesting new avenues for research on the role of energy availability in mammalian hibernation.  相似文献   

17.
We report that two species of mouse-tailed bats (Rhinopoma microphyllum and R. cystops) hibernate for five months during winter in geothermally heated caves with stable high temperature (20°C). While hibernating, these bats do not feed or drink, even on warm nights when other bat species are active. We used thermo-sensitive transmitters to measure the bats’ skin temperature in the natural hibernacula and open flow respirometry to measure torpid metabolic rate at different ambient temperatures (Ta, 16–35°C) and evaporative water loss (EWL) in the laboratory. Bats average skin temperature at the natural hibernacula was 21.7 ± 0.8°C, and no arousals were recorded. Both species reached the lowest metabolic rates around natural hibernacula temperatures (20°C, average of 0.14 ± 0.01 and 0.16 ± 0.04 ml O2 g−1 h−1 for R. microphyllum and R. cystops, respectively) and aroused from torpor when Ta fell below 16°C. During torpor the bats performed long apnoeas (14 ± 1.6 and 16 ± 1.5 min, respectively) and had a very low EWL. We hypothesize that the particular diet of these bats is an adaptation to hibernation at high temperatures and that caves featuring high temperature and humidity during winter enable these species to survive this season on the northern edge of their world distribution.  相似文献   

18.
Gail R. Michener 《Oecologia》1992,89(3):397-406
Summary Over-winter torpor patterns of Richardson's ground squirrels hibernating in southern Alberta were monitored with temperature-sensitive radiocollars to determine if these patterns differed between males and females in a manner related to the greater costs of mating effort by males than females. The hibernation season (from immergence to emergence) was composed of three periods: post-immergence euthermy, heterothermy, and pre-emergence euthermy. The hibernation season was shorter for juveniles than adults both among males (< 150 versus 234 days) and females (185 versus 231 days), a reflection of the later immergence into hibernation by juveniles. However, regardless of the absolute duration of hibernation, heterothermy accounted for a smaller proportion of the hibernation season of males (93±5%) than females (98±1%) and, within the heterothermal period, males had shorter torpor bouts and longer inter-torpor arousals. Overall, males spent a smaller proportion of the hibernation season in torpor (85±6%) than females (92±1%). This sexual difference was largely attributable to the longer duration of preemergence euthermy for males than females. Males terminated torpor in January and February, when hibernacula were at their coldest, then remained euthermic for 8.8 days (range 0.5–25.0 days) before emergence. In contrast, females terminated torpor in March, when hibernaculum temperatures were increasing, then remained euthermic for only 1.1 days (range 0.5–2.0 days) before emergence. Males lost less mass per euthermic day during hibernation than females (7.0 versus 9.3 g/day). Males and females hibernated at similar depths (56 cm), but males had larger chambers than females (18 versus 16 cm3/g). Many males, but no females, cached seeds in the hibernaculum. Males met the costs of thermogenesis and euthermy from a combination of fat reserves and food caches, whereas females relied solely on fat. Access to food caches permitted males to terminate torpor several weeks in advance of emergence, during which time they recouped mass and developed sperm in preparation for the forthcoming mating season.  相似文献   

19.
Organismal movement is an essential component of ecological processes and connectivity among ecosystems. However, estimating connectivity and identifying corridors of movement are challenging in oceanic organisms such as young turtles that disperse into the open sea and remain largely unobserved during a period known as ‘the lost years’. Using predictions of transport within an ocean circulation model and data from published genetic analysis, we present to our knowledge, the first basin-scale hypothesis of distribution and connectivity among major rookeries and foraging grounds (FGs) of green turtles (Chelonia mydas) during their ‘lost years’. Simulations indicate that transatlantic dispersal is likely to be common and that recurrent connectivity between the southwestern Indian Ocean and the South Atlantic is possible. The predicted distribution of pelagic juvenile turtles suggests that many ‘lost years hotspots’ are presently unstudied and located outside protected areas. These models, therefore, provide new information on possible dispersal pathways that link nesting beaches with FGs. These pathways may be of exceptional conservation concern owing to their importance for sea turtles during a critical developmental period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号