共查询到20条相似文献,搜索用时 0 毫秒
1.
The toxicity of nanoCrpic is still not understood and needs further investigation. Thus, this study investigated the effect of chromium picolinate nanoparticles (nanoCrpic) on the toxicity in vivo and in vitro in rat. In the in vivo study, 36 rats (Wistar, 8-week-old) were randomly divided into the control group (fed basal diet), the low-dose (300 ppb, μg/kg), and high-dose (1,000 ppb) nanoCrpic groups. The trial was conducted for 2 months; at the final stage of the trial, the rats were sacrificed, liver and kidney were examined, and samples of tissues were taken for histological examination. Hepatocytes isolated from 10-week-old Wistar male rats were used for in vitro study to examine the degree of DNA damage following exposure to 0 and 0.294 mM of H2O2 for 30 min. Incubation medium was supplemented with 0 (control), 100, and 300 ppb nanoCrpic. In vivo study indicated that no lesions of liver or kidney were detected in 300 and 1,000 ppb nanoCrpic fed rats. The in vitro study evaluated DNA damage according to the percentage and distance of the fragments migration and revealed that there was insignificant difference between the nanoCrpic and control groups (p?>?0.05). This study indicated that nanoCrpic at 300–1,000 ppb in vivo and at 100–300 ppb in vitro showed no signs of toxicity to rats. 相似文献
2.
Sonali R. Naikwade Amrita N. Bajaj Prashant Gurav Madhumanjiri M. Gatne Pritam Singh Soni 《AAPS PharmSciTech》2009,10(3):993-1012
The purpose of this research was to generate, characterize, and investigate the in vivo efficacy of budesonide (BUD) microparticles prepared by spray-drying technology with a potential application as carriers
for pulmonary administration with sustained-release profile and improved respirable fraction. Microspheres and porous particles
of chitosan (drug/chitosan, 1:2) were prepared by spray drying using optimized process parameters and were characterized for
different physicochemical parameters. Mass median aerodynamic diameter and geometric standard deviation for conventional,
microspheres, and porous particles formulations were 2.75, 4.60, and 4.30 μm and 2.56, 1.75, and 2.54, respectively. Pharmacokinetic
study was performed in rats by intratracheal administration of either placebo or developed dry powder inhalation (DPI) formulation.
Pharmacokinetic parameters were calculated (Ka, Ke, T
max, C
max, AUC, and Vd) and these results indicated that developed formulations extended half life compared to conventional formulation
with onefold to fourfold improved local and systemic bioavailability. Estimates of relative bioavailability suggested that
developed formulations have excellent lung deposition characteristics with extended T
1/2 from 9.4 to 14 h compared to conventional formulation. Anti-inflammatory activity of BUD and developed formulations was compared
and found to be similar. Cytotoxicity was determined in A549 alveolar epithelial cell line and found to be not toxic. In vivo pulmonary deposition of developed conventional formulation was studied using gamma scintigraphy and results indicated potential
in vitro–in vivo correlation in performance of conventional BUD DPI formulation. From the DPI formulation prepared with porous particles,
the concentration of BUD increased fourfold in the lungs, indicating pulmonary targeting potential of developed formulations. 相似文献
3.
Roula Tahtouh Anne-Sophie Azzi Nada Alaaeddine Soulaima Chamat Hasnaa Bouharoun-Tayoun Layal Wardi Issam Raad Riad Sarkis Najibe Abou Antoun George Hilal 《PloS one》2015,10(3)
Alpha-fetoprotein (AFP) is a diagnostic marker for hepatocellular carcinoma (HCC). A direct relationship between poor prognosis and the concentration of serum AFP has been observed. Telomerase, an enzyme that stabilizes the telomere length, is expressed by 90% of HCC. The aim of this study was to investigate the effect of telomerase inhibition on AFP secretion and the involvement of the PI3K/Akt/mTOR signaling pathway. Proliferation and viability tests were performed using tetrazolium salt. Apoptosis was determined through the Annexin V assay using flow cytometry. The concentrations of AFP were measured using ELISA kits. The AFP mRNA expression was evaluated using RT-PCR, and cell migration was evaluated using a Boyden chamber assay. The in vivo effect of costunolide on AFP production was tested in NSG mice. Telomerase inhibition by costunolide and BIBR 1532 at 5 and 10 μM decreased AFP mRNA expression and protein secretion by HepG2/C3A cells. The same pattern was obtained with cells treated with hTERT siRNA. This treatment exhibited no apoptotic effect. The AFP mRNA expression and protein secretion by PLC/PRF/5 was decreased after treatment with BIBR1532 at 10 μM. In contrast, no effect was obtained for PLC/PRF/5 cells treated with costunolide at 5 or 10 μM. Inhibition of the PI3K/Akt/mTOR signaling pathway decreased the AFP concentration. In contrast, the MAPK/ERK pathway appeared to not be involved in HepG2/C3A cells, whereas ERK inhibition decreased the AFP concentration in PLC/PRF/5 cells. Modulation of the AFP concentration was also obtained after the inhibition or activation of PKC. Costunolide (30 mg/kg) significantly decreased the AFP serum concentration of NSG mice bearing HepG2/C3A cells. Both the inhibition of telomerase and the inhibition of the PI3K/Akt/mTOR signaling pathway decreased the AFP production of HepG2/C3A and PLC/PRF/5 cells, suggesting a relationship between telomerase and AFP expression through the PI3K/Akt/mTOR pathway 相似文献
4.
Pyocin, a bacteriocin obtained from lysates of ultraviolet-induced cultures of Pseudomonas aeruginosa was characterized in vitro and in vivo after 1,000-fold purification by chemical, column, and differential centrifugation procedures. Electron micrographs of negatively stained pyocin preparations contained rod-shaped particles which resembled the contractile tail protein of the T-even phages of Escherichia coli. Although two separate and distinct pyocin fractions were eluted from diethylaminoethyl cellulose (pH 7.5) during the purification procedure, the particles appeared identical. In addition, the two fractions exhibited a close correlation between their titers and the particle numbers as observed in the electron microscope. The particles were approximately 20 by 90 mmu with a core diameter of 5 mmu and a sheath length of 50 mmu. Neither intact phage nor ghosts were seen in any of the preparations, although ringlets of two different diameters, which appeared to correspond to the diameters of the sheath and inner core, were observed. Other studies indicated that, although crude preparations were stable to freezing and thawing, purified preparations lost all of their activity under similar treatment. However, the addition of 50% glycerol to purified preparations completely protected activity. Conversely, aged normal human or rabbit sera enhanced the antibacterial activity of pyocin approximately fourfold, although serum albumin and hemoglobin had no effect. In vivo studies indicated that purified pyocin was not lethal for mice when injected intraperitoneally in concentrations of 28,000 to 1,400,000 units (5.6 to 276 mug of protein), nor was 7,200 to 36,000 units dermonecrotic for rabbits. 相似文献
5.
The objective of the present investigation was to develop in situ gelling nasal spray formulation of carvedilol (CRV) nanosuspension to improve the bioavailability and therapeutic efficiency. Solvent precipitation–ultrasonication method was opted for the preparation of CRV nanosuspension which further incorporated into the in situ gelling polymer phase. Optimized formulation was extensively characterized for various physical parameters like in situ gelation, rheological properties and in vitro drug release. Formation of in situ gel upon contact with nasal fluid was conferred via the use of ion-activated gellan gum as carrier. In vivo studies in rabbits were performed comparing the nasal bioavailability of CRV after oral, nasal, and intravenous administration. Optimized CRV nanosuspension prepared by combination of poloxamer 407 and oleic acid showed good particle size [d (0.9); 0.19 μm], zeta potential (+10.2 mV) and polydispersity (span; 0.63). The formulation containing 0.5% w/v gellan gum demonstrated good gelation ability and desired sustained drug release over period of 12 h. In vivo pharmacokinetic study revealed that the absolute bioavailability of in situ nasal spray formulation (69.38%) was significantly increased as compared to orally administered CRV (25.96%) with mean residence time 8.65 h. Hence, such in situ gel system containing drug nanosuspension is a promising approach for the intranasal delivery in order to increase nasal mucosal permeability and in vivo residence time which altogether improves drug bioavailability.KEY WORDS: bioavailability, Carvedilol, in situ gel, intranasal, nanosuspension 相似文献
6.
In this study an attempt was made to prepare mucoadhesive microcapsules of gliclazide using various mucoadhesive polymers
designed for oral controlled release. Gliclazide microcapsules were prepared using sodium alginate and mucoadhesive polymer
such as sodium carboxymethyl cellulose (sodium CMC), carbopol 934P or hydroxy propylmethyl cellulose (HPMC) by orifice-ionic
gelation method. The microcapsules were evaluated for surface morphology and particle shape by scanning electron microscope.
Microcapsules were also evaluated for their microencapsulation efficiency, in vitro wash-off mucoadhesion test, in vitro drug release and in vivo study. The microcapsules were discrete, spherical and free flowing. The microencapsulation efficiency was in the range of
65–80% and microcapsules exhibited good mucoadhesive property in the in vitro wash off test. The percentage of microcapsules adhering to tissue at pH 7.4 after 6 h varied from 12–32%, whereas the percentage
of microcapsules adhering to tissue at pH 1.2 after 6 h varied from 35–68%. The drug release was also found to be slow and
extended for more than 16 h. In vivo testing of the mucoadhesive microcapsules in diabetic albino rats demonstrated significant antidiabetic effect of gliclazide.
The hypoglycemic effect obtained by mucoadhesive microcapsules was for more than 16 h whereas gliclazide produced an antidiabetic
effect for only 10 h suggesting that mucoadhesive microcapsules are a valuable system for the long term delivery of gliclazide. 相似文献
7.
Troy A. Luster Ipsita Mukherjee Jeffrey A. Carrell Yun Hee Cho Jeffrey Gill Lizbeth Kelly Andy Garcia Christopher Ward Luke Oh Stephen J. Ullrich Thi-Sau Migone Robin Humphreys 《PloS one》2012,7(10)
B lymphocyte stimulator (BLyS) is a member of the TNF superfamily of cytokines. The biological activity of BLyS is mediated by three cell surface receptors: BR3/BAFF-R, TACI and BCMA. The expression of these receptors is highly restricted to B cells, both normal and malignant. A BLyS-gelonin fusion toxin (BLyS-gel) was generated consisting of the recombinant plant-derived toxin gelonin fused to the N-terminus of BLyS and tested against a large and diverse panel of B-NHL cell lines. Interestingly, B-NHL subtypes mantle cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL) and B cell precursor-acute lymphocytic leukemia (BCP-ALL) were preferentially sensitive to BLyS-gel mediated cytotoxicity, with low picomolar EC50 values. BLyS receptor expression did not guarantee sensitivity to BLyS-gel, even though the construct was internalized by both sensitive and resistant cells. Resistance to BLyS-gel could be overcome by treatment with the endosomotropic drug chloroquine, suggesting BLyS-gel may become trapped within endosomal/lysosomal compartments in resistant cells. BLyS-gel induced cell death was caspase-independent and shown to be at least partially mediated by the “ribotoxic stress response.” This response involves activation of p38 MAPK and JNK/SAPK, and BLyS-gel mediated cytotoxicity was inhibited by the p38/JNK inhibitor SB203580. Finally, BLyS-gel treatment was shown to localize to sites of disease, rapidly reduce tumor burden, and significantly prolong survival in xenograft mouse models of disseminated BCP-ALL, DLBCL, and MCL. Together, these findings suggest BLyS has significant potential as a targeting ligand for the delivery of cytotoxic “payloads” to malignant B cells. 相似文献
8.
Hannes Neuwirt Elisabeth Wabnig Clemens Feistritzer Iris E. Eder Christina Salvador Martin Puhr Zoran Culig Petra Massoner Martin Tiefenthaler Michael Steurer Guenther Konwalinka 《PloS one》2015,10(2)
Akacid medical formulation (AMF) is an oligoguanidine that exerts biocidal activity against airborne and surface microorganisms including bacteria, viruses, fungi, and molds, while showing relatively low toxicity to humans. We have previously shown that AMF exerts antiproliferative effects on a variety of solid tumor cell lines. In this study we raised the question whether AMF could also substantially inhibit cell growth or induce apoptosis in cell lines derived from hematologic malignancies such as leukemia or lymphoma. We found that AMF has antiproliferative effects on various hematologic cell lines derived from human leukemia and lymphoma. Additionally, we show that AMF induces apoptosis in leukemia cell lines not only via the extrinsic and intrinsic pathway, but also in a caspase-independent manner. This effect was found also in G0-arrested cells. Finally, in our animal experiments utilizing male nu/nu Balb/c mice we found a significant growth retardation, which was immunohistochemically associated with a significantly lower number of KI67-positive cells and caspase-3 induction in AMF-treated mice. 相似文献
9.
Manoel Ortiz Denise Soledade Jornada Adriana Raffin Pohlmann Sílvia Stanis?uaski Guterres 《AAPS PharmSciTech》2015,16(5):1033-1040
Pneumocystis carinii pneumonia (PCP) is a major opportunistic infection that affects patients with human immunodeficiency virus. Although orally administered dapsone leads to high hepatic metabolism, decreasing the therapeutic index and causing severe side effects, this drug is an effective alternative for the treatment of PCP. In this context, microencapsulation for pulmonary administration can offer an alternative to increase the bioavailability of dapsone, reducing its adverse effects. The aim of this work was to develop novel dapsone-loaded chitosan microcapsules intended for deep-lung aerosolized drug delivery. The geometric particle size (D4,3) was approximately 7 μm, the calculated aerodynamic diameter (daero) was approximately 4.5 μm, and the mass median aerodynamic diameter from an Andersen cascade impactor was 4.7 μm. The in vitro dissolution profile showed an efficient dapsone encapsulation, demonstrating the sustained release of the drug. The in vitro deposition (measured by the Andersen cascade impactor) showed an adequate distribution and a high fine particles fraction (FPF = 50%). Scanning electron microscopy of the pulmonary tissues demonstrated an adequate deposition of these particles in the deepest part of the lung. An in vivo toxicity experiment showed the low toxicity of the drug-loaded microcapsules, indicating a protective effect of the microencapsulation process when the particles are microencapsulated. In conclusion, the pulmonary administration of the novel dapsone-loaded microcapsules could be a promising alternative for PCP treatment.KEY WORDS: dapsone, dry powders inhalers, in vivo toxicity, microparticles, pulmonary drug delivery 相似文献
10.
Claudia Juliano Massimo Cossu Paola Pigozzi Giovanna Rassu Paolo Giunchedi 《AAPS PharmSciTech》2008,9(4):1153-1158
The aim of this work was to investigate the suitability of some polymeric films as buccal systems for the delivery of the
antiseptic drug chlorhexidine diacetate, considered as a valid adjunct in the treatment of oral candidiasis. Six different
film formulations, mono- or double-layered, containing 5 or 10 mg of chlorhexidine diacetate, respectively, and alginate and/or
hydroxypropylmethylcellulose and/or chitosan as excipients, were prepared by a casting-solvent evaporation technique and characterized
in terms of drug content, morphology (scanning electron microscopy), drug release behavior, and swelling properties. Moreover,
the in vivo concentrations of chlorhexidine diacetate in saliva were evaluated after application of a selected formulation on the oral
mucosa of healthy volunteers. The casting-solvent evaporation proved to be a suitable technique for preparing soft, flexible,
and easily handy mono- or double-layered chlorhexidine-loaded films. Some prepared formulations showed favorable in vitro drug release rates and swelling properties. The behavior of a selected formulation, chosen on the basis of its in vitro release results, was preliminarily investigated in vivo after application in the oral cavity of healthy volunteers. The films were well tolerated and the salivary chlorhexidine
concentrations were maintained above the minimum inhibitory concentration for Candida albicans for almost 3 h. These preliminary results indicate that polymeric films can represent a valid vehicle for buccal delivery
of antifungal/antimicrobial drugs. 相似文献
11.
Yunhai Dai Xiaopeng Xiong Gang Huang Jianjun Liu Shile Sheng Hongjian Wang Wenxin Qin 《PloS one》2014,9(4)
A unique bioenergetic feature of cancer, aerobic glycolysis is considered an attractive therapeutic target for cancer therapy. Recently, dichloroacetate (DCA), a small-molecule metabolic modulator, was shown to reverse the glycolytic phenotype, induce reactive oxygen species (ROS) generation, and trigger apoptosis in various tumor cells. In this work, the capacity of DCA to enhance Adriamycin (ADM) efficacy in hepatoma cells by modulating glucose metabolism and redox status was evaluated. Two human hepatoma (HCC-LM3 and SMMC-7721) and a normal liver (LO2) cell lines were treated with DCA or ADM alone, or in combination. Exposure of hepatoma cells to DCA/ADM combination resulted in significantly decreased cell viability and increased percentage of apoptotic cells as well as intracellular ROS levels, in comparison with treatment with DCA or ADM alone. However, simultaneous treatment with the thiol antioxidant N-acetylcysteine (NAC, 10 mmol/L) reduced the elevated ROS levels and protected hepatoma cells from the cytotoxic effects of DCA/ADM combination. L-buthionine-[S,R]-sulfoximine, an inhibitor of glutathione synthesis, enhanced hepatoma cell sensitivity to DCA/ADM combination. Interestingly, treatment with DCA/ADM combination did not significantly increase cytotoxicity in normal hepatocytes in comparison with the drugs administered individually. Finally, DCA reduced tumor growth and enhanced ADM efficacy on HCC-LM3 hepatoma in mice. Overall, our data suggest that DCA enhances ADM cytotoxicity in hepatoma cells by increasing intracellular ROS levels and provide a strong biochemical rationale for the use of DCA in combination with ADM for treatment of hepatoma. 相似文献
12.
Martilias S. Farrell John D. McCorvy Xi-Ping Huang Daniel J. Urban Kate L. White Patrick M. Giguere Allison K. Doak Alison I. Bernstein Kristen A. Stout Su Mi Park Ramona M. Rodriguiz Bradley W. Gray William S. Hyatt Andrew P. Norwood Kevin A. Webster Brenda M. Gannon Gary W. Miller Joseph H. Porter Brian K. Shoichet William E. Fantegrossi William C. Wetsel Bryan L. Roth 《PloS one》2016,11(3)
Rationale
The sacred lotus (Nelumbo nucifera) contains many phytochemicals and has a history of human use. To determine which compounds may be responsible for reported psychotropic effects, we used in silico predictions of the identified phytochemicals. Nuciferine, an alkaloid component of Nelumbo nucifera and Nymphaea caerulea, had a predicted molecular profile similar to antipsychotic compounds. Our study characterizes nuciferine using in vitro and in vivo pharmacological assays.Methods
Nuciferine was first characterized in silico using the similarity ensemble approach, and was followed by further characterization and validation using the Psychoactive Drug Screening Program of the National Institute of Mental Health. Nuciferine was then tested in vivo in the head-twitch response, pre-pulse inhibition, hyperlocomotor activity, and drug discrimination paradigms.Results
Nuciferine shares a receptor profile similar to aripiprazole-like antipsychotic drugs. Nuciferine was an antagonist at 5-HT2A, 5-HT2C, and 5-HT2B, an inverse agonist at 5-HT7, a partial agonist at D2, D5 and 5-HT6, an agonist at 5-HT1A and D4 receptors, and inhibited the dopamine transporter. In rodent models relevant to antipsychotic drug action, nuciferine blocked head-twitch responses and discriminative stimulus effects of a 5-HT2A agonist, substituted for clozapine discriminative stimulus, enhanced amphetamine induced locomotor activity, inhibited phencyclidine (PCP)-induced locomotor activity, and rescued PCP-induced disruption of prepulse inhibition without induction of catalepsy.Conclusions
The molecular profile of nuciferine was similar but not identical to that shared with several approved antipsychotic drugs suggesting that nuciferine has atypical antipsychotic-like actions. 相似文献13.
Stefano Toldo Rachel W. Goehe Marzia Lotrionte Eleonora Mezzaroma Evan T. Sumner Giuseppe G. L. Biondi-Zoccai Ignacio M. Seropian Benjamin W. Van Tassell Francesco Loperfido Giovanni Palazzoni Norbert F. Voelkel Antonio Abbate David A. Gewirtz 《PloS one》2013,8(3)
Purpose
The antineoplastic efficacy of anthracyclines is limited by their cardiac toxicity. In this study, we evaluated the toxicity of doxorubicin, non-pegylated liposomal-delivered doxorubicin, and epirubicin in HL-1 adult cardiomyocytes in culture as well as in the mouse in vivo.Methods
The cardiomyocytes were incubated with the three anthracyclines (1 µM) to assess reactive oxygen generation, DNA damage and apoptotic cell death. CF-1 mice (10/group) received doxorubicin, epirubicin or non-pegylated liposomal-doxorubicin (10 mg/kg) and cardiac function was monitored by Doppler echocardiography to measure left ventricular ejection fraction (LVEF), heart rate (HR) and cardiac output (CO) both prior to and 10 days after drug treatment.Results
In HL-1 cells, non-pegylated liposomal-doxorubicin generated significantly less reactive oxygen species (ROS), as well as less DNA damage and apoptosis activation when compared with doxorubicin and epirubicin. Cultured breast tumor cells showed similar sensitivity to the three anthracyclines. In the healthy mouse, non-pegylated liposomal doxorubicin showed a minimal and non-significant decrease in LVEF with no change in HR or CO, compared to doxorubicin and epirubicin.Conclusion
This study provides evidence for reduced cardiac toxicity of non-pegylated-liposomal doxorubicin characterized by attenuation of ROS generation, DNA damage and apoptosis in comparison to epirubicin and doxorubicin. 相似文献14.
Ann M. Czyzewski H?vard Jenssen Christopher D. Fjell Matt Waldbrook Nathaniel P. Chongsiriwatana Eddie Yuen Robert E. W. Hancock Annelise E. Barron 《PloS one》2016,11(2)
Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents. 相似文献
15.
The cytotoxic potential of ammonium-based deep eutectic solvents (DESs) with four hydrogen bond donors, namely glycerine (Gl), ethylene glycol (EG), triethylene glycol (TEG) and urea (U) were investigated. The toxicity of DESs was examined using In Vitro cell lines and In Vivo animal model. IC50 and selectivity index were determined for the DESs, their individual components and their combinations as aqueous solutions for comparison purposes. The cytotoxicity effect of DESs varied depending on cell lines. The IC50 for the GlDES, EGDES, UDES and TEGDES followed the sequence of TEGDES< GlDES< EGDES< UDES for OKF6, MCF-7, A375, HT29 and H413, respectively. GlDES was selective against MCF-7 and A375, EGDES was selective against MCF-7, PC3, HepG2 and HT29, UDES was selective against MCF-7, PC3, HepG2 and HT29, and TEGDES was selective against MCF-7 and A375. However, acute toxicity studies using ICR mice showed that these DESs were relatively toxic in comparison to their individual components. DES did not cause DNA damage, but it could enhance ROS production and induce apoptosis in treated cancer cells as evidenced by marked LDH release. Furthermore, the examined DESs showed less cytotoxicity compared with ionic liquids. To the best of our knowledge, this is the first time that combined In Vitro and In Vivo toxicity profiles of DESs were being demonstrated, raising the toxicity issue of these neoteric mixtures and their potential applicability to be used for therapeutic purposes. 相似文献
16.
Marie C. Nyman Annele O. Sainio Mirka M. Pennanen Riikka J. Lund Sanna Vuorikoski Jari T. T. Sundstr?m Hannu T. J?rvel?inen 《The journal of histochemistry and cytochemistry》2015,63(9):710-720
Decorin is generally recognized as a tumor suppressing molecule. Nevertheless, although decorin has been shown to be differentially expressed in malignant tissues, it has often remained unclear whether, in addition to non-malignant stromal cells, cancer cells also express it. Here, we first used two publicly available databases to analyze the current information about decorin expression and immunoreactivity in normal and malignant human colorectal tissue samples. The analyses demonstrated that decorin expression and immunoreactivity may vary in cancer cells of human colorectal tissues. Therefore, we next examined decorin expression in normal, premalignant and malignant human colorectal tissues in more detail using both in situ hybridization and immunohistochemistry for decorin. Our results invariably demonstrate that malignant cells within human colorectal cancer tissues are devoid of both decorin mRNA and immunoreactivity. Identical results were obtained for cells of neuroendocrine tumors of human colon. Using RT-qPCR, we showed that human colon cancer cell lines are also decorin negative, in accordance with the above in vivo results. Finally, we demonstrate that decorin transduction of human colon cancer cell lines causes a significant reduction in their colony forming capability. Thus, strategies to develop decorin-based adjuvant therapies for human colorectal malignancies are highly rational. 相似文献
17.
The purpose of the present study was to prepare intranasal delivery system of sildenafil citrate and estimate its relative
bioavailability after nasal administration in rabbits to attain rapid onset of action with good efficacy at lower doses. Sildenafil
citrate saturated solubility was determined in different solvents, cosolvents, and microemulsion systems. For nasal application,
sildenafil citrate was formulated in two different systems: the first was a cosolvent system (S3) of benzyl alcohol/ethanol/water/Transcutol/taurodeoxy
cholate/Tween 20 (0.5:16.8:47.7:15.9:1:18.1% w/w). The second was a microemulsion system (ME6) containing Oleic acid: Labrasol/Transcutol/water (8.33:33.3:16.66:41.66% w/w). The prepared systems were characterized in relation to their clarity, particle size, viscosity, pH, and nasal ciliotoxicity.
In vivo pharmacokinetic performance of the selected system ME6 (with no nasal ciliotoxicity) was evaluated in a group of six rabbits
in a randomized crossover study and compared to the marketed oral tablets. The targeted solubility (>20 mg/ml) of sildenafil
citrate was achieved with cosolvent systems S1, S3, and S5 and with microemulsion systems ME3–ME6. The saturated solubility
of sildenafil citrate in cosolvent system S3 and microemulsion system ME6 were 22.98 ± 1.26 and 23.79 ± 1.16 mg/ml, respectively.
Microemulsion formulation ME6 showed shorter t
max (0.75 h) and higher AUC(0-∞) (1,412.42 ng h/ml) compared to the oral tablets which showed t
max equals 1.25 h and AUC(0-∞) of 1,251.14 ng h/ml after administration to rabbits at dose level of 5 mg/kg. The relative bioavailability was 112.89%. In
conclusion, the nasal absorption of sildenafil citrate microemulsion was found to be fast, indicating the potential of nasal
delivery instead of the conventional oral administration of such drug. 相似文献
18.
Caihua Xu Chen Wu Yang Xia Zhaopeng Zhong Xiang Liu Jing Xu Fei Cui Bin Chen Oluf Dimitri R?e Aihong Li Yijiang Chen 《PloS one》2013,8(8)
The Wilms’ tumor suppressor gene (WT1) has been identified as an oncogene in many malignant diseases such as leukaemia, breast cancer, mesothelioma and lung cancer. However, the role of WT1 in non-small-cell lung cancer (NSCLC) carcinogenesis remains unclear. In this study, we compared WT1 mRNA levels in NSCLC tissues with paired corresponding adjacent tissues and identified significantly higher expression in NSCLC specimens. Cell proliferation of three NSCLC cell lines positively correlated with WT1 expression; moreover, these associations were identified in both cell lines and a xenograft mouse model. Furthermore, we demonstrated that up-regulation of Cyclin D1 and the phosphorylated retinoblastoma protein (p-pRb) was mechanistically related to WT1 accelerating cells to S-phase. In conclusion, our findings demonstrated that WT1 is an oncogene and promotes NSCLC cell proliferation by up-regulating Cyclin D1 and p-pRb expression. 相似文献
19.
Yoo Seob Shin Hyang Ae Shin Sung Un Kang Jang Hee Kim Young-Taek Oh Keun Hyung Park Chul-Ho Kim 《PloS one》2013,8(7)
Purpose
Radiation-induced oral mucositis limits the delivery of high-dose radiation to head and neck cancer. This study investigated the effectiveness of epicatechin (EC), a component of green tea extracts, on radiation-induced oral mucositis in vitro and in vivo.Experimental Design
The effect of EC on radiation-induced cytotoxicity was analyzed in the human keratinocyte line HaCaT. Radiation-induced apoptosis, change in mitochondrial membrane potential (MMP), reactive oxygen species (ROS) generation and changes in the signaling pathway were investigated. In vivo therapeutic effects of EC for oral mucositis were explored in a rat model. Rats were monitored by daily inspections of the oral cavity, amount of oral intake, weight change and survival rate. For histopathologic evaluation, hematoxylin-eosin staining and TUNEL staining were performed.Results
EC significantly inhibited radiation-induced apoptosis, change of MMP, and intracellular ROS generation in HaCaT cells. EC treatment markedly attenuated the expression of p-JNK, p-38, and cleaved caspase-3 after irradiation in the HaCaT cells. Rats with radiation-induced oral mucositis showed decreased oral intake, weight and survival rate, but oral administration of EC significantly restored all three parameters. Histopathologic changes were significantly decreased in the EC-treated irradiated rats. TUNEL staining of rat oral mucosa revealed that EC treatment significantly decreased radiation-induced apoptotic cells.Conclusions
This study suggests that EC significantly inhibited radiation-induced apoptosis in keratinocytes and rat oral mucosa and may be a safe and effective candidate treatment for the prevention of radiation-induced mucositis. 相似文献20.
Diane F. Matesic Joseph A. Erwin Edna S. Kaneshiro 《The Journal of eukaryotic microbiology》1998,45(1):156-163
ABSTRACT Paramecium tetraurelia contains high concentrations of ethanolamine sphingolipids, especially in its ciliary membrane. Three ethanolamine sphingophospholipids with different long chain bases (dihydrosphingosine, sphingosine and phytosphingosine), and their phosphonyl analogs, were previously identified and characterized. In the present study, radiolabeling experiments on lag- and log-phase cells were performed to investigate the extent of sphingolipid biosynthetic capacities of the ciliate. Long chain bases of sphingolipids are formed by an initial condensation reaction of serine with a fatty-coenzyme A. Thus, radiolabeled palmitic acid, stearic acid and serine were used as precursor compounds in these experiments. The results indicated that (1) sphingolipid precursors were incorporated into every major lipid fraction. (2) ethanolamine sphingophosphonolipids accumulated faster than the ethanolamine sphingophospholipids, (3) in contrast to these sphingolipids, the glycerolipid, phosphatidyethanolamine. accumulated faster than its phosphono analog, and (4) palmitic acid, but not stearic acid, was incorporated into the long chain bases of ethanolamine sphingophospho- and sphingophosphonolipids. consistent with an earlier report demonstrating that these lipids contain only C,g long chain bases. Since P. tetraurelia takes up serine and other water-soluble substrates very slowly, and catabolizes fatty acids rapidly, label is randomized in intact cells. Thus, cell-free protocols provide useful experimental systems for studies of sphingolipid biosynthesis than do intact organisms, when the uptake of precursor substrates are slow. 相似文献