首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Resolvin E1 (RvE1) is an anti-inflammatory lipid mediator derived from the omega-3 fatty acid eicosapentaenoic acid (EPA), and strongly acts in the resolution of inflammation. We previously reported that RvE1 dampens airway inflammation and hyperresponsiveness in a murine model of asthma. In the present study, to elucidate the effects of RvE1 on the development of asthmatic airway inflammation, we investigated whether RvE1 acts on different phases of an OVA-sensitized and -challenged mouse model of asthma. RvE1 treatments at the time of either OVA sensitization or at the time of OVA challenge were investigated and compared with RvE1 treatments at the time of both OVA sensitization and challenge. After RvE1 was administered to mice intraperitoneally at the time of both OVA sensitization and challenge, there were decreases in airway eosinophil and lymphocyte recruitment, as well as a reduction in Th2 cytokine and airway hyperresponsiveness. RvE1 treatment at the time of either OVA sensitization or challenge also improved AHR and airway inflammation. Our results suggest that RvE1 acts on several phases of asthmatic inflammation and may have anti-inflammatory effects on various cell types.  相似文献   

2.
We investigated the effects of static and rhythmic handgrip on the time course of recovery of airway resistance measured with the interrupter technique (Rint) following bronchoconstriction induced by methacholine (MCh) inhalation in 17 asthmatic patients. On three separate occasions, a 100 +/- 5% increase in baseline Rint was induced by MCh inhalation. Subsequently, patients either rested [control trials (CTs)] or performed 3-min bouts of static or rhythmic handgrip. Respiratory and cardiovascular variables were continuously monitored. Rint changes were assessed at 1-min intervals for 30 min after rest and both types of handgrip. Plasma catecholamine concentrations were also determined at scheduled intervals. Bronchoconstriction increased ventilation (P < 0.01) but did not affect cardiovascular variables and plasma catecholamine concentrations. Handgrip provoked an increase in cardiovascular variables (P < 0.01) and plasma norepinephrine concentrations (P < 0.05) but caused no additional changes in ventilation. Rint only partially recovered within 30 min after CTs, whereas it consistently decreased 1 min after both handgrip paradigms and remained lower than after CTs (P always <0.01) for the whole 30-min observation period. Sympathetic activation and withdrawal of cholinergic input to the airway smooth muscle reflexly induced by activation of skeletal muscle and carotid sinus receptors may be the primary events accounting for the bronchodilator response induced by handgrip. Mediators co-released in response to sympathetic activation may also have contributed.  相似文献   

3.
Thioredoxin (TRX) is a 12-kDa redox (reduction/oxidation)-active protein that has a highly conserved site (-Cys-Gly-Pro-Cys-) and scavenges reactive oxygen species. Here we examined whether exogenously administered TRX modulated airway hyperresponsiveness (AHR) and airway inflammation in a mouse asthma model. Increased AHR to inhaled acetylcholine and airway inflammation accompanied by eosinophilia were observed in OVA-sensitized mice. Administration of wild-type but not 32S/35S mutant TRX strongly suppressed AHR and airway inflammation, and upregulated expression of mRNA of several cytokines (e.g., IL-1alpha, IL-1beta, IL-1 receptor antagonist, and IL-18) in the lungs of OVA-sensitized mice. In contrast, TRX treatment at the time of OVA sensitization did not improve AHR or airway inflammation in OVA-sensitized mice. Thus, TRX inhibited the asthmatic response after sensitization, but did not prevent sensitization itself. TRX and redox-active protein may have clinical benefits in patients with asthma.  相似文献   

4.
Resolvin E1 (RvE1; 5S, 12R, 18R-trihydroxyeicosapentaenoic acid) is an anti-inflammatory lipid mediator derived from the omega-3 fatty acid eicosapentaenoic acid (EPA). It has been recently shown that RvE1 is involved in the resolution of inflammation. However, it is not known whether RvE1 is involved in the resolution of asthmatic inflammation. To investigate the anti-inflammatory effect of RvE1 in asthma, a murine model of asthma was studied. After RvE1 was administered to mice intraperitoneally, there were decreases in: airway eosinophil and lymphocyte recruitment, specific Th2 cytokine, IL-13, ovalbumin-specific IgE, and airway hyperresponsiveness (AHR) to inhaled methacholine. Moreover, RvE1-treated mice had significantly lower mucus scores compared to vehicle-treated mice based on the number of goblet cells stained with periodic acid-schiff (PAS). These findings provide evidence that RvE1 is a pivotal counterregulatory signal in allergic inflammation and offer novel multi-pronged therapeutic approaches for human asthma.  相似文献   

5.
In this study, we attempt to determine whether lycopene regulates inflammatory mediators in the ovalbumin (OVA)-induced murine asthma model. To address this, mice were sensitized and challenged with OVA, and then treated with lycopene before the last OVA challenge. Administration of lycopene significantly alleviated the OVA-induced airway hyperresponsiveness to inhaled methacholine. Administration of lycopene also resulted in a significant inhibition of the infiltration of inflammatory immunocytes into the bronchoalveolar lavage, and attenuated the gelatinolytic activity of matrix metalloproteinase-9 and the expression of eosinophil peroxidase. Additionally, lycopene reduced the increased levels of GATA-3 mRNA level and IL-4 expression in OVA-challenged mice. However, it increased T-bet mRNA level and IFN-γ expression in lycopene-challenged mice. These findings provide new insight into the immunopharmacological role of lycopene in terms of its effects in a murine model of asthma.  相似文献   

6.
The myosin light chain kinase (MYLK) gene encodes both smooth muscle and nonmuscle cell isoforms. Recently, polymorphisms in MYLK have been reported to be associated with several diseases. To examine the genetic effects of polymorphisms on the risk of asthma and related phenotypes, we scrutinized MYLK by re-sequencing/genotyping and statistical analysis in Korean population (n = 1,015). Seventeen common polymorphisms located in or near exons, having pairwise r 2 values less than 0.25, were genotyped. Our statistical analysis did not replicate the associations with the risk of asthma and log-transformed total IgE levels observed among African descendant populations. However, two SNPs in intron 16 (+89872C > G and +92263T >C), which were in tight LD (|D′| = 0.99), revealed significant association with log-transformed blood eosinophil level even after correction multiple testing (P = 0.002/P corr = 0.01 and P = 0.002/P corr = 0.01, respectively). The log-transformed blood eosinophil levels were higher in individuals bearing the minor alleles for +89872C > G and +92263T > C, than in those bearing other allele. In additional subgroup analysis, the genetic effects of both SNPs were much more apparent among asthmatic patients and atopic asthma patients. Among atopic asthma patients, the log-transformed blood eosinophil levels were proportionally increased by gene-dose dependent manner of in both +89872C > G and +92263T > C (P = 0.0002 and P = 0.00007, respectively). These findings suggest that MYLK polymorphisms might be among the genetic factors underlying differential increases of blood eosinophil levels among asthmatic patients. Further biological and/or functional studies are needed to confirm our results.  相似文献   

7.
王敏  李蓓  张光环 《生物磁学》2009,(14):2628-2630,F0002
目的:探讨哮喘小鼠气道重构模型的建立的方法。方法:SPF级BALB/C6-8周龄雌性小鼠40只随机分成正常对照组、哮喘模型组,每组20只。哮喘组经卵蛋白(OVA)混悬液0.2ml致敏并反复雾化吸入2周、4周,正常对照组由生理盐水代替。各组分别于末次雾化激发后进行取材,收集肺组织,制作石蜡切片,HE染色观察气道中嗜酸性粒细胞;Masson三色染色法观察气道周围胶原沉积情况;PAS染色法观察气道黏液分泌情况;测定单位气道面积基底膜周径(Pbm)、管壁总面积(WAt)、内壁面积(wAi)、平滑肌面积(WAm)、胶原面积(Wcol)、粘液面积。结果:哮喘模型组WAt/Pbm、WAi/Pbm、WAm/Pbm、Wcol/Pbm、粘液分泌面积较正常对照组明显增加。哮喘4周组上述指标均高于其对应2周组(P〈0.05)。结论:反复的过敏原(OVA)吸入可导致哮喘气道重构的发生,是一种较好的建立哮喘小鼠气道重构模型的的方法。  相似文献   

8.
Asthma is recognized as an inflammatory disease in which various cytokines are involved. Among these, granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to play a critical role in the survival of eosinophils and in the activation of antigen-presenting cells (APC). We studied the effects of neutralization of GM-CSF in a murine model of asthma, to elucidate its role in enhanced airway responsiveness and in airway inflammation. A/J mice, which are genetically predisposed to acetylcholine hyperresponsiveness, were immunized with ovalbumin (OA) and alum. Thereafter, the mice were subjected to a two-week regimen of OA inhalation, during which either goat anti-mouse polyclonal GM-CSF antibody or isotype control goat IgG was administered intranasally. Pulmonary function was then analyzed using whole body plethysmography before and after acetylcholine (Ach) inhalation. Here we show that OA inhalation following OA immunization increased airway responsiveness to acetylcholine and induced GM-CSF as well as IL-4 and IL-5 mRNA expression in the lung. The administration of GM-CSF-neutralizing antibody during OA inhalation significantly reduced this increased airway hyperresponsiveness and also inhibited airway inflammation. Thus, endogenous GM-CSF plays an important role in the process of airway inflammation and airway hyperresponsiveness after antigen-specific immunity has been established.  相似文献   

9.

Background

Airway epithelium integrity is essential to maintain its role of mechanical and functional barrier. Recurrent epithelial injuries require a complex mechanism of repair to restore its integrity. In chronic obstructive pulmonary disease (COPD), an abnormal airway epithelial repair may participate in airway remodeling. The objective was to determine if airway epithelial wound repair of airway epithelium is abnormal in COPD.

Methods

Patients scheduled for lung resection were prospectively recruited. Demographic, clinical data and pulmonary function tests results were recorded. Emphysema was visually scored and histological remodeling features were noted. Primary bronchial epithelial cells (BEC) were extracted and cultured for wound closure assay. We determined the mean speed of wound closure (MSWC) and cell proliferation index, matrix metalloprotease (MMP)-2, MMP-9 and cytokines levels in supernatants of BEC 18 hours after cell wounding. In a subset of patients, bronchiolar epithelial cells were also cultured for wound closure assay for MSWC analyze.

Results

13 COPD and 7 non COPD patients were included. The severity of airflow obstruction and the severity of emphysema were associated with a lower MSWC in BEC (p = 0.01, 95% CI [0.15-0.80]; p = 0.04, 95% CI [−0.77;-0.03] respectively). Cell proliferation index was decreased in COPD patients (19 ± 6% in COPD vs 27 ± 3% in non COPD, p = 0.04). The severity of COPD was associated with a lower level of MMP-2 (7.8 ± 2 105 AU in COPD GOLD D vs 12.8 ± 0.13 105 AU in COPD GOLD A, p = 0.04) and a lower level of IL-4 (p = 0.03, 95% CI [0.09;0.87]). Moreover, higher levels of IL-4 and IL-2 were associated with a higher MSWC (p = 0.01, 95% CI [0.17;0.89] and p = 0.02, 95% CI [0.09;0.87] respectively). Clinical characteristics and smoking history were not associated with MSWC, cell proliferation index or MMP and cytokines levels. Finally, we showed an association of the MSWC of bronchial and corresponding bronchiolar epithelial cells obtained from the same patients (p = 0.02, 95% CI [0.12;0.89]).

Conclusion

Our results showed an abnormal bronchial epithelial wound closure process in severe COPD. Further studies are needed to elucidate the contribution and the regulation of this mechanism in the complex pathophysiology of COPD.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0151-9) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
Sun JG  Deng YM  Wu X  Tang HF  Deng JF  Chen JQ  Yang SY  Xie QM 《Life sciences》2006,79(22):2077-2085
Phosphodiesterase 4 (PDE4) isozyme plays important roles in inflammatory and immunomodulatory cells. In this study, piclamilast, a selective PDE4 inhibitor, was used to investigate the role of PDE4 in respiratory function and inflammation in a murine asthma model. Sensitized mice were challenged with aerosolized ovalbumin for 7 days, piclamilast (1, 3 and 10 mg/kg) and dexamethasone (2 mg/kg) were orally administered once daily during the period of challenge. Twenty-four hours after the last challenge, airway hyperresponsiveness to methacholine was determined by whole-body plethysmography, airway inflammation and mucus secretion by histomorphometry, pulmonary cAMP-PDE activity by HPLC, cytokine levels in bronchoalveolar lavage fluid and their mRNA expression in lung by ELISA and RT-PCR, respectively. In control mice, significant induction of cAMP-PDE activity was parallel to the increases of hyperresponsiveness, inflammatory cells, cytokine levels, mRNA expression as well as goblet cell hyperplasia. However, piclamilast dose-dependently and significantly improved airway resistance and dynamic compliance, and the maximal effect was similar to that of dexamethasone. Piclamilast treatment dose-dependently and significantly prevented the increase in inflammatory cell number and goblet cell hyperplasia, as well as production of cytokines, including eotaxin, TNFalpha and IL-4. Piclamilast exerted a weaker inhibitory effect than dexamethasone on eosinophils and neutrophils, had no effect on lymphocyte accumulation. Moreover, piclamilast inhibited up-regulation of cAMP-PDE activity and cytokine mRNA expression; the maximal inhibition of cAMP-PDE was greater than that exerted by dexamethasone, and was similar to dexamethasone on cytokine mRNA expression. This study suggests that inhibition of PDE4 by piclamilast robustly improves the pulmonary function, airway inflammation and goblet cell hyperplasia in murine allergenic asthma.  相似文献   

12.
13.
To maintain health and function in response to inhaled environmental irritants and toxins, the lungs and airways depend upon an innate defense system that involves the secretion of mucus (i.e., mucin, salts, and water) by airway epithelium onto the apical surface to trap foreign particles. Airway mucus is then transported in an oral direction via ciliary beating and coughing, which helps to keep the airways clear. CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated Cl- channel in the apical membrane of epithelium that contributes to salt and water secretion onto the luminal surface of airways, thereby ensuring that secreted mucus is sufficiently hydrated for movement along the epithelial surface. Dehydration of airway mucus, as occurs in cystic fibrosis, results in a more viscous, less mobile secretion that compromises the lung’s innate defense system by facilitating a build-up of foreign particles and bacterial growth. Related to this situation is chronic obstructive pulmonary disease (COPD), which is a leading cause of death globally. A major cause of COPD is cigarette smoking, which has been reported to decrease the cellular levels of CFTR in airway epithelia. In their recent article, Rasmussen and coworkers now report that exposure to cigarette smoke elevates cytosolic free Ca2+ in airway epithelium, leading to decreased surface localization and cellular expression of CFTR and reduced levels of secreted airway surface liquid. Blocking this increase in cytosolic Ca2+ largely prevented CFTR loss in airway epithelium and surprisingly, cellular lysosomes appear to be a major source for smoke-induced Ca2+ elevation.  相似文献   

14.
To maintain health and function in response to inhaled environmental irritants and toxins, the lungs and airways depend upon an innate defense system that involves the secretion of mucus (i.e., mucin, salts, and water) by airway epithelium onto the apical surface to trap foreign particles. Airway mucus is then transported in an oral direction via ciliary beating and coughing, which helps to keep the airways clear. CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated Cl- channel in the apical membrane of epithelium that contributes to salt and water secretion onto the luminal surface of airways, thereby ensuring that secreted mucus is sufficiently hydrated for movement along the epithelial surface. Dehydration of airway mucus, as occurs in cystic fibrosis, results in a more viscous, less mobile secretion that compromises the lung’s innate defense system by facilitating a build-up of foreign particles and bacterial growth. Related to this situation is chronic obstructive pulmonary disease (COPD), which is a leading cause of death globally. A major cause of COPD is cigarette smoking, which has been reported to decrease the cellular levels of CFTR in airway epithelia. In their recent article, Rasmussen and coworkers now report that exposure to cigarette smoke elevates cytosolic free Ca2+ in airway epithelium, leading to decreased surface localization and cellular expression of CFTR and reduced levels of secreted airway surface liquid. Blocking this increase in cytosolic Ca2+ largely prevented CFTR loss in airway epithelium and surprisingly, cellular lysosomes appear to be a major source for smoke-induced Ca2+ elevation.  相似文献   

15.

Background

Airway remodeling is a proposed mechanism that underlies the persistent loss of lung function associated with childhood asthma. Previous studies have demonstrated that human lung fibroblasts (HLFs) co-cultured with primary human bronchial epithelial cells (BECs) from asthmatic children exhibit greater expression of extracellular matrix (ECM) components compared to co-culture with BECs derived from healthy children. Myofibroblasts represent a population of differentiated fibroblasts that have greater synthetic activity. We hypothesized co-culture with asthmatic BECs would lead to greater fibroblast to myofibroblast transition (FMT) compared to co-culture with healthy BECs.

Methods

BECs were obtained from well-characterized asthmatic and healthy children and were proliferated and differentiated at an air-liquid interface (ALI). BEC-ALI cultures were co-cultured with HLFs for 96 hours. RT-PCR was performed in HLFs for alpha smooth muscle actin (α-SMA) and flow cytometry was used to assay for α-SMA antibody labeling of HLFs. RT-PCR was also preformed for the expression of tropomyosin-I as an additional marker of myofibroblast phenotype. In separate experiments, we investigated the role of TGFβ2 in BEC-HLF co-cultures using monoclonal antibody inhibition.

Results

Expression of α-SMA by HLFs alone was greater than by HLFs co-cultured with healthy BECs, but not different than α-SMA expression by HLFs co-cultured with asthmatic BECs. Flow cytometry also revealed significantly less α-SMA expression by healthy co-co-cultures compared to asthmatic co-cultures or HLF alone. Monoclonal antibody inhibition of TGFβ2 led to similar expression of α-SMA between healthy and asthmatic BEC-HLF co-cultures. Expression of topomyosin-I was also significantly increased in HLF co-cultured with asthmatic BECs compared to healthy BEC-HLF co-cultures or HLF cultured alone.

Conclusion

These findings suggest dysregulation of FMT in HLF co-cultured with asthmatic as compared to healthy BECs. Our results suggest TGFβ2 may be involved in the differential regulation of FMT by asthmatic BECs. These findings further illustrate the importance of BEC-HLF cross-talk in asthmatic airway remodeling.  相似文献   

16.
Paraoxonase (PON1) protects low and high-density lipoproteins (LDL and HDL) against oxidation induced by reactive oxygen species formation facilitated by iron (Fe) and copper (Cu) ions. Plasma PON1, arylesterase, oxidized LDL (Ox-LDL), Cu, Fe, thiobarbituric acid-reactive substances (TBARS), lipid, lipoprotein, and apolipoprotein profile in bronchial asthma were determined and the relations among these parameters in different steps of asthma were interpreted. A total of 58 individuals, 30 asthmatics and 28 controls, were included into the scope of this study. Plasma PON1, arylesterase, and TBARS levels were measured spectrophotometrically. Determination of plasma oxidized LDL, Cu, and Fe levels were performed by enzyme-linked immunosorbent assay, atomic absorption spectrophotometry, and the automated TPTZ method, respectively. Apo-A-1 and Apo-B levels were determined immunoturbidometrically. Plasma total cholesterol, triglyceride, and HDL cholesterol levels were enzymatically determined. Plasma LDL levels were estimated using the Fridewald formula. The average plasma PON1 and arylesterase activities in the group of patients were lower than those of the individuals in the control group, but there was no statistically significant difference found between them (p>0.05). No significant difference was found in plasma Apo-A-1, Apo-B, total cholesterol, triglyceride, HDL, and LDL concentrations between the control and patient groups (p>0.05). Plasma oxidized LDL (p<0.05), Cu (p<0.01), Fe (p<0.01), and TBARS (p<0.001) levels in patients with asthma were found to be significantly higher than for the control group. Increases in Cu, Fe, lipid peroxidation, and oxidized LDL levels supported by relative decreases in PON1 activities observed in asthmatic patients might be introduced as the striking findings as well as the possible potential indicators of this airway disease, the prevalence of which has increased dramatically over recent decades.  相似文献   

17.
18.
Polymorphonuclear neutrophils (PMN) generate 5-HETE which can be retained within cells as free metabolites or esterified into cellular lipids. Since this metabolite has been shown to have certain inflammatory porperties, we compared the generation and distribution profile of 5-HETE in A 23187-stimulated PMN from asthmatic patients (AP) and normal subjects (NS). 5-HETE was analyzed using RP-HPLC. After 5 min , total 5 HETE generation was similar in the two populations. However, esterified 5-HETE was significantly enhanced in AP (72 ± 3 % versus 47 ± 2 % of the total synthesis, p < 0.005), whereas intracellular free 5-HETE was decreased (13 ± 3 % versus 37 ± 4 %, p < 0.005) and similar low release was observed. Kinetic studies showed that PMN from AP esterified 5-HETE more rapidly and to a greater extent than PMN from NS. By contrast, more intracellular free 5-HETE was recovered in PMN from NS. Esterification seems to be the major pathway of 5-HETE metabolism in PMN from AP. Moreover, we showed that most of the 5-HETE added exogenously was esterified into cellular lipids. In these experimental conditions, PAF-induced migration of PMN was increased. The enhanced ability of PMN to migrate could be due to the increase of 5-HETE esterification process.  相似文献   

19.
It has been widely recognized that chronic pain could cause physiological changes at supraspinal levels. The delta-opioidergic system is involved in antinociception, emotionality, immune response and neuron-glia communication. In this study, we show that mice with chronic pain exhibit anxiety-like behavior and an increase of astrocytes in the cingulate cortex due to the dysfunction of cortical delta-opioid receptor systems. Using neural stem cells cultured from the mouse embryonic forebrain, astrocyte differentiation was clearly observed following long-term exposure to the selective delta-opioid receptor antagonist, naltrindole. We also found that micro-injection of either activated astrocyte or astrocyte-conditioned medium into the cingulate cortex of mice aggravated the expression of anxiety-like behavior. Our results indicate that the chronic pain process promotes astrogliosis in the cingulate cortex through the dysfunction of cortical delta-opioid receptors. This phenomenon may lead to emotional disorders including aggravated anxiety under chronic pain-like state.  相似文献   

20.

Background

Potential involvement of the CCR10/CCL28 axis was recently reported in murine models of allergic asthma. If confirmed, blockade of the CCR10 receptor would represent an alternative to current asthma therapies. We evaluated the effect of a novel Protein Epitope Mimetic CCR10 antagonist, POL7085, in a murine model of allergic eosinophilic airway inflammation.

Methods

Mice were sensitized and challenged to ovalbumin. POL7085, a CCR10 antagonist (7.5 and 15 mg/kg), dexamethasone (1 mg/kg) or vehicle were administered intranasally once daily 1h before each allergen challenge. On day 21, airway hyperresponsiveness, bronchoalveolar lavage inflammatory cells and Th2 cytokines, and lung tissue mucus and collagen were measured.

Results

Allergen challenge induced airway hyperresponsiveness in vehicle-treated animals as measured by whole body barometric plethysmography, and eosinophilia in bronchoalveolar lavage. POL7085 dose-dependently and significantly decreased airway hyperresponsiveness (34 ± 16 %) and eosinophil numbers in bronchoalveolar lavage (66 ± 6 %). In addition, the highest dose of POL7085 used significantly inhibited lung IL-4 (85 ± 4 %), IL-5 (87 ± 2 %) and IL-13 (190 ± 19 %) levels, and lung collagen (43 ± 11 %).

Conclusions

The Protein Epitope Mimetic CCR10 antagonist, POL7085, significantly and dose-dependently decreased allergen-induced airway hyperresponsiveness and airway inflammation after once daily local treatment. Our data give strong support for further investigations with CCR10 antagonists in asthmatic disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0231-5) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号