首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The development of dry powder inhalation (DPI) products of traditional Chinese medicine (TCM) remains to be a challenge due to chemical complexity and batch-to-batch variations in constituent composition. This study was to investigate the feasibility of using spray-dried corrugated particles to improve the aerodynamic performance of a TCM, Shuang-Huang-Lian (SHL), in carrier-based DPI. Particles with different surface roughness were spray-dried by the addition of leucine and concomitant manipulation of spray-drying parameters. The surface roughness was determined by atomic force microscopy, whilst the aerodynamic performance of drug particle–mannitol/lactose blends was evaluated using a next-generation pharmaceutical impactor through a Cyclohaler. Although the emission efficiency for corrugated particle-based DPI was ∼10% lower than that for smooth SHL, the fine particle fractions (FPF<4.4 μm) of 32.4–36.8% for the former were significantly higher than those of 14.7–16.2% for the latter. In particular, the FPF and fraction of drug detached from the carrier appeared not to be significantly affected by the variation in constituent composition of SHL. This study demonstrates that the use of corrugated particles in carrier-based DPI improved aerosol performance by facilitating drug detachment from the carrier, independent of variation in constituent composition, and such particles were potentially applicable to the development of SHL DPI products.KEY WORDS: dry powder inhaler, Shuang-Huang-Lian, spray-drying, surface roughness, traditional Chinese medicine  相似文献   

2.
Interactions between particles are dependent on the physicochemical characteristics of the interacting particles but it is also important to consider the manufacturing process. Blending active pharmaceutical ingredient (API) with carrier is a critical stage that determines the blend homogeneity and is the first step towards obtaining the final quality of the powder blend. The aim of this work was to study parameters that influence the interactions between API and carrier in adhesive mixtures used in DPI and their effect on API dispersion. The study was done with fluticasone propionate blended with lactose ‘Lactohale 200’. The study was based on the influence of the operating conditions (speed, mixing time, resting steps during mixing), the size of the carrier and the storage conditions on the blend properties and on the API dispersion. The quality of the blends was examined by analysing the API content uniformity. Adhesion characteristics were evaluated by submitting mixtures to a sieving action by air depression with the Alpine air-jet sieve. Aerodynamic evaluation of fine particle fraction (FPF) was obtained using a Twin Stage Impinger; the FPF being defined as the mass percentage of API below 6.4 μm. For good dispersion and therefore good homogeneity of the API in the carrier particles, speed and powder blending time have to be sufficient, but not too long to prevent the appearance of static electricity, which is not favourable to homogeneity and stability. The FPF increases with the decrease in the carrier size. The storage conditions have also to be taken into consideration. Higher humidity favours the adhesion of API on the carrier and decreases the FPF.KEY WORDS: adhesion, DPI performance, fluticasone propionate, operating parameters  相似文献   

3.
Recently, inhaled immunosuppressive agents have attracted increasing attention for maintenance therapy following lung transplantation. The rationale for this delivery approach includes a more targeted and localized delivery to the diseased site with reduced systemic exposure, potentially leading to decreased adverse side effects. In this study, the in vitro and in vivo performance of an amorphous formulation prepared by thin film freezing (TFF) and a crystalline micronized formulation produced by milling was compared for tacrolimus (TAC). Despite the relatively large geometric size, the TFF-processed formulation was capable of achieving deep lung delivery due to its low-density, highly porous, and brittle characteristics. When emitted from a Miat® monodose inhaler, TFF-processed TAC formulations exhibited a fine particle fraction (FPF) of 83.3% and a mass median aerodynamic diameter (MMAD) of 2.26 μm. Single-dose 24-h pharmacokinetic studies in rats demonstrated that the TAC formulation prepared by TFF exhibited higher pulmonary bioavailability with a prolonged retention time in the lung, possibly due to decreased clearance (e.g., macrophage phagocytosis), compared to the micronized TAC formulation. Additionally, TFF formulation generated a lower systemic TAC concentration with smaller variability than the micronized formulation following inhalation, potentially leading to reduced side effects related to the drug in systemic circulation.  相似文献   

4.
The current work prepared chitosan/hydroxypropyl methylcellulose (HPMC) blends and studied the possibility of chitosan/HPMC blended patches for Zingiber cassumunar Roxb. The blended patches without/with crude Z. cassumunar oil were prepared by homogeneously mixing the 3.5% w/v of chitosan solution and 20% w/v of HPMC solution, and glycerine was used as plasticizer. Then, they were poured into Petri dish and produced the blended patches in hot air oven at 70 ± 2°C. The blended patches were tested and evaluated by the physicochemical properties: moisture uptake, swelling ratio, erosion, porosity, Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction, and photographed the surface and cross-section morphology under SEM technique. Herbal blended patches were studied by the in vitro release and skin permeation of active compound D. The blended patches could absorb the moisture and became hydrated patches that occurred during the swelling of blended patches. They were eroded and increased by the number of porous channels to pass through out for active compound D. In addition, the blended patches indicated the compatibility of the blended ingredients and homogeneous smooth and compact. The blended patches made from chitosan/HPMC blends provide a controlled release and skin permeation behavior of compound D. Thus, the blended patches could be suitably used for herbal medicine application.KEY WORDS: chitosan, formulation, herbal blended patches, HPMC, Zingiber cassumunar Roxb  相似文献   

5.
In this study, we investigated the in vitro characteristics of mefenamic acid (MA) microparticles as well as their effects on DNA damage. MA-loaded chitosan and alginate beads were prepared by the ionotropic gelation process. Microsponges containing MA and Eudragit RS 100 were prepared by quasi-emulsion solvent diffusion method. The microparticles were characterized in terms of particle size, surface morphology, encapsulation efficiency, and in vitro release profiles. Most of the formulation variables manifested an influence on the physical characteristics of the microparticles at varying degrees. We also studied the effects of MA, MA-loaded microparticles, and three different polymers on rat brain cortex DNA damage. Our results showed that DNA damage was higher in MA-loaded Eudragit microsponges than MA-loaded biodegradable chitosan or alginate microparticles.  相似文献   

6.
Saturation point mutagenesis was carried out at position 479 in the polyhydroxyalkanoate (PHA) synthase from Chromobacterium sp. strain USM2 (PhaCCs) with specificities for short-chain-length (SCL) [(R)-3-hydroxybutyrate (3HB) and (R)-3-hydroxyvalerate (3HV)] and medium-chain-length (MCL) [(R)-3-hydroxyhexanoate (3HHx)] monomers in an effort to enhance the specificity of the enzyme for 3HHx. A maximum 4-fold increase in 3HHx incorporation and a 1.6-fold increase in PHA biosynthesis, more than the wild-type synthase, was achieved using selected mutant synthases. These increases were subsequently correlated with improved synthase activity and increased preference of PhaCCs for 3HHx monomers. We found that substitutions with uncharged residues were beneficial, as they resulted in enhanced PHA production and/or 3HHx incorporation. Further analysis led to postulations that the size and geometry of the substrate-binding pocket are determinants of PHA accumulation, 3HHx fraction, and chain length specificity. In vitro activities for polymerization of 3HV and 3HHx monomers were consistent with in vivo substrate specificities. Ultimately, the preference shown by wild-type and mutant synthases for either SCL (C4 and C5) or MCL (C6) substrates substantiates the fundamental classification of PHA synthases.  相似文献   

7.
In recent years, nanotechnology in merging with biotechnology has been employed in the area of cancer management to overcome the challenges of chemopreventive strategies in order to gain promising results. Since most biological processes occur in nano scale, nanoparticles can act as carriers of certain drugs or agents to deliver it to specific cells or targets. In this study, we intercalated Epigallocatechin-3-Gallate (EGCG), the most abundant polyphenol in green tea, into Ca/Al-NO3 Layered double hydroxide (LDH) nanoparticles, and evaluated its efficacy compared to EGCG alone on PC3 cell line. The EGCG loaded LDH nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM) and nanosizer analyses. The anticancer activity of the EGCG-loaded LDH was investigated in prostate cancer cell line (PC3) while the release behavior of EGCG from LDH was observed at pH 7.45 and 4.25. Besides enhancing of apoptotic activity of EGCG, the results showed that intercalation of EGCG into LDH can improve the anti- tumor activity of EGCG over 5-fold dose advantages in in-vitro system. Subsequently, the in-vitro release data showed that EGCG-loaded LDH had longer release duration compared to physical mixture, and the mechanism of diffusion through the particle was rate-limiting step. Acidic attack was responsible for faster release of EGCG molecules from LDH at pH of 4.25 compared to pH of 7.4. The results showed that Ca/Al-LDH nanoparticles could be considered as an effective inorganic host matrix for the delivery of EGCG to PC3 cells with controlled release properties.  相似文献   

8.
Triple-negative breast cancer (TNBC), defined by the absence of an estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression, is associated with an early recurrence of disease and poor outcome. Furthermore, the majority of deaths in breast cancer patients are from metastases instead of from primary tumors. In this study, MCF-7 (an estrogen receptor-positive human breast cancer cell line), MDA-MB-231 (a human TNBC cell line) and 4T1 (a mouse TNBC cell line) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with suberoylanilide hydroxamic acid (SAHA, an inhibitor of histone deacetylase (HDAC)) and to determine the underlying mechanisms of these effects in vitro and in vivo. We also evaluated the ability of SAHA to inhibit the metastasis of 4T1 cells. We found that IR combined with SAHA showed increased therapeutic efficacy when compared with either treatment alone in MCF-7, MDA-MB-231 and 4T1 cells. Moreover, the combined treatment enhanced DNA damage through the inhibition of DNA repair proteins. The combined treatment was induced primarily through autophagy and ER stress. In an orthotopic breast cancer mouse model, the combination treatment showed a greater inhibition of tumor growth. In addition, SAHA inhibited the migration and invasion abilities of 4T1 cells and inhibited breast cancer cell migration by inhibiting the activity of MMP-9. In an in vivo experimental metastasis mouse model, SAHA significantly inhibited lung metastasis. SAHA not only enhances radiosensitivity but also suppresses lung metastasis in breast cancer. These novel findings suggest that SAHA alone or combined with IR could serve as a potential therapeutic strategy for breast cancer.  相似文献   

9.
The objective of the present investigation was to develop in situ gelling nasal spray formulation of carvedilol (CRV) nanosuspension to improve the bioavailability and therapeutic efficiency. Solvent precipitation–ultrasonication method was opted for the preparation of CRV nanosuspension which further incorporated into the in situ gelling polymer phase. Optimized formulation was extensively characterized for various physical parameters like in situ gelation, rheological properties and in vitro drug release. Formation of in situ gel upon contact with nasal fluid was conferred via the use of ion-activated gellan gum as carrier. In vivo studies in rabbits were performed comparing the nasal bioavailability of CRV after oral, nasal, and intravenous administration. Optimized CRV nanosuspension prepared by combination of poloxamer 407 and oleic acid showed good particle size [d (0.9); 0.19 μm], zeta potential (+10.2 mV) and polydispersity (span; 0.63). The formulation containing 0.5% w/v gellan gum demonstrated good gelation ability and desired sustained drug release over period of 12 h. In vivo pharmacokinetic study revealed that the absolute bioavailability of in situ nasal spray formulation (69.38%) was significantly increased as compared to orally administered CRV (25.96%) with mean residence time 8.65 h. Hence, such in situ gel system containing drug nanosuspension is a promising approach for the intranasal delivery in order to increase nasal mucosal permeability and in vivo residence time which altogether improves drug bioavailability.KEY WORDS: bioavailability, Carvedilol, in situ gel, intranasal, nanosuspension  相似文献   

10.
Food Biophysics - Caffeic acid phenethyl ester (CAPE) has high cytotoxicity against various cancer cells but has low water solubility and poor bioavailability. The objective of this work was to...  相似文献   

11.
The objective of the present investigation was to develop and evaluate microemulsion-based gel for the vaginal delivery of clotrimazole (CMZ). The solubility of CMZ in oils and surfactants was evaluated to identify components of the microemulsion. The ternary diagram was plotted to identify the area of microemulsion existence. Various gelling agents were evaluated for their potential to gel the CMZ microemulsion without affecting its structure. The bioadhesive potential and antifungal activity of the CMZ microemulsion-based gel (CMZ-MBG) was determined in comparison to the marketed clotrimazole gel (Candid-V® gel) by in vitro methods. The chemical stability of CMZ in CMZ-MBG was determined as per the International Conference on Harmonization guidelines. The CMZ microemulsion exhibited globule size of 48.4 nm and polydispersity index of 0.75. Carbopol® ETD 2020 could successfully gel the CMZ microemulsion without disturbing the structure. The CMZ-MBG showed significantly higher (P < 0.05) in vitro bioadhesion and antifungal activity as compared to that of Candid-V® gel. The stability studies indicated that CMZ undergoes acidic pH-catalyzed degradation at all the storage conditions at the end of 3 months.Key words: clotrimazole, microemulsion, microemulsion-based vaginal gel, stability studies, vaginal delivery  相似文献   

12.
Melanin is the major factor that determines skin color and protects from ultraviolet radiation. In present study we evaluated the anti‐melanogenesis effect of acetazolamide (ACZ) using four different approaches: enzyme kinetic, in vitro, in vivo and in silico. ACZ demonstrated significant inhibitory activity (IC50 7.895 ± 0.24 μm ) against tyrosinase as compared to the standard drug kojic acid (IC50 16.84 ± 0.64 μm ) and kinetic analyses showed that ACZ is a non‐competitive inhibitor without cytotoxic effect. In in vitro experiments, A375 human melanoma cells were treated with 20 or 40 μm of ACZ with or without 50 μm of l ‐DOPA. Western blot results showed that ACZ significantly (< 0.05) decreased the expression level of tyrosinase at 40 μm . Zebrafish embryos were treated with 10, 20 or 40 μm of ACZ and of positive control kojic acid. At 72 h of treatment with ACZ and kojic acid, ACZ significantly (< 0.001) decreased the embryos pigmentation to 40.8% of untreated embryos at the dose of 40 μm of ACZ while kojic acid decreased only 25.0% of pigmentation at the same dose of kojic acid. In silico docking were performed against tyrosinase using PyRx tool. Docking studies suggested that His244, Asn260 and His85 are the major interacting residues in the binding site of the protein. In conclusion, our results suggest that ACZ is a good candidate for the inhibition of melanin and it could be used as a lead for developing the drugs for hyperpigmentary disorders and skin whitening.  相似文献   

13.
Gastric cancer is the second leading cause of cancer-related death worldwide. The correlation of Helicobacter pylori and the etiology of gastric cancer was substantially certain. Cholesterol-rich microdomains (also called lipid rafts), which provide platforms for signaling, are associated with H. pylori-induced pathogenesis leading to gastric cancer. Patients who have been prescribed statins, inhibitors of 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase, have exhibited a reduced risk of several types of cancer. However, no studies have addressed the effect of statins on H. pylori-associated gastric cancer from the antineoplastic perspective. In this study, we showed that treatment of gastric epithelial cells with simvastatin reduced the level of cellular cholesterol and led to attenuation of translocation and phosphorylation of H. pylori cytotoxin-associated gene A (CagA), which is recognized as a major determinant of gastric cancer development. Additionally, a nationwide case-control study based on data from the Taiwanese National Health Insurance Research Database (NHIRD) was conducted. A population-based case-control study revealed that patients who used simvastatin exhibited a significantly reduced risk of gastric cancer (adjusted odds ratio (OR) = 0.76, 95% confidence interval (CI) = 0.70–0.83). In patients exhibiting H. pylori infection who were prescribed simvastatin, the adjusted OR for gastric cancer was 0.25 (95% CI = 0.12–0.50). Our results combined an in vitro study with a nationwide population analysis reveal that statin use might be a feasible approach to prevent H. pylori-associated gastric cancer.  相似文献   

14.
The translation of in vitro findings to clinical outcomes is often elusive. Trauma/hemorrhagic shock (T/HS) results in hepatic hypoxia that drives inflammation. We hypothesize that in silico methods would help bridge in vitro hepatocyte data and clinical T/HS, in which the liver is a primary site of inflammation. Primary mouse hepatocytes were cultured under hypoxia (1% O2) or normoxia (21% O2) for 1–72 h, and both the cell supernatants and protein lysates were assayed for 18 inflammatory mediators by Luminex™ technology. Statistical analysis and data-driven modeling were employed to characterize the main components of the cellular response. Statistical analyses, hierarchical and k-means clustering, Principal Component Analysis, and Dynamic Network Analysis suggested MCP-1/CCL2 and IL-1α as central coordinators of hepatocyte-mediated inflammation in C57BL/6 mouse hepatocytes. Hepatocytes from MCP-1-null mice had altered dynamic inflammatory networks. Circulating MCP-1 levels segregated human T/HS survivors from non-survivors. Furthermore, T/HS survivors with elevated early levels of plasma MCP-1 post-injury had longer total lengths of stay, longer intensive care unit lengths of stay, and prolonged requirement for mechanical ventilation vs. those with low plasma MCP-1. This study identifies MCP-1 as a main driver of the response of hepatocytes in vitro and as a biomarker for clinical outcomes in T/HS, and suggests an experimental and computational framework for discovery of novel clinical biomarkers in inflammatory diseases.  相似文献   

15.
16.
Liposomes are effectively used in the treatment of microbial infections. Higher cellular uptake has been reported when antibiotics are encapsulated in liposomes. In this study, enrofloxacin (ENF) was encapsulated in large unilamellar vesicles (LUVs) and the effects of formulation variables on the liposome characteristics were investigated. Liposomes were prepared using dry lipid film method. A number of variables such as molar ratios of phospholipid (DPPC; DL‐α‐phosphatidylcholine dipalmitoyl), cholesterol, ENF and amount of α‐tocopherol and the volumes of internal (chloroform) and external phases [phosphate buffered saline PBS (pH 7.4)] were studied. In vitro characterization of the liposomes including the encapsulation capacity, size and drug release properties were carried out. Using of this method, spherical LUV liposomes with high drug content could be produced. Particle size of liposomes changed between 3.12 and 4.95 µm. The molar ratios of DPPC, cholesterol and ENF affected the size of the liposome (p < 0.05). The drug encapsulation capacities were high and changed between 37.1% and 79.5%. The highest ENF encapsulation was obtained with the highest cholesterol content. An increase in the drug encapsulation capacity of the liposome was found with increasing molar ratios of DPPC, cholesterol and ENF (p < 0.05). Furthermore, the release of ENF from the liposomes decreased as the molar ratios of DPPC, cholesterol and ENF increased (p < 0.05). In conclusion, a convenient colloidal carrier for the controlled release of ENF can be prepared by changing the formulation parameters of LUVs.  相似文献   

17.
Both alprazolam and triazolam displaced clonazepam (but not Ro 5-4864) from rat brain membranes with high affinity, showing them to act at central but not peripheral benzodiazepine receptors. At 0 degrees C, 10 microM gamma-aminobutyric acid (GABA) increased the ability of alprazolam, but not of triazolam, to displace ethyl-beta-carboline-3-carboxylate (beta-CCE) and Ro 15-1788 from these receptors. At 37 degrees C, GABA increased the affinity of the receptors for both drugs, with a +GABA/-GABA ratio of 1.5 for each in promoting Ro 15-1788 binding displacement. As both triazolam and alprazolam act as anxiolytics in vivo, the results at 37 degrees C would be compatible with the hypothesis that GABA causes an increase in affinity of drugs that act in this way, but the results at 0 degrees C would not be compatible. At 37 degrees C, alprazolam had a higher IC50 for the benzodiazepine receptor than at 0 degrees C, whereas triazolam showed the reverse effect. The relative IC50 values in vitro at 37 degrees C correlated better with the potency in vivo than those obtained at 0 degrees C. At 0 degrees C, both drugs showed Hill plots with slopes of 0.9-1 with beta-CCE and Ro 15-1788. At 37 degrees C, the slopes with triazolam were much reduced, indicating that the drug may have a selective action on a subclass of central benzodiazepine receptors. In the studies reported here, alprazolam behaved like other benzodiazepines, whereas triazolam showed several anomalous properties. It would be of interest if these properties could be related either to the drug's use as a hypnotic or to the side effects it sometimes induces.  相似文献   

18.
Russian Journal of Bioorganic Chemistry - Coumarin is active pharmacophore; to enhance the activity of chalcone we inserted coumarin along with other cyclic groups. Fewer pyrazolone aldehydes...  相似文献   

19.
Nanoparticles have been used in cancer treatments to target tumor and reduce side effects. In this study, we aimed to increase the effectiveness of palladium(II) complex [PdCl(terpy)](sac) ⋅ 2H2O, which previously showed anticancer potential, by preparing the nanoparticle formulation. An inhalable micellar dispersion containing a palladium(II) complex (PdNP) was prepared and its physicochemical characteristics were evaluated using in vitro tests. Morphology, size and surface charges of particle and loading/encapsulation efficiency of PdNP were analyzed by scanning electron microscopy, zeta sizer and inductively coupled plasma mass spectrometry while aerosol properties of PdNP were measured by the next generation impactor. A549 and H1299 non-small lung cancer cell types were used for cytotoxicity using SRB and ATP assays. Fluorescent staining and M30 antigen assay were carried out for cell death evaluation. Apoptosis was confirmed by flow cytometry analyses. SEM, particle size, and zeta potential results showed the particles have inhalable properties. The amount of the palladium(II) complex loaded into the particles was quantified which indicated high encapsulation efficiencies (97 %). The micellar dispersion expected to reach the alveolar region and the brachial region was determined 35 % and 47 %, respectively. PdNP showed an anti-growth effect by increasing reactive oxygen species that is followed by the induction of mitochondria-dependent apoptosis that is evidenced by pyknotic nuclei and M30 antigen level increments and disruption of polarization of membrane in mitochondria (Δψm). The results show that PdNP might be a promising inhalable novel complex to be used in non-small cell lung cancer, which warrants animal studies in further.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号