首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by “building and breaking it” via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the “Vision and Change” call to action in undergraduate biology education by providing a hands-on approach to biology.  相似文献   

2.
The past decade has seen a rapid increase in the ability of biologists to collect large amounts of data. It is therefore vital that research biologists acquire the necessary skills during their training to visualize, analyze, and interpret such data. To begin to meet this need, we have developed a “boot camp” in quantitative methods for biology graduate students at Harvard Medical School. The goal of this short, intensive course is to enable students to use computational tools to visualize and analyze data, to strengthen their computational thinking skills, and to simulate and thus extend their intuition about the behavior of complex biological systems. The boot camp teaches basic programming using biological examples from statistics, image processing, and data analysis. This integrative approach to teaching programming and quantitative reasoning motivates students’ engagement by demonstrating the relevance of these skills to their work in life science laboratories. Students also have the opportunity to analyze their own data or explore a topic of interest in more detail. The class is taught with a mixture of short lectures, Socratic discussion, and in-class exercises. Students spend approximately 40% of their class time working through both short and long problems. A high instructor-to-student ratio allows students to get assistance or additional challenges when needed, thus enhancing the experience for students at all levels of mastery. Data collected from end-of-course surveys from the last five offerings of the course (between 2012 and 2014) show that students report high learning gains and feel that the course prepares them for solving quantitative and computational problems they will encounter in their research. We outline our course here which, together with the course materials freely available online under a Creative Commons License, should help to facilitate similar efforts by others.This is part of the PLOS Computational Biology Education collection.  相似文献   

3.
Can biology students without programming skills solve problems that require computational solutions? They can if they learn to cooperate effectively with computer science students. The goal of the in-concert teaching approach is to introduce biology students to computational thinking by engaging them in collaborative projects structured around the software development process. Our approach emphasizes development of interdisciplinary communication and collaboration skills for both life science and computer science students.  相似文献   

4.
The use of theory and simulation in undergraduate education in biochemistry, molecular biology, and structural biology is now common, but the skills students need and the curriculum instructors have to train their students are evolving. The global pandemic and the immediate switch to remote instruction forced instructors to reconsider how they can use computation to teach concepts previously approached with other instructional methods. In this review, we survey some of the curricula, materials, and resources for instructors who want to include theory, simulation, and computation in the undergraduate curriculum. There has been a notable progression from teaching students to use discipline-specific computational tools to developing interactive computational tools that promote active learning to having students write code themselves, such that they view computation as another tool for solving problems. We are moving toward a future where computational skills, including programming, data analysis, visualization, and simulation, will no longer be considered an optional bonus for students but a required skill for the 21st century STEM (Science, Technology, Engineering, and Mathematics) workforce; therefore, all physical and life science students should learn to program in the undergraduate curriculum.  相似文献   

5.
As education methodology has grown to incorporate online learning, disciplines with a field component, like ecology, may find themselves sidelined in this transition. In response to challenges posed by moving classes online, previous studies have assessed whether an online environment can be effective for student learning. This work has found that active learning structures, which maximize information processing and require critical thinking, best support student learning. All too commonly, online and active learning are perceived as mutually exclusive. We argue the success of online learning requires facilitating active learning in online spaces. To highlight this intersection in practice, we use a case study of an online, active, and synchronous ecology and conservation biology course from the College of Natural Sciences at Minerva Schools at KGI. We use our perspectives as curriculum designers, instructors, and students of this course to offer recommendations for creating active online ecology courses. Key components to effective course design and implementation are as follows: facilitating critical “thinking like a scientist”, integrating open‐ended assignments into class discussion, and creating active in‐class dialogues by minimizing lecturing. Based on our experience, we suggest that by employing active learning strategies, the future of ecology in higher education is not inhibited, but in fact supported, by opportunities for learning online.  相似文献   

6.
Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project''s complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.
This Education article is part of the Education Series.
Hands-on robotic and video game design projects and competitions are widespread and have proven particularly effective at sparking interest and teaching K–12 and college students in mechatronics, computer science, and Science, Technology, Engineering, and Mathematics (STEM). Furthermore, these projects foster teamwork, self-learning, design, and presentation skills [1,2]. Such playful and interactive media that provide fun, creative, open-ended learning experiences for all ages are arguably underdeveloped in the life sciences. Most hands-on education occurs in traditionally structured laboratory courses with a few exceptions like the International Genetically Engineered Machine (iGEM) competition [3]. Furthermore, there is an increasing need to bring the traditional engineering and life science disciplines together. In order to fill these gaps, we present the concept of a biotic game design project to foster student development in a broad set of engineering and life science skills in an integrated manner (Fig. 1). Though we primarily discuss our specific implementation as a cornerstone project-based class [4], alternative implementations are possible to motivate a variety of learning goals under various constraints such as student age and cost (see supplements for all course material).Open in a separate windowFig 1We developed a bioengineering devices course that employed biotic game design as a motivating project scheme. A: Biotic games enable human players to interact with cells. B: Conceptual overview of a biotic game setup. C: Students built and played biotic games. Image credits: A C64 joystick by Speed-link, 1984 (http://commons.wikimedia.org/wiki/File:Joystick_black_red_petri_01.svg); Euglena viridis by C. G. Ehrenberg, 1838; C Photo, N. J. C.Biotic games are games that operate on biological processes (Fig. 1) [5]. The biotic games we present here involve the single-celled phototactic eukaryote, Euglena gracilis. These microscopic organisms are housed in a microfluidic chip and are displayed in a magnified image on a video screen. Players interact with these cells by modulating the intensity and direction of light perpendicular to the microfluidic chip via a joystick, thereby influencing the cells’ phototactic motion. Software tracks the position of individual euglena with respect to virtual objects overlaid on the screen, creating myriad opportunities for creative game design and play. For example, in a simple game, points might be scored when a cell hits a virtual box (see S1 Video).The biotic game design project we developed was intended to motivate all the broad categories of theoretical and hands-on skills for creating any integrated instrument intended to house and to interface with biological materials, i.e., optics, electronics, sensing, actuation, microfluidics, fabrication, image processing, programming, and creative design. We termed the synthesis of these skills “biotics” in analogy to mechatronics. Our intended audience for this course was bioengineering undergraduate students at Stanford University who already had some programming experience but little to no experience in device design, fabrication, and integration. We also incorporated bioethics into the curriculum to emphasize the social responsibility of every engineer and demonstrate the potential for the biotic game project to motivate multiple fields. The course we taught spanned ten weeks, divided roughly equally into a set of technical units and the biotic game project, with two 4-hour lab sections and a single 1.5-hour lecture each week. For details and all course documents, please refer to the supplemental material.The technical section of the course focused on developing hands-on skills and theoretical understanding related to devices in a conventionally structured laboratory setting. We introduced students to fundamental electronics concepts and components such as voltage, current, resistors, capacitors, LEDs, filters, operational amplifiers, motors, microcontrollers (Arduino Uno), and breadboards. We followed a similar traditional approach in introducing optics, presenting the thin lens equation, ray tracing, conjugate planes, basic optical system design, and Köhler illumination. We covered additional topics in less detail: MATLAB programming, particle tracking, computer-aided design (CAD), fabrication, and microfluidics (learning objectives are provided at the beginning of each unit in the supplemental material).During the project-based section, students built their own biotic games. We left specific choices of implementation, architecture, and design to the students to encourage creativity and exploration but required students to revisit the technical skills they learned in the first section by integrating some specific requirements into their games (Fig. 2). Students built a bright field microscope with Köhler illumination and projected their images onto a webcam (optics). Glass and polydimethylsiloxane (PDMS) components comprised the microfluidic chip (microfluidics) and housed the euglena (microbiology). The holder for the chip and euglena-steering LEDs was designed in Solidworks (CAD) and 3-D printed (fabrication). The students constructed a polycarbonate housing for the game controller using a band saw and drill press (fabrication). The students revisited electronic breadboarding and soldering when creating the electronic circuits to communicate between the LEDs, joystick, microcontroller, and computer. Finally, they used MATLAB to program the microcontroller, implement real time image recognition, and provide the user interface for the game experience (image processing and programming).Open in a separate windowFig 2Biotic game-based courses encourage students to integrate a versatile set of relevant STEM topics.Image credits: Taken by N. J. C. (credit for the work and artifacts to the students who took the course).We challenged students to consider the ethical implications [6] of manipulating life in a game context before building their projects. Although phototaxis experiments with euglena are commonplace in education, and have hitherto raised no ethical concerns, the equivalent manipulation in the form of a game warrants its own ethical analysis as provided by Harvey et al. [7]. The students read and discussed this paper, then wrote a 200-word essay on whether they found it permissible or not to make and play biotic games. Students had the choice to switch to a nongame project of equivalent complexity. All students found euglena-based games permissible, pointing out that “they are nonsentient and cannot feel pain,” followed by a diverse range of considerations such as “the euglena are still free to act as they please,” “there needs to be an educational intention,” or “a pet…provides a way…to work on responsibility and caring.” Based on further student-initiated discussions that spontaneously emerged throughout the course, we believe that biotic games are effective in providing a stimulating, student-relevant, in-class context for bioethics.We motivated the game design project to the students as having educational potential at two levels, i.e., learning by building and learning by playing; we lectured them about the needs and opportunities for new approaches to K–12 STEM education [8,9]. The students were then asked to consider building a game that had educational value for the player. Educational value has many aspects, which was reflected in students’ statements regarding their intended educational outcomes for their games on their course project websites. These ranged from more factual learning objectives (“learn about…” “…inner working,” “…structural detail,” “… light responses,” “…euglena behavior”) to objectives affecting attitude (“spark interest,” “generate fascination,” “encourage to explore,” “respect for life”). We also had a game designer give a guest lecture to the students. For pragmatic reasons, we requested the students keep games very simple (ideally having just a single in-game objective) and cap game duration at one minute. Before, during, and after their projects, students received feedback from instructors as well as from their peers on their games from technical and user perspectives.The games that the students ultimately produced were diverse and creative (Fig. 2 and S1 Video), including single and multiplayer scenarios, games where euglena hit virtual targets, and games where euglena pushed virtual objects. Games that involved pushing objects across the screen (relying on collective motion of many organisms) were generally more consistent at correlating player strategy to scored points than those that involved hitting target objects. The quality and robustness of these integrated projects naturally varied, and individual groups placed more or less emphasis on different aspects based on personal preferences and learning goals (for example, fabricating a more elaborate housing for the game controller versus programming more complex game mechanics). A key point was that the students did not rely on prepared materials or platforms to develop their games but rather had to design, build, and test their game setups from scratch, thereby revisiting and deepening the primary learning goals of the course with some freedom to follow their own learning aspirations (Fig. 2). The final project deliverables were a two-minute project demonstration video, a website describing the elements of the project, and a game that all instructors and students played on the final day (Fig. 1B), which led to lots of laughter as well as in-depth discussions on technical details.Many students self-reported that they enjoyed the project and that it led to increased motivation and effort during the course. In response to the question “Do you think you were motivated to try harder or had more fun (and thereby learned more) during your final project because you were making a game (rather than just building a technical instrument, for example)? If so—please give some examples:” 15 out of 17 students responded “Very/definitely” on a five point scale. As examples, students listed: “wanted to make the best game,” “want to make it clever and cool in the eyes of classmates who are play testing,” “motivated during final push,” “willing to put in more time,” “was fun”/”made it fun,” “create a game that actually works,” “reinforced what was learned before,” and “provided room for creativity.” These comments reflect the overall excitement we saw for the biotic game project. While these responses do not constitute rigorous proof regarding course effectiveness (which will require more detailed and controlled assessments in the future), we consider this course a success based on our teaching experiences.45 students have now taken this class over the past three years, with 18 students in our most recent offering. We used each year to iterate and improve our implementation. For example, we changed the organism and stimulus from Paramecia galvanotaxis [5] to Euglena phototaxis, which gave more reliable long-term responses. We also added a simple microfluidics unit enabling students to build more robust organism housing chambers. We changed the microscope structure from LEGO to Thorlabs parts (essentially trading the emphasis on 3-D structural design, flexibility, and cost for a more in-depth focus on high-end optics and their alignment). Finally, we explicitly asked the students to design and fabricate a housing for the game controller to better incorporate fabrication skills like using a band saw and tapping screw threads. So far, we primarily used MATLAB as the programming component given its widespread use in education and research and the available Arduino interface. However, MATLAB is not particularly well-suited to support game design and is also not free, making translation into lower resource settings challenging. For the future, we are considering moving to smartphone-based control (such as Android) given that these mobile environments are very flexible and increasingly used for control of scientific and consumer instruments and are becoming more widespread in education. We also see the opportunity to better emphasize and teach the approach of iterative design; for example, by letting students prototype and test their game ideas on paper [10] and simple programming environments like Scratch [11] first, before attempting the full implementation. It would likely also be very rewarding for the students to be able to take their project home at the end of the course. In summary, many different course design decisions can be made based on specific intended educational outcomes. Not all of these can be fit into one course at the same time, and clear decisions should be made on how to balance covering a breadth of topics with depth on a selected few.As a preliminary test of another age range, time frame, and budget, we taught a greatly simplified 3-hour workshop where high school and middle school students assembled a low-cost microscope and microfluidics chamber, attached it to a smartphone, and stimulated euglena using a preprogrammed Arduino-based controller (see supplements). We had no game interface implemented yet on the phone, but the students could observe the euglena responses to the light stimuli. All students were able to complete the project and take their microscopes home. Over half of our undergraduate student teams also volunteered to present their game projects for this outreach event which took place multiple weeks after their class had ended. This separate experience suggests that the biotic game concept holds promise for reaching a wider age range in a shortened timespan and at a greatly reduced budget, and that completed games can be used in outreach activities. We are currently developing a kit modeled after this unit.In conclusion, we consider biotic games promising in motivating integrated, hands-on learning at the interface of life science and engineering. Our efforts so far indicate that this concept could be adapted to various age groups and learning goals with the potential for wider future impacts on education. We draw upon the analogy to robotics, where microcontrollers went from initially unfathomable as an educational tool to the vision of Papert and collaborators and their use of programmable robotics with children [12], eventually leading to multiple commercial realizations (LEGO mindstorm, Arduino, etc.), a large public following, and a major role in education both in the classroom and through competitions such as First Robotics [1]. We also see additional potential for integrating more creative and artistic aspects into STEM, i.e., leading to generalized Science, Technology, Engineering, Arts, and Mathematics (STEAM) disciplines [13]. We invite others to join us in these endeavors—all instructional materials are available in the appendix for further adaptations and educational use.  相似文献   

7.
Methods for data analysis in the biomedical, life, and social (BLS) sciences are developing at a rapid pace. At the same time, there is increasing concern that education in quantitative methods is failing to adequately prepare students for contemporary research. These trends have led to calls for educational reform to undergraduate and graduate quantitative research method curricula. We argue that such reform should be based on data-driven insights into within- and cross-disciplinary use of analytic methods. Our survey of peer-reviewed literature analyzed approximately 1.3 million openly available research articles to monitor the cross-disciplinary mentions of analytic methods in the past decade. We applied data-driven text mining analyses to the “Methods” and “Results” sections of a large subset of this corpus to identify trends in analytic method mentions shared across disciplines, as well as those unique to each discipline. We found that the t test, analysis of variance (ANOVA), linear regression, chi-squared test, and other classical statistical methods have been and remain the most mentioned analytic methods in biomedical, life science, and social science research articles. However, mentions of these methods have declined as a percentage of the published literature between 2009 and 2020. On the other hand, multivariate statistical and machine learning approaches, such as artificial neural networks (ANNs), have seen a significant increase in the total share of scientific publications. We also found unique groupings of analytic methods associated with each BLS science discipline, such as the use of structural equation modeling (SEM) in psychology, survival models in oncology, and manifold learning in ecology. We discuss the implications of these findings for education in statistics and research methods, as well as within- and cross-disciplinary collaboration.

A quantitative survey of >1 million published research articles reveals that while classical statistical methods remain in widespread use, multivariate statistical and machine-learning approaches have seen a significant increase; statistics curricula should be revised to take full advantage of these new analytical tools.  相似文献   

8.
A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into ~750-bp fragments. Once trained in assembly of such DNA “building blocks” by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular “lab meeting” sessions help prepare them for future roles in laboratory science.  相似文献   

9.
10.
Inflammation is a complex, multi-scale biologic response to stress that is also required for repair and regeneration after injury. Despite the repository of detailed data about the cellular and molecular processes involved in inflammation, including some understanding of its pathophysiology, little progress has been made in treating the severe inflammatory syndrome of sepsis. To address the gap between basic science knowledge and therapy for sepsis, a community of biologists and physicians is using systems biology approaches in hopes of yielding basic insights into the biology of inflammation. “Systems biology” is a discipline that combines experimental discovery with mathematical modeling to aid in the understanding of the dynamic global organization and function of a biologic system (cell to organ to organism). We propose the term translational systems biology for the application of similar tools and engineering principles to biologic systems with the primary goal of optimizing clinical practice. We describe the efforts to use translational systems biology to develop an integrated framework to gain insight into the problem of acute inflammation. Progress in understanding inflammation using translational systems biology tools highlights the promise of this multidisciplinary field. Future advances in understanding complex medical problems are highly dependent on methodological advances and integration of the computational systems biology community with biologists and clinicians.  相似文献   

11.

Introduction

Clinical practice guidelines can improve healthcare processes and patient outcomes, but are often of low quality. Guideline appraisal tools aim to help potential guideline users in assessing guideline quality. We conducted a systematic review of publications describing guideline appraisal tools in order to identify and compare existing tools.

Methods

Among others we searched MEDLINE, EMBASE and the Cochrane Database of Systematic Reviews from 1995 to May 2011 for relevant primary and secondary publications. We also handsearched the reference lists of relevant publications.On the basis of the available literature we firstly generated 34 items to be used in the comparison of appraisal tools and grouped them into thirteen quality dimensions. We then extracted formal characteristics as well as questions and statements of the appraisal tools and assigned them to the items.

Results

We identified 40 different appraisal tools. They covered between three and thirteen of the thirteen possible quality dimensions and between three and 29 of the possible 34 items. The main focus of the appraisal tools were the quality dimensions “evaluation of evidence” (mentioned in 35 tools; 88%), “presentation of guideline content” (34 tools; 85%), “transferability” (33 tools; 83%), “independence” (32 tools; 80%), “scope” (30 tools; 75%), and “information retrieval” (29 tools; 73%). The quality dimensions “consideration of different perspectives” and “dissemination, implementation and evaluation of the guideline” were covered by only twenty (50%) and eighteen tools (45%) respectively.

Conclusions

Most guideline appraisal tools assess whether the literature search and the evaluation, synthesis and presentation of the evidence in guidelines follow the principles of evidence-based medicine. Although conflicts of interest and norms and values of guideline developers, as well as patient involvement, affect the trustworthiness of guidelines, they are currently insufficiently considered. Greater focus should be placed on these issues in the further development of guideline appraisal tools.  相似文献   

12.
The Internet destroyed the ecology of traditional science journalism, drying up ad revenues and pushing “old school” mass media toward extinction. But the new technology opened a wider landscape for digital science writers, online “content curators,” and scientists to chronicle the wonders and worries of modern science. For those thinking of a career in science writing, here is a flash history, a quick overview, some advice, and a few cautions.  相似文献   

13.
Science students increasingly need programming and data science skills to be competitive in the modern workforce. However, at our university (San Francisco State University), until recently, almost no biology, biochemistry, and chemistry students (from here bio/chem students) completed a minor in computer science. To change this, a new minor in computing applications, which is informally known as the Promoting Inclusivity in Computing (PINC) minor, was established in 2016. Here, we present the lessons we learned from our experience in a set of 10 rules. The first 3 rules focus on setting up the program so that it interests students in biology, chemistry, and biochemistry. Rules 4 through 8 focus on how the classes of the program are taught to make them interesting for our students and to provide the students with the support they need. The last 2 rules are about what happens “behind the scenes” of running a program with many people from several departments involved.  相似文献   

14.
The National Science Foundation’s EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on ‘omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, “big-data capable” analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean ‘omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the ‘omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography.  相似文献   

15.
The concept of “global health” that led to the establishment of the World Health Organization in the 1940s is still promoting a global health movement 70 years later. Today’s global health acts first as a guiding principle for our effort to improve people’s health across the globe. Furthermore, global health has become a branch of science, “global health science,” supporting institutionalized education. Lastly, as a discipline, global health should focus on medical and health issues that: 1) are determined primarily by factors with a cross-cultural, cross-national, cross-regional, or global scope; 2) are local but have global significance if not appropriately managed; and 3) can only be efficiently managed through international or global efforts. Therefore, effective global health education must train students 1) to understand global health status; 2) to investigate both global and local health issues with a global perspective; and 3) to devise interventions to deal with these issues.  相似文献   

16.
17.
G. Grant Clarke  David G. Fish 《CMAJ》1967,96(14):1019-1026
The premedical academic records of the 1965-66 entering class of Canadian medical students were analysed. Ninety-six per cent of the class had taken their preparation in a Canadian institution, while 80% had taken it in the same university as the medical school in which they enrolled. Forty per cent entered without a degree, the remainder having at least a bachelor''s degree in arts or science.Thirty-six per cent of all courses taken by these students in their premedical education were in the physical sciences, 22% in the biological sciences and 41% in the social sciences and humanities. One-third of the students had taken no course in the behavioural sciences and another third had taken only one course.Analysis of the level of performance of the entering class showed that 10% had obtained an A average, 49% a B average, 41% a C average and 3% a D average. The grades of these students were higher generally in the natural sciences than in the social sciences or humanities.It was concluded that it could be questioned whether medical students received a premedical preparation which met the philosophy of a “broad, liberal education”.  相似文献   

18.
The United States is confronting important challenges at both the early and late stages of science education. At the level of K–12 education, a recent National Research Council report (Successful K–12 STEM Education) proposed a bold restructuring of how science is taught, moving away from memorizing facts and emphasizing hands-on, inquiry-based learning and a deeper understanding of the process of science. At higher levels of training, limited funding for science is leading PhDs to seek training and careers in areas other than research. Might science PhDs play a bigger role in the future of K–12 education, particularly at the high school level? We explore this question by discussing the roles that PhDs can play in high school education and the current and rather extensive barriers to PhDs entering the teaching profession and finally suggest ways to ease the entrance of qualified PhDs into high school education.In many K–12 classrooms, science is presented as a series of textbook facts; students are not exposed to scientific methods of inquiry and lose interest in science. At the very opposite end of the science training pipeline, life science PhDs and postdocs in the United States are experiencing difficulties in finding university jobs, a situation that will likely persist in the coming decade if research funding fails to grow; we cannot expect all PhD graduates to become principal investigators (PIs) at academic institutions.Might these two problems add up to a solution (or at least a partial solution)? Is there a place for graduates of PhD training programs in teaching K–12 science, particularly at the high school (HS) level (the focus of this article)? We argue that the answer is “yes” and that more PhDs, even if their numbers are small compared with the entire teaching pool, could have a catalytic effect on reinvigorating precollege science education. This topic is not new; the National Research Council (NRC) issued two thoughtful reports on attracting science and math PhDs to secondary school education more than a decade ago (Committee on Attracting Science and Mathematics Ph.D.s to Secondary School Teaching, National Research Council, 2000 ; Committee on Attracting Science and Mathematics PhDs to K-12 Education: From Analysis to Implementation, Division of Policy and Global Affairs, National Research Council, 2002 ). Their recommendations were not implemented, however, and the reports have largely been forgotten. Little has changed since then; the roadblocks, both in perception and logistics, that discouraged a PhD from becoming a HS teacher in the year 2000 still exist. Since the NRC reports were released, the topic of a HS teaching career option for a PhD has rarely been discussed or debated in our scientific community. We feel that it is time to reopen this discussion. The focus of this article is on PhDs entering the high school system, but much of this discussion also pertains to graduates of science master degree programs and to individuals with scientific training becoming involved in all levels of K–12 education. Our goal is to make students, postdocs, and senior scientists aware of the value of high school teaching for certain individuals as well as for our nation''s educational system. We also consider how changes at the local level (including the perception of K–12 teaching within research universities), as well as at the policy level of teacher accreditation, might facilitate this career path.  相似文献   

19.
The coronavirus disease of 2019 (COVID‐19) pandemic has impacted educational systems worldwide during 2020, including primary and secondary schooling. To enable students of a local secondary school in Brisbane, Queensland, to continue with their practical agricultural science learning and facilitate online learning, a “Grass Gazers” citizen science scoping project was designed and rapidly implemented as a collaboration between the school and a multidisciplinary university research group focused on pollen allergy. Here, we reflect on the process of developing and implementing this project from the perspective of the school and the university. A learning package including modules on pollen identification, tracking grass species, measuring field greenness, using a citizen science data entry platform, forensic palynology, as well as video guides, risk assessment and feedback forms were generated. Junior agriculture science students participated in the learning via online lessons and independent data collection in their own local neighborhood and/or school grounds situated within urban environments. The university research group and school coordinator, operating in their own distributed work environments, had to develop, source, adopt, and/or adapt material rapidly to meet the unique requirements of the project. The experience allowed two‐way knowledge exchange between the secondary and tertiary education sectors. Participating students were introduced to real‐world research and were able to engage in outdoor learning during a time when online, indoor, desk‐based learning dominated their studies. The unique context of restrictions imposed by the social isolation policies, as well as government Public Health and Department of Education directives, allowed the team to respond by adapting teaching and research activity to develop and trial learning modules and citizen science tools. The project provided a focus to motivate and connect teachers, academic staff, and school students during a difficult circumstance. Extension of this citizen project for the purposes of research and secondary school learning has the potential to offer ongoing benefits for grassland ecology data acquisition and student exposure to real‐world science.  相似文献   

20.
In computational science literature including, e.g., bioinformatics, computational statistics or machine learning, most published articles are devoted to the development of “new methods”, while comparison studies are generally appreciated by readers but surprisingly given poor consideration by many journals. This paper stresses the importance of neutral comparison studies for the objective evaluation of existing methods and the establishment of standards by drawing parallels with clinical research. The goal of the paper is twofold. Firstly, we present a survey of recent computational papers on supervised classification published in seven high-ranking computational science journals. The aim is to provide an up-to-date picture of current scientific practice with respect to the comparison of methods in both articles presenting new methods and articles focusing on the comparison study itself. Secondly, based on the results of our survey we critically discuss the necessity, impact and limitations of neutral comparison studies in computational sciences. We define three reasonable criteria a comparison study has to fulfill in order to be considered as neutral, and explicate general considerations on the individual components of a “tidy neutral comparison study”. R codes for completely replicating our statistical analyses and figures are available from the companion website http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/020_professuren/boulesteix/plea2013.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号