首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Experimental work has shown that T cells of the immune system rapidly and specifically respond to antigenic molecules presented on the surface of antigen-presenting-cells and are able to discriminate between potential stimuli based on the kinetic parameters of the T cell receptor-antigen bond. These antigenic molecules are presented among thousands of chemically similar endogenous peptides, raising the question of how T cells can reliably make a decision to respond to certain antigens but not others within minutes of encountering an antigen presenting cell. In this theoretical study, we investigate the role of localized rebinding between a T cell receptor and an antigen. We show that by allowing the signaling state of individual receptors to persist during brief unbinding events, T cells are able to discriminate antigens based on both their unbinding and rebinding rates. We demonstrate that T cell receptor coreceptors, but not receptor clustering, are important in promoting localized rebinding, and show that requiring rebinding for productive signaling reduces signals from a high concentration of endogenous pMHC. In developing our main results, we use a relatively simple model based on kinetic proofreading. However, we additionally show that all our results are recapitulated when we use a detailed T cell receptor signaling model. We discuss our results in the context of existing models and recent experimental work and propose new experiments to test our findings.  相似文献   

3.
Cells may discriminate among ligands with different dwell times for receptor binding through a mechanism called kinetic proofreading in which the formation of an activated receptor complex requires a progression of events that is aborted if the ligand dissociates before completion. This mechanism explains how, at equivalent levels of receptor occupancy, a rapidly dissociating ligand can be less effective than a more slowly dissociating analog at generating distal cellular responses. Simple mathematical models predict that kinetic proofreading is limited to the initial complex; once the signal passes to second messengers, the dwell time no longer regulates the signal. This suggests that an assay for kinetic proofreading might be used to determine which activation events occur within the initial signaling complex. In signaling through the high affinity IgE receptor FcepsilonRI, the transmembrane adaptor called linker for activation of T cells (LAT) is thought to nucleate a distinct secondary complex. Experiments in which the concentrations of two ligands with different dwell times are adjusted to equalize the level of LAT phosphorylation in rat basophilic leukemia 2H3 cells show that Erk2 phosphorylation, intracellular Ca(2+), and degranulation exhibit kinetic proofreading downstream of LAT phosphorylation. These results suggest that ligand-bound FcepsilonRI and LAT form a complex that is required for effective signal transmission.  相似文献   

4.
In living cells, the specificity of biomolecular recognition can be amplified and the noise from non-specific interactions can be reduced at the expense of cellular free energy. This is the seminal idea in the Hopfield-Ninio theory of kinetic proofreading: The specificity is increased via cyclic network kinetics without altering molecular structures and equilibrium affinites. We show a thermodynamic limit of the specificity amplification with a given amount of available free energy. For a normal cell under physiological condition with sustained phosphorylation potential, this gives a factor of 10(10) as the upper bound in specificity amplification. We also study an optimal kinetic network design that is capable of approaching the thermodynamic limit.  相似文献   

5.
Many in vivo substrates of Src family tyrosine kinases possess sequences conforming to Src homology 2 and 3 (SH2 and SH3) domain-binding motifs. One such substrate is p130Cas, a protein that is hyperphosphorylated in v-Src transformed cells. Cas contains a substrate domain consisting of 15 potential tyrosine phosphorylation sites, C- and N-terminal polyproline regions fitting the consensus sequence for SH3 domain ligands, and a YDYV motif that binds the Src SH2 domain when phosphorylated. In an effort to understand the mechanisms of processive phosphorylation, we have explored the regions of Cas necessary for interaction with Src using the yeast two-hybrid system. Mutations in the SH2 domain-binding region of Cas or the Src SH2 domain have little effect in Cas-Src complex formation or phosphorylation. However, disruption of the C-terminal polyproline region of Cas completely abolishes interaction between the two proteins and results in impaired phosphorylation of Cas. Kinetic analyses using purified proteins indicated that multisite phosphorylation of Cas by Src follows a processive rather than a distributive mechanism. Furthermore, the kinetic studies show that there are two properties of the polyproline region of Cas that are important in enhancing substrate phosphorylation. First, the C-terminal polyproline serves to activate Src kinases through the process of SH3 domain displacement. Second, this region aids in anchoring the kinase to Cas to facilitate processive phosphorylation of the substrate domain. The two processes combine to ensure phosphorylation of Cas with high efficiency.  相似文献   

6.
Most signaling networks are regulated by reversible protein phosphorylation. The specificity of this regulation depends in part on the capacity of protein kinases to recognize and efficiently phosphorylate particular sequence motifs in their substrates. Sequenced plant genomes potentially encode over than 1000 protein kinases, representing 4% of the proteins, twice the proportion found in humans. This plethora of plant kinases requires the development of high-throughput strategies to identify their substrates. In this study, we have implemented a semi-degenerate peptide array screen to define the phosphorylation preferences of four kinases from Arabidopsis thaliana that are representative of the plant calcium-dependent protein kinase and Snf1-related kinase superfamily. We converted these quantitative data into position-specific scoring matrices to identify putative substrates of these kinases in silico in protein sequence databases. Our data show that these kinases display related but nevertheless distinct phosphorylation motif preferences, suggesting that they might share common targets but are likely to have specific substrates. Our analysis also reveals that a conserved motif found in the stress-related dehydrin protein family may be targeted by the SnRK2-10 kinase. Our results indicate that semi-degenerate peptide array screening is a versatile strategy that can be used on numerous plant kinases to facilitate identification of their substrates, and therefore represents a valuable tool to decipher phosphorylation-regulated signaling networks in plants.  相似文献   

7.
IKKε and TBK1 are noncanonical IKK family members which regulate inflammatory signaling pathways and also play important roles in oncogenesis. However, few inhibitors of these kinases have been identified. While the substrate specificity of IKKε has recently been described, the substrate specificity of TBK1 is unknown, hindering the development of high-throughput screening technologies for inhibitor identification. Here, we describe the optimal substrate phosphorylation motif for TBK1, and show that it is identical to the phosphorylation motif previously described for IKKε. This information enabled the design of an optimal TBK1/IKKε substrate peptide amenable to high-throughput screening and we assayed a 6,006 compound library that included 4,727 kinase-focused compounds to discover in vitro inhibitors of TBK1 and IKKε. 227 compounds in this library inhibited TBK1 at a concentration of 10 μM, while 57 compounds inhibited IKKε. Together, these data describe a new high-throughput screening assay which will facilitate the discovery of small molecule TBK1/IKKε inhibitors possessing therapeutic potential for both inflammatory diseases and cancer.  相似文献   

8.
Restrictocin and related fungal endoribonucleases from the α-sarcin family site-specifically cleave the sarcin/ricin loop (SRL) on the ribosome to inhibit translation and ultimately trigger cell death. Previous studies showed that the SRL folds into a bulged-G motif and tetraloop, with restrictocin achieving a specificity of ~1000-fold by recognizing both motifs only after the initial binding step. Here, we identify contacts within the protein-RNA interface and determine the extent to which each one contributes to enzyme specificity by examining the effect of protein mutations on the cleavage of the SRL substrate compared to a variety of other RNA substrates. As with other biomolecular interfaces, only a subset of contacts contributes to specificity. One contact of this subset is critical, with the H49A mutation resulting in quantitative loss of specificity. Maximum catalytic activity occurs when both motifs of the SRL are present, with the major contribution involving the bulged-G motif recognized by three lysine residues located adjacent to the active site: K110, K111, and K113. Our findings support a kinetic proofreading mechanism in which the active site residues H49 and, to a lesser extent, Y47 make greater catalytic contributions to SRL cleavage than to suboptimal substrates. This systematic and quantitative analysis begins to elucidate the principles governing RNA recognition by a site-specific endonuclease and may thus serve as a mechanistic model for investigating other RNA modifying enzymes.  相似文献   

9.
C-type lectins are innate receptors expressed on antigen-presenting cells that are involved in the recognition of glycosylated pathogens and self-glycoproteins. Upon ligand binding, internalization and/or signaling often occur. Little is known on the glycan specificity and ligands of the Dendritic Cell Immunoreceptor (DCIR), the only classical C-type lectin that contains an intracellular immunoreceptor tyrosine-based inhibitory motif (ITIM). Here we show that purified DCIR binds the glycan structures Lewisb and Man3. Interestingly, binding could not be detected when DCIR was expressed on cells. Since DCIR has an N-glycosylation site inside its carbohydrate recognition domain (CRD), we investigated the effect of this glycan in ligand recognition. Removing or truncating the glycans present on purified DCIR increased the affinity for DCIR-binding glycans. Nevertheless, altering the glycosylation status of the DCIR expressing cell or mutating the N-glycosylation site of DCIR itself did not increase glycan binding. In contrast, cis and trans interactions with glycans induced DCIR mediated signaling, resulting in a decreased phosphorylation of the ITIM sequence. These results show that glycan binding to DCIR is influenced by the glycosylation of the CRD region in DCIR and that interaction with its ligands result in signaling via its ITIM motif.  相似文献   

10.
Cell migration is a dynamic process that requires the coordinated formation and disassembly of focal adhesions (FAs). Several proteins such as paxillin, focal adhesion kinase (FAK), and G protein-coupled receptor kinase-interacting protein 1 (GIT1) are known to play a regulatory role in FA disassembly and turnover. However, the mechanisms by which this occurs remain to be elucidated. Paxillin has been shown to bind the C-terminal domain of FAK in FAs, and an increasing number of studies have linked paxillin association with GIT1 during focal adhesion disassembly. It has been reported recently that phosphorylation of serine 273 in the LD4 motif of paxillin leads to an increased association with Git1 and focal adhesion turnover. In the present study, we examined the effects of phosphorylation of the LD4 peptide on its binding affinity to the C-terminal domain of FAK. We show that phosphorylation of LD4 results in a reduction of binding affinity to FAK. This reduction in binding affinity is not due to the introduction of electrostatic repulsion or steric effects but rather by a destabilization of the helical propensity of the LD4 motif. These results further our understanding of the focal adhesion turnover mechanism as well as identify a novel process by which phosphorylation can modulate intracellular signaling.  相似文献   

11.
The cytoplasmic domain of LRP1 contains two NPXY motifs that have been shown to interact with signaling proteins. In previous work, we showed that Tyr(4507) in the distal NPXY motif is phosphorylated by v-Src, whereas denaturation of the protein was required for phosphorylation of Tyr(4473) in the membraneproximal NPXY motif. Amide H/D exchange studies reveal that the distal NPXY motif is fully solvent-exposed, whereas the proximal one is not. Phosphopeptide mapping combined with in vitro and in vivo kinase experiments show that Tyr(4473) can be phosphorylated, but only if Tyr(4507) is phosphorylated or substituted with glutamic acid. Amide H/D exchange experiments indicate that solvent accessibility increases across the entire LRP1 cytoplasmic region upon phosphorylation at Tyr(4507); in particular the NPXY(4473) motif becomes much more exposed. This differential phosphorylation is functionally relevant: binding of Snx17, which is known to bind at the proximal NPXY motif, is inhibited by phosphorylation at Tyr(4473). Conversely, Shp2 binds most strongly when both of the NPXY motifs in LRP1 are phosphorylated.  相似文献   

12.
MAP kinase ERK maintains specificity by binding to docking sites such as the DEF domain or D domain. It was previously shown that appending peptides derived from D domains to a substrate peptide increased apparent efficiency of peptide phosphorylation while preserving its apparent specificity for ERK. Here we determine the effect of the DEF motif on efficiency and specificity of peptide phosphorylation by ERK. The DEF motif modulated the apparent affinity of the peptide for ERK while the substrate motif dominated the apparent catalytic rate. Attachment of the DEF sequence improved apparent phosphorylation efficiency by 60-fold. Addition of peptides possessing both the DEF and D motif to a substrate sequence did not yield additive effects on the KM of the substrate for ERK. Further, the DEF motif diminished the apparent specificity for ERK and increased the apparent efficiencies of phosphorylation of the substrate peptide by p38α kinase and JNK1.  相似文献   

13.
The effect of pyrophosphate on the fidelity of in vitro DNA synthesis has been examined. Pyrophosphate enhances misincorporation by Escherichia coli DNA polymerase I in copying phi X174 DNA. The increased misincorporation is directly proportional to the extent of inhibition of the rate of polymerization. In contrast, pyrophosphate is not detectably mutagenic with avian myeloblastosis virus DNA polymerase or DNA polymerases alpha and beta from animal cells, which lack associated proofreading activities. This suggests that increased misincorporation by pyrophosphate is not due to an increase in misinsertions by DNA polymerase, but rather due to inhibition of proofreading by pyrophosphate. However, the pyrophosphate-induced infidelity has a different specificity from, and is not competitive with, two experimental markers of 3'----5' exonuclease proofreading; i.e. the effects of the next nucleotide or the addition of deoxynucleoside monophosphates. These distinctive features suggest a second mode of proofreading susceptible to inhibition by pyrophosphate. This concept is discussed in relation to models for proofreading described in the literature.  相似文献   

14.
Protein-tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling and a novel therapeutic target for the treatment of type 2 diabetes, obesity, and other associated metabolic syndromes. Because PTP1B regulates multiple signal pathways and it can both enhance and antagonize a cellular event, it is important to establish the physiological relevance of PTP1B in these processes. In this study, we utilize potent and selective PTP1B inhibitors to delineate the role of PTP1B in integrin signaling. We show that down-regulation of PTP1B activity with small molecule inhibitors suppresses cell spreading and migration to fibronectin, increases Tyr(527) phosphorylation in Src, and decreases phosphorylation of FAK, p130(Cas), and ERK1/2. In addition, PTP1B "substrate-trapping" mutants bind Tyr(527)-phosphorylated Src and protect it from dephosphorylation by endogenous PTP1B. These results establish that PTP1B promotes integrin-mediated responses in fibroblasts by dephosphorylating the inhibitory pTyr(527) and thereby activating the Src kinase. We also show that PTP1B forms a complex with Src and p130(Cas), and that the proline-rich motif PPRPPK (residues 309-314) in PTP1B is essential for the complex formation. We suggest that the specificity of PTP1B for Src pTyr(527) is mediated by protein-protein interactions involving the docking protein p130(Cas) with both Src and PTP1B in addition to the interactions between the PTP1B active site and the pTyr(527) motif.  相似文献   

15.
16.
Uniquely for the Eph family of receptor tyrosine kinases, the EphB6 receptor is catalytically inactive due to the alteration of several critical residues in its kinase domain. This has cast doubt upon its ability to participate in cytoplasmic signaling events. We show here that despite its lack of kinase activity, EphB6 undergoes inducible tyrosine phosphorylation upon stimulation with the Eph-B receptor subfamily ligand ephrin-B1. We also demonstrate, for the first time, evidence of cross-talk between Eph receptors. Overexpression of a catalytically active member of the Eph-B subfamily, EphB1, resulted in increased EphB6 phosphorylation. EphB1-induced EphB6 phosphorylation was ligand-dependent and required the functional catalytic activity of EphB1. EphB1 not only transphosphorylated EphB6, but together they also formed a stable hetero-complex. In addition, we identify the proto-oncogene c-Cbl as an EphB6-binding protein. Although EphB6-Cbl association appeared to be constitutive, Cbl required a functional phosphotyrosine binding domain in order to bind the receptor, whereas its RING finger motif ubiquitin-transfer domain was not necessary. Our findings demonstrate that EphB6 is an actively signaling receptor that undergoes transphosphorylation upon ligand binding and that can initiate specific cytoplasmic signaling events.  相似文献   

17.
18.
Mammalian target of rapamycin (mTOR) is the central element of a signaling pathway involved in the control of mRNA translation and cell growth. The actions of mTOR are mediated in part through the phosphorylation of the eukaryotic initiation factor 4E-binding protein, PHAS-I. In vitro mTOR phosphorylates PHAS-I in sites that control PHAS-I binding to eukaryotic initiation factor 4E; however, whether mTOR directly phosphorylates PHAS-I in cells has been a point of debate. The Arg-Ala-Ile-Pro (RAIP motif) and Phe-Glu-Met-Asp-Ile (tor signaling motif) sequences found in the NH2- and COOH-terminal regions of PHAS-I, respectively, are required for the efficient phosphorylation of PHAS-I in cells. Here we show that mutations in either motif markedly decreased the phosphorylation of recombinant PHAS-I by mTOR in vitro. Wild-type PHAS-I, but none of the mutant proteins, was coimmunoprecipitated with hemagglutinin-tagged raptor, an mTOR-associated protein, after extracts of cells overexpressing raptor had been supplemented with recombinant PHAS-I proteins. Moreover, raptor overexpression enhanced the phosphorylation of wild-type PHAS-I by mTOR but not the phosphorylation of the mutant proteins. The results not only provide direct evidence that both the RAIP and tor signaling motifs are important for the phosphorylation by mTOR, possibly by allowing PHAS-I binding to raptor, but also support the view that mTOR phosphorylates PHAS-I in cells.  相似文献   

19.
Protein kinase C (PKC) plays important roles in diverse cellular processes. PKC has been implicated in regulating Fas-associated protein with death domain (FADD), an important adaptor protein involved in regulating death receptor-mediated apoptosis. FADD also plays an important role in non-apoptosis processes. The functional interaction of PKC and FADD in non-apoptotic processes has not been examined. In this study, we show that FADD is involved in maintaining the phosphorylation of the turn motif and hydrophobic motif in the activated conventional PKC (cPKC). A phosphoryl-mimicking mutation (S191D) in FADD (FADD-D) abolished the function of FADD in the facilitation of the turn motif and hydrophobic motif dephosphorylation of cPKC, suggesting that phosphorylation of Ser-191 negatively regulates FADD. We show that FADD interacts with PP2A, which is a major phosphatase involved in dephosphorylation of activated cPKC and FADD deficiency abolished PP2A mediated dephosphorylation of cPKC. We show that FADD deficiency leads to increased stability and activity of cPKC, which, in turn, promotes cytoskeleton reorganization, cell motility, and chemotaxis. Collectively, these results reveal a novel function of FADD in a non-apoptotic process by modulating cPKC dephosphorylation, stability, and signaling termination.  相似文献   

20.
Activation of PKC depends on the availability of DAG, a signaling lipid that is tightly and dynamically regulated. DAG kinase (DGK) terminates DAG signaling by converting it to phosphatidic acid. Here, we demonstrate that DGKzeta inhibits PKCalpha activity and that DGK activity is required for this inhibition. We also show that DGKzeta directly interacts with PKCalpha in a signaling complex and that the binding site in DGKzeta is located within the catalytic domain. Because PKCalpha can phosphorylate the myristoylated alanine-rich C-kinase substrate (MARCKS) motif of DGKzeta, we tested whether this modification could affect their interaction. Phosphorylation of this motif significantly attenuated coimmunoprecipitation of DGKzeta and PKCalpha and abolished their colocalization in cells, indicating that it negatively regulates binding. Expression of a phosphorylation-mimicking DGKzeta mutant that was unable to bind PKCalpha did not inhibit PKCalpha activity. Together, our results suggest that DGKzeta spatially regulates PKCalpha activity by attenuating local accumulation of signaling DAG. This regulation is impaired by PKCalpha-mediated DGKzeta phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号