首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveSenescence of vascular cells contributes to the development of cardiovascular diseases and the overall aging. This study was undertaken to investigate the effects of resveratrol (Res) on amelioration of vascular cell aging and the role of SIRT1/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase pathway.Methods and ResultsAdult male Wistar rats were treated with a high-fat/sucrose diet (HFS) in the presence or absence of Res for 3 months. HFS and in vitro treatment with high glucose increased the senescence cells and reactive oxygen species production in rat aorta and cultured bovine aortic endothelial cells (BAECs), respectively, which was attenuated by Res treatment. Res protected against HFS- or high-glucose-induced increase in NADPH oxidase p47phox expression and decrease in SIRT1 level. Apocynin, a NADPH oxidase inhibitor, down-regulated p47phox protein expression, but had no influence on SIRT1 protein; sirtinol, a SIRT1 inhibitor, aggravated the decrease in SIRT1 protein level and the increase in p47phox protein expression induced by high glucose.ConclusionOur studies suggested that Res was able to reverse the senescence process in aorta induced by HFS in rats or induced by the exposure to high glucose in cultured BAECs. The underlying mechanism is at least SIRT1/NADPH oxidase pathway dependent.  相似文献   

2.
3.
Changes in dietary sodium intake are associated with changes in vascular volume and reactivity that may be mediated, in part, by alterations in endothelial nitric oxide synthase (eNOS) activity. Caveolin-1 (Cav-1), a transmembrane anchoring protein in the plasma membrane caveolae, binds eNOS and limits its translocation and activation. To test the hypothesis that endothelial Cav-1 participates in the dietary sodium-mediated effects on vascular function, we assessed vascular responses and nitric oxide (NO)-mediated mechanisms of vascular relaxation in Cav-1 knockout mice (Cav-1-/-) and wild-type control mice (WT; Cav-1+/+) placed on a high-salt (HS; 4% NaCl) or low-salt (LS; 0.08% NaCl) diet for 16 days. After the systolic blood pressure was measured, the thoracic aorta was isolated for measurement of vascular reactivity and NO production, and the heart was used for measurement of eNOS expression and/or activity. The blood pressure was elevated in HS mice treated with NG-nitro-l-arginine methyl ester and more so in Cav-1-/- than WT mice and was significantly reduced during the LS diet. Phenylephrine caused vascular contraction that was significantly reduced in Cav-1-/- (maximum 0.25 +/- 0.06 g/mg) compared with WT (0.75 +/- 0.22 g/mg) on the HS diet, and the differences were eliminated with the LS diet. Also, vascular contraction in response to membrane depolarization by high KCl (96 mM) was reduced in Cav-1-/- (0.27 +/- 0.05 g/mg) compared with WT mice (0.53 +/- 0.12 g/mg) on the HS diet, suggesting that the reduced vascular contraction is not limited to a particular receptor. Acetylcholine (10(-5) M) caused aortic relaxation in WT mice on HS (23.6 +/- 3.5%) and LS (23.7 +/- 5.5%) that was enhanced in Cav-1-/- HS (72.6 +/- 6.1%) and more so in Cav-1-/- LS mice (93.6 +/- 3.5%). RT-PCR analysis indicated increased eNOS mRNA expression in the aorta and heart, and Western blots indicated increased total eNOS and phosphorylated eNOS in the heart of Cav-1-/- compared with WT mice on the HS diet, and the genotypic differences were less apparent during the LS diet. Thus Cav-1 deficiency during the HS diet is associated with decreased vasoconstriction, increased vascular relaxation, and increased eNOS expression and activity, and these effects are altered during the LS diet. The data support the hypothesis that endothelial Cav-1, likely through an effect on eNOS activity, plays a prominent role in the regulation of vascular function during substantial changes in dietary sodium intake.  相似文献   

4.
Microvascular permeability is mediated by (i) the caveolar transcytosis of molecules across endothelial cells and (ii) the paracellular movement of ions and nutrients. Recently, we derived Cav-1 (-/-) knock-out mice using standard homologous recombination techniques. These mice are viable but show a loss of endothelial cell caveolae and striking defects in caveolae-mediated endocytosis. Thus, a compensatory mechanism must be operating in these mice. One possible compensatory response would be an increase in the paracellular pathway, resulting in increased microvascular permeability. To test this hypothesis directly, we studied the microvascular permeability of Cav-1 null mice using a variety of complementary in vivo approaches. Radio-iodinated bovine serum albumin was injected into Cav-1-deficient mice, and its rate of clearance from the circulatory system was compared with that of wild type control mice. Our results indicate that iodinated bovine serum albumin is removed from the circulatory system of Cav-1-deficient mice at a substantially faster rate. To determine whether this defect is restricted to the paracellular movement of albumin, lungs from Cav-1-deficient mice were next perfused with the electron dense dye Ruthenium Red. Micrographs of lung endothelial cells from Cav-1-deficient mice demonstrate that the paracellular movement of Ruthenium Red is dramatically increased. In addition, electron micrographs of Cav-1-deficient lung capillaries reveal defects in tight junction morphology and abnormalities in capillary endothelial cell adhesion to the basement membrane. This defect in cell-substrate attachment is consistent with the postulated role of caveolin-1 in positively regulating integrin signaling. Because loss of caveolin-1 expression results in constitutive activation of eNOS activity, we also examined whether these increases in microvascular permeability are NO-dependent. Interestingly, treatment with l-NAME (a well established nitric-oxide synthase inhibitor) successfully reversed the microvascular hyperpermeability phenotype of Cav-1 knock-out mice. Thus, caveolin-1 plays a dual regulatory role in controlling microvascular permeability: (i) as a structural protein that is required for caveolae formation and caveolar transcytosis and (ii) as a tonic inhibitor of eNOS activity to negatively regulate the paracellular pathway.  相似文献   

5.
3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors, statins, provide beneficial effects independent of their lipid-lowering effects. One beneficial effect appears to involve acute activation of endothelial nitric oxide (NO) synthase (eNOS) and increased NO release. However, the mechanism of acute statin-stimulated eNOS activation is unknown. Therefore, we hypothesized that eNOS activation may be coupled to altered eNOS phosphorylation. Bovine aortic endothelial cells (BAECs), passages 2-6, were treated with either lovastatin or pravastatin from 0 to 30 min. eNOS phosphorylation was examined by Western blot by use of phosphospecific antibodies for Ser-1179, Ser-635, Ser-617, Thr-497, and Ser-116. Statin stimulation of BAECs increased eNOS phosphorylation at Ser-1179 and Ser-617, which was blocked by the phosphatidylinositol 3-kinase (PI3-kinase)/Akt inhibitor wortmannin, and at Ser-635, which was blocked by the protein kinase A (PKA) inhibitor KT-5720. Statin treatment of BAECs transiently increased NO release by fourfold, measured by cGMP accumulation, and was attenuated by N-nitro-l-arginine methyl ester, wortmannin, and KT-5720 but not by mevalonate. In conclusion, these data demonstrate that eNOS is acutely activated by statins independent of HMG-CoA reductase inhibition and that in addition to Ser-1179, eNOS phosphorylation at Ser-635 and Ser-617 through PKA and Akt, respectively, may explain, in part, a mechanism by which eNOS is activated in response to acute statin treatment.  相似文献   

6.
Endothelial nitric oxide synthase (eNOS)-mediated NO production plays a critical role in the regulation of vascular function and pathophysiology. Caveolin-1 (Cav-1) binding to eNOS holds eNOS in an inactive conformation; however, the mechanism of Cav-1-mediated inhibition of activated eNOS is unclear. Here the role of Src-dependent Cav-1 phosphorylation in eNOS negative feedback regulation is investigated. Using fluorescence resonance energy transfer (FRET) and coimmunoprecipitation analyses, we observed increased interaction between eNOS and Cav-1 following stimulation of endothelial cells with thrombin, vascular endothelial growth factor, and Ca(2+) ionophore A23187, which is corroborated in isolated perfused mouse lung. The eNOS/Cav-1 interaction is blocked by eNOS inhibitor L-N(G)-nitroarginine methyl ester (hydrochloride) and Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3, 4-d] pyrimidine. We also observe increased binding of phosphomimicking Y14D-Cav-1 mutant transduced in human embryonic kidney cells overexpressing eNOS and reduced Ca(2+)-induced NO production compared to cells expressing the phosphodefective Y14F-Cav-1 mutant. Finally, Src FRET biosensor, eNOS small interfering RNA, and NO donor studies demonstrate NO-induced Src activation and Cav-1 phosphorylation at Tyr-14, resulting in increased eNOS/Cav-1 interaction and inhibition of eNOS activity. Taken together, these data suggest that activation of eNOS promotes Src-dependent Cav-1-Tyr-14 phosphorylation and eNOS/Cav-1 binding, that is, eNOS feedback inhibition.  相似文献   

7.
Li ZL  Liu JC  Liu SB  Li XQ  Yi DH  Zhao MG 《PloS one》2012,7(6):e38787
The G-protein coupled estrogen receptor 30 (GPR30) is a seven-transmembrane domain receptor that mediates rapid estrogen responses in a wide variety of cell types. This receptor is highly expressed in the cardiovascular system, and exerts vasodilatory effects. The objective of the present study was to investigate the effects of GPR30 on vascular responsiveness in diabetic ovariectomized (OVX) rats and elucidate the possible mechanism involved. The roles of GPR30 were evaluated in the thoracic aorta and cultured endothelial cells. The GPR30 agonist G1 induced a dose-dependent vasodilation in the thoracic aorta of the diabetic OVX rats, which was partially attenuated by the nitric oxide synthase (NOS) inhibitor, nitro-L-arginine methylester (L-NAME) and the GPR30-selective antagonist G15. Dose-dependent vasoconstrictive responses to phenylephrine were attenuated significantly in the rings of the thoracic aorta following the acute G1 administration in the diabetic OVX rats. This effect of G1 was abolished partially by L-NAME and G15. The acute administration of G1 increased significantly the eNOS activity and the concentration of NO in the endothelial cells exposed to high glucose. G1 treatment induced an enhanced endothelium-dependent relaxation to acetylcholine (Ach) in the diabetic OVX rats. Further examination revealed that G1 induced vasodilation in the diabetic OVX rats by increasing the phosphorylation of eNOS. These findings provide preliminary evidence that GPR30 activation leads to eNOS activation, as well as vasodilation, to a certain degree and has beneficial effects on vascular function in diabetic OVX rats.  相似文献   

8.
Although endothelial dysfunction deteriorates diabetic angiopathy, the mechanisms are obscure. We revealed that high glucose augmented eNOS through stimulation of eNOS mRNA in cultured BAECs. NO was decreased and O2- was increased simultaneously. NOS inhibitor, inhibited O2- release, so did NADPH oxidase inhibitor. The effects were synergistic. Both intracellular BH4 level and GTPCH1 activity were decreased by high glucose, in line with decrease of GTPCH1 mRNA. HMG-CoA reductase inhibitor, atorvastatin increased GTPCH1 mRNA and activity, and BH4 level. Conclusively, high glucose leads to eNOS dysfunction by inhibiting BH4 synthesis and atorvastatin stimulate BH4 synthesis directly, and it may work as atherogenic process.  相似文献   

9.
Endothelial barrier function is regulated by adherens junctions (AJs) and caveolae-mediated transcellular pathways. The opening of AJs that is observed in caveolin-1(-/-) (Cav-1(-/-)) endothelium suggests that Cav-1 is necessary for AJ assembly or maintenance. Here, using endothelial cells isolated from Cav-1(-/-) mice, we show that Cav-1 deficiency induced the activation of endothelial nitric oxide synthase (eNOS) and the generation of nitric oxide (NO) and peroxynitrite. We assessed S-nitrosylation and nitration of AJ-associated proteins to identify downstream NO redox signaling targets. We found that the GTPase-activating protein (GAP) p190RhoGAP-A was selectively nitrated at Tyr1105, resulting in impaired GAP activity and RhoA activation. Inhibition of eNOS or RhoA restored AJ integrity and diminished endothelial hyperpermeability in Cav-1(-/-) mice. Thrombin, a mediator of increased endothelial permeability, also induced nitration of p120-catenin-associated p190RhoGAP-A. Thus, eNOS-dependent nitration of p190RhoGAP-A represents a crucial mechanism for AJ disassembly and resultant increased endothelial permeability.  相似文献   

10.
Tetrahydrobiopterin (BH4) and heat shock protein 90 (hsp90) have been anticipated to regulate endothelial nitric oxide synthase (eNOS)-dependent superoxide anion radical (O2*-) generation in endothelial cells. It is not known, however, whether hsp90 and BH4 increase O2*- in a synergistic manner, or whether this increase is a consequence of downstream changes in eNOS phosphorylation on serine 1179 (eNOS-S1179) and changes in dimer/monomer distribution. Here O2*- production from purified BH4 -free eNOS and eNOS:hsp90 complexes determined by spin-trapping methodology showed that hsp90 neither inhibits O2*- nor alters the requirement of BH4 to inhibit radical release from eNOS. In endothelial cells, O2*- detection with the novel high-performance liquid chromatography assay of 2-hydroxyethidium showed that inhibition of hsp90 did not increase O2*-, while a significant increase in O2*- was detected in BH4 -depleted cells. Radicicol, a hsp90 inhibitor, disrupted eNOS:hsp90 association, decreased eNOS-S1179, but increased biopterin production in a dose-dependent fashion. These changes were followed by an increase in eNOS activity, demonstrating that high biopterin levels offset inhibition of eNOS phosphorylation and diminished interaction with hsp90. In contrast, depletion of biopterin did not affect hsp90 levels or interaction with eNOS or eNOS dimer/monomer ratio in bovine aorta endothelial cells (BAECs). We conclude that low BH4 but not inhibition of hsp90 increases O2*- in BAECs by mechanism(s) that unlikely involve phosphorylation to eNOS-S1179 or eNOS monomerization.  相似文献   

11.
Endothelial nitric oxide synthase (eNOS) is a multifunctional enzyme with roles in diverse cellular processes including angiogenesis, tissue remodeling, and the maintenance of vascular tone. Monomeric and dimeric forms of eNOS exist in various tissues. The dimeric form of eNOS is considered the active form and the monomeric form is considered inactive. The activity of eNOS is also regulated by many other mechanisms, including amino acid phosphorylation and interactions with other proteins. However, the precise mechanisms regulating eNOS dimerization, phosphorylation, and activity remain incompletely characterized. We utilized purified eNOS and bovine aorta endothelial cells (BAECs) to investigate the mechanisms regulating eNOS degradation. Both eNOS monomer and dimer existed in purified bovine eNOS. Incubation of purified bovine eNOS with protein phosphatase 2A (PP2A) resulted in dephosphorylation at Serine 1179 (Ser1179) in both dimer and monomer and decrease in eNOS activity. However, the eNOS dimer∶monomer ratio was unchanged. Similarly, protein phosphatase 1 (PP1) induced dephosphorylation of eNOS at Threonine 497 (Thr497), without altering the eNOS dimer∶monomer ratio. Different from purified eNOS, in cultured BAECs eNOS existed predominantly as dimers. However, eNOS monomers accumulated following treatment with the proteasome inhibitor lactacystin. Additionally, treatment of BAECs with vascular endothelial growth factor (VEGF) resulted in phosphorylation of Ser1179 in eNOS dimers without altering the phosphorylation status of Thr497 in either form. Inhibition of heat shock protein 90 (Hsp90) or Hsp90 silencing destabilized eNOS dimers and was accompanied by dephosphorylation both of Ser1179 and Thr497. In conclusion, our study demonstrates that eNOS monomers, but not eNOS dimers, are degraded by ubiquitination. Additionally, the dimeric eNOS structure is the predominant condition for eNOS amino acid modification and activity regulation. Finally, destabilization of eNOS dimers not only results in eNOS degradation, but also causes changes in eNOS amino acid modifications that further affect eNOS activity.  相似文献   

12.
Endothelial hyperpermeability induced by hyperglycemia is the initial step in the development of atherosclerosis, one of the most serious cardiovascular complications in diabetes. In the present study, we investigated the effects of resveratrol (RSV), a bioactive ingredient extracted from Chinese herb rhizoma polygonum cuspidatum, on permeability in vitro and the molecular mechanisms involved. Permeability was assessed by the efflux of fluorescein isothiocyanate (FITC)-dextran permeated through the monolayer endothelial cells (ECs). The mRNA levels, protein expressions, and secretions were measured by quantitative real-time PCR, western blot, and ELISA, respectively. Increased permeability and caveolin-1 (cav-1) expression were observed in monolayer ECs exposed to high glucose. Resveratrol treatment alleviated the hyperpermeability and the overexpression of cav-1 induced by high glucose in a dose-dependent manner. β-Cyclodextrin, a structural inhibitor of caveolae, reduced the hyperpermeability caused by high glucose. Resveratrol also down-regulated the increased expressions of vascular endothelial growth factor (VEGF) and kinase insert domain receptor (KDR, or VEGF receptor-2) induced by high glucose. Inhibition of VEGF/KDR pathway by using SU5416, a selective inhibitor of KDR, alleviated the hyperpermeability and the cav-1 overexpression induced by high glucose. The above results demonstrate that RSV ameliorates caveolae-mediated hyperpermeability induced by high glucose via VEGF/KDR pathway.  相似文献   

13.
We tested whether consumption of a high-fat, high-sucrose (HFS) diet can affect endothelium-dependent relaxation, whether this precedes the development of diet-induced hypertension previously noted in this model, and whether it is mediated, in part, by changes in nitric oxide synthase (NOS) and/or NOS regulatory proteins. Female Fischer rats were fed either a HFS diet or standard low-fat, complex-carbohydrate chow starting at 2 mo of age for 7 mo. Vasoconstrictive response to KCl and phenylephrine was similar in both groups. Vasorelaxation to acetylcholine was significantly impaired in the HFS animals, and there were no differences in relaxation to sodium nitroprusside, suggesting that the endothelial dysfunction is due, at least in part, to nitric oxide deficiency. HFS consumption decreased protein expression of endothelial NOS in aorta, renal, and heart tissues, neuronal NOS in kidney, heart, aorta, and brain, and inducible NOS in heart and aorta. Caveolin-1 and soluble guanylate cyclase protein expression did not change, but AKT protein expression decreased in heart and aorta and increased in kidney tissue. Consumption of HFS diet raised brain carbonyl content and plasma hydrogen peroxide concentration and diminished plasma total antioxidant capacity. Because blood pressure, which is known to eventually rise in this model, was not as yet significantly elevated, the present data suggest that endothelial dysfunction precedes the onset of diet-induced hypertension. The lack of a quantitative change in caveolin-1 and soluble guanylate cyclase protein content indicates that alteration in these proteins is not responsible for the endothelial dysfunction. Thus nitric oxide deficiency combined with antioxidant/oxidant imbalance, appears to be a primary factor in the development of endothelial dysfunction in this model.  相似文献   

14.
The long-term benefits of nitroglycerin therapy are limited by tolerance development. Understanding the precise nature of mechanisms underlying nitroglycerin-induced endothelial cell dysfunction may provide new strategies to prevent tolerance development. In this line, we tested interventions to prevent endothelial dysfunction in the setting of nitrate tolerance. When bovine aortic endothelial cells (BAECs) were continuously treated with nitric oxide (NO) donors, including nitroglycerin, over 2-3 days, basal production of nitrite and nitrate (NO(x)) was diminished. The diminished basal NO(x) levels were mitigated by intermittent treatment allowing an 8-h daily nitrate-free interval during the 2- to 3-day treatment period. Addition of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin restored the basal levels of NO(x) that were decreased by continuous nitroglycerin treatment of BAECs. Apocynin caused significant improvement of increased mRNA and protein levels of endothelial nitric oxide synthase (eNOS) in BAECs given nitroglycerin continuously over the treatment period. Apocynin also reduced endothelial production of reactive oxygen species (ROS) after continuous nitroglycerin treatment. These results showed an essential similarity to the effects of a nitrate-free interval. Application of the NOS inhibitor N(omega)-nitro- l-arginine methyl ester caused a recovery effect on basal NO(x) and eNOS expression but was without effect on ROS levels in continuously NO donor-treated BAECs. In conclusion, the present study characterized abnormal features and functions of endothelial cells following continuous NO donor application. We suggest that inhibition of NADPH oxidase, by preventing NO donor-induced endothelial dysfunction, may represent a potential therapeutic strategy that confers protection from nitrate tolerance development.  相似文献   

15.
A decrease in the bioavailability of endothelium-derived nitric oxide (NO) is linked to hypercholesterolemia. However, the mechanism by which low density lipoprotein (LDL) mediates endothelial NO synthase (eNOS) dysfunction remains controversial. We investigate the effect of LDL on eNOS regulation in human endothelial cells (ECs). In cultured ECs, a high level of LDL increased the abundance of eNOS and caveolin-1 (Cav-1) in the membrane caveolae and the association of eNOS with Cav-1. Furthermore, it decreased the basal level of NO and blocked NO production stimulated by the calcium ionophore A23187. LDL exposure also increased the formation of stress fibers and the membrane translocation of eNOS. These effects can be blocked by cytochalasin D, an actin cytoskeleton disruptor. In revealing the mechanism underlying the translocation of eNOS, we found that a high level of LDL increased the level of membrane-associated and GTP-formed RhoA and activated the RhoA downstream kinase ROCK-1 activity. Y-27632, a specific inhibitor of ROCK-1, blocked LDL-induced stress fiber formation, eNOS translocation and NO production. In conclusion, a high level of LDL increases the movement of eNOS to membrane caveolae via the increased stress fibers. The RhoA-mediated pathway may play a crucial role in this process in vascular ECs.  相似文献   

16.
Vaspin is an adipocytokine recently identified in the visceral adipose tissue of diabetic rats and having anti-diabetic effects. We have recently shown that vaspin has anti-atherogenic effect through Akt-mediated inhibition of endothelial cell apoptosis. Decreased activity of endothelial nitric oxide synthase (eNOS) plays an important role in the pathogenesis of atherosclerosis. Asymmetric dimethylarginine (ADMA) is a well-known endogenous competitive inhibitor of eNOS and risk factor of cardiovascular diseases. The aim of this study was to examine whether vaspin might protect against atherosclerosis through its beneficial effects on the ADMA-eNOS system. Treatment of vaspin significantly increased NO secretion from endothelial cells and isolated aorta from Sprague-Dawley (SD) rats. Furthermore, treatment of vaspin prevented fatty acid-induced decrease in endothelium-dependent vasorelaxation in isolated aorta of SD rat. For the mechanism of vaspin-induced NO biosynthesis, vaspin activated the STAT3 signaling pathway and stimulated eNOS phosphorylation (Ser 1177), a marker of eNOS activation, through STAT3-dependent mechanism. Furthermore, vaspin treatment increased the expression of dimethylarginine dimethylaminohydrolase (DDAH) II, the responsible enzyme for the degradation of ADMA, leading to a reduction in ADMA levels. Vaspin-induced increase in DDAH II gene expression was through STAT3-mediated stimulation of DDAH II promoter activity. These results suggest that vaspin increases eNOS activity by reducing ADMA level through STAT3-mediated regulation of DDAH II expression. Our findings provide a novel molecular mechanism of antiatherogenic actions of vaspin.  相似文献   

17.
Wang TH  Yang D  Liu PQ  Gong SZ  Lu W  Pan JY 《生理学报》2000,52(6):479-482
利用小牛胸主动脉内皮细胞(BAECs)作为模型,观察17β-雌二醇(E2)BAECs一氧化氮(NO)释放、一氧化氮合酶(eNOS)mRNA表达和细胞内钙(〔Ca^2+〕i)的影响,以及雌激素受体(ER)拮抗剂tamoxifen和NOS抑制剂(L-NAME)的作用。结果显示,E2(10^-12 ̄10^-8mol/L)呈尝试依赖性促进BAECs中NO的释放,以10^-8mol/L浓度E2处理BAECs  相似文献   

18.
Caveolin-1 is the principal structural protein of caveolae membranes in fibroblasts and endothelia. Recently, we have shown that the human CAV-1 gene is localized to a suspected tumor suppressor locus, and mutations in Cav-1 have been implicated in human cancer. Here, we created a caveolin-1 null (CAV-1 -/-) mouse model, using standard homologous recombination techniques, to assess the role of caveolin-1 in caveolae biogenesis, endocytosis, cell proliferation, and endothelial nitric-oxide synthase (eNOS) signaling. Surprisingly, Cav-1 null mice are viable. We show that these mice lack caveolin-1 protein expression and plasmalemmal caveolae. In addition, analysis of cultured fibroblasts from Cav-1 null embryos reveals the following: (i) a loss of caveolin-2 protein expression; (ii) defects in the endocytosis of a known caveolar ligand, i.e. fluorescein isothiocyanate-albumin; and (iii) a hyperproliferative phenotype. Importantly, these phenotypic changes are reversed by recombinant expression of the caveolin-1 cDNA. Furthermore, examination of the lung parenchyma (an endothelial-rich tissue) shows hypercellularity with thickened alveolar septa and an increase in the number of vascular endothelial growth factor receptor (Flk-1)-positive endothelial cells. As predicted, endothelial cells from Cav-1 null mice lack caveolae membranes. Finally, we examined eNOS signaling by measuring the physiological response of aortic rings to various stimuli. Our results indicate that eNOS activity is up-regulated in Cav-1 null animals, and this activity can be blunted by using a specific NOS inhibitor, nitro-l-arginine methyl ester. These findings are in accordance with previous in vitro studies showing that caveolin-1 is an endogenous inhibitor of eNOS. Thus, caveolin-1 expression is required to stabilize the caveolin-2 protein product, to mediate the caveolar endocytosis of specific ligands, to negatively regulate the proliferation of certain cell types, and to provide tonic inhibition of eNOS activity in endothelial cells.  相似文献   

19.
Little is known about the effects of human free apolipoprotein A-I (Free-Apo A-I) and pre-beta-high density lipoprotein (pre-beta-HDL) on the endothelium function. In this study, we have investigated the effects of Free-Apo A-I and artificial pre-beta-HDL on endothelial NO synthase (eNOS) activity and on NO production by endothelial cells. Free-Apo A-I drastically inhibited NO production in human umbilical cord vein endothelial cells (HUVECs) and eNOS activity in bovine aortic endothelial cells (BAECs). Pre-beta-HDL and serum from human apolipoprotein A-I transgenic rabbits inhibited eNOS activity in BAECs but HDL3 did not. Free-Apo A-I displaced eNOS from BAEC plasma membrane towards intracellular pools without affecting eNOS activity and eNOS mass in BAEC crude homogenates. Free-Apo A-I and HDL3 did not decrease either caveolin bound to BAEC plasma membrane or caveola cholesterol content. As previously described, we showed that HDL3 directly induced endothelium-dependent relaxation of rings from rat aorta. We observed that pre-beta-HDL significantly decreased endothelium-dependent relaxation of rat aortic rings ex vivo.  相似文献   

20.
该文探讨了白细胞介素-6(interleukin-6,IL-6)对牛主动脉内皮细胞(bovine aortic endo-thelial cells,BAECs)的内皮型一氧化氮合成酶(endothelial nitric oxide synthase,eNOS)的影响及其可能的发生机制.在原代BAECs细胞培养基础上...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号