首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 85 毫秒
1.
【目的】从冬季活性污泥和河水底泥中分离筛选得到耐低温好氧反硝化菌,并对影响脱氮的关键因子进行优化,以提高低温条件下的脱氮效果。【方法】采用富集纯化法分离筛选耐低温好氧反硝化菌株。通过形态观察和16S rRNA基因系统发育分析等方法对筛选菌株进行菌种鉴定。以NO3–-N去除率为响应目标,采用Box-Behnken试验设计及响应面回归分析法优化影响脱氮效果的关键因子(C/N、温度、pH和摇床转速),确定最佳培养条件。【结果】从东北寒冷地区冬季河水底泥样品中分离得到的一株耐低温好氧反硝化菌Z6,菌落呈白色半透明圆形,菌体细胞为短杆状,大小为(0.8–1.6)μm×(0.6–0.8)μm,革兰氏染色阴性。与气单胞菌属(Aeromonas)的16S rRNA基因序列高度同源,鉴定该菌为气单胞菌。采用响应面分析方法得到菌株Aeromonas sp. Z6的最佳脱氮条件为:C/N 5.9,温度12°C,pH 6.8,摇床转速155 r/min,在此条件下对NO3-N的去除率为89.72%,与预测值(90.34%)无显著差别。【结论】首次报道气单胞菌(Ae...  相似文献   

2.
基于响应面法对一株好氧反硝化菌脱氮效能优化   总被引:1,自引:1,他引:1  
【目的】水体富营养化是当今我国水环境面临的重大水域环境问题,氮素超标排放是主要的引发因素之一。好氧反硝化菌构建同步硝化反硝化工艺比传统脱氮工艺优势更大。获得高效的好氧反硝化菌株并通过生长因子优化使脱氮效率达到最高。【方法】经过序批式生物反应器(Sequencing batch reactor,SBR)的定向驯化,筛选获得高效好氧反硝化菌株,采用响应面法优化好氧反硝化过程影响总氮去除效率的关键因子(碳氮、溶解氧、pH、温度)。【结果】从运行稳定的SBR反应器中定向筛选高效好氧反硝化菌株Pseudomonas T13,采用响应面法对碳氮比、pH和溶解氧关键因子综合优化获得在18 h内最高硝酸盐去除率95%,总氮去除率90%。该菌株的高效反硝化效果的适宜温度范围为25?30 °C;最适pH为中性偏碱;适宜的COD/NO3?-N为4:1以上;最佳溶解氧浓度在2.5 mg/L。【结论】从长期稳定运行的SBR反应器中筛选获得一株高效好氧反硝化菌Pseudomonas T13,硝酸盐还原酶比例占脱氮酶基因的30%以上,通过运行条件优化获得硝氮去除率达到90%以上,对强化废水脱氮工艺具有良好应用价值。  相似文献   

3.
【目的】探索叶际微生物协同植物削减大气氮氧化物的机制,了解叶际可培养好氧反硝化细菌的存在及多样性,获得高效的叶际好氧反硝化细菌资源。【方法】采用富集培养结合格里斯试剂检测、溴百里酚蓝(bromothymol blue, BTB)培养基筛选的方法从景观植物叶际分离筛选好氧反硝化细菌,对好氧反硝化细菌的16S rRNA基因序列进行系统发育分析,并选取其中一株高效好氧反硝化细菌进行脱氮性能研究。【结果】从6种景观植物石楠、女贞、木樨、樟树、卫矛冬青、荷花玉兰的叶际中分离到好氧反硝化细菌13株,经16S rRNA基因序列分析发现,13株细菌分别属于4门7科7属,其中4株为肠杆菌属(Enterobacter),3株为无色杆菌属(Achromobacter),2株为假单胞菌属(Pseudomonas),其余4株分别属于鞘氨醇杆菌属(Sphingobacterium)、不动杆菌属(Acinetobacter)、微杆菌属(Microbacterium)和假节杆菌属(Pseudarthrobacter)。定量分析发现菌株SF的反硝化效果较好。通过单因素试验和响应面设计试验,对菌株SF的脱氮性能进行了一系列研究,探究了碳源、温度、初始pH、碳氮比和转速等因素对菌株SF脱氮效果的影响。结果表明,菌株SF的最佳脱氮条件:碳源为葡萄糖,初始pH值为7.5,碳氮比为9.7,转速180 r/min,温度为33.5 ℃。在此条件下,当初始硝酸盐浓度为361 mg/L时,72 h总氮去除率可达到93.3%。【结论】景观植物叶际中存在较多种类的可培养好氧反硝化细菌,丰富了叶际氮循环相关微生物的类型,为探索叶际微生物协同削减大气氮氧化物的机制奠定了基础。通过高效脱氮菌株的筛选,为进一步应用微生物协同植物削减空气氮氧化物污染提供了候选菌株。  相似文献   

4.
2018年3月,在广东省中山市的草鱼(Ctenopharyngodon idellus)养殖池塘水体中分离筛选出一株高效好氧反硝化细菌,结合菌株的形态观察、生理生化特性和16S rDNA基因序列分析鉴定为Pseudomonas furukawaii,命名为ZS1。并进一步研究了该菌株的脱氮特性,同时采用单因素实验方法探究了不同碳源种类、温度、pH、C/N和摇床转速对菌株ZS1脱氮效率的影响。结果表明, ZS1菌株在好氧条件下具有高效的脱氮效-N)的含量从48.93降低到1.27 mg/L,去除率为97.40%,去除速率达0.993mg/(L·h);总氮(TN)的含量从52.04降低到8.40 mg/L,去除率为83.86%,去除速率达0.909 mg/(L·h),且无亚硝酸-N为唯一氮源,菌株ZS1发挥最佳好氧反硝化性能的碳源为乙酸钠、柠檬酸钠和葡萄糖、温度为25—35℃、pH为7.0—10.0、C/N为15—25、转速为100—200 r/min。上述结果显示,菌株P.furukawaii ZS1具有良好的好氧反硝化性能,将为池塘养殖尾水处理应用生物脱氮技术提供理论依据及成为初步的候选菌株。  相似文献   

5.
邱并生 《微生物学通报》2010,37(11):1712-1712
<正>养殖水体氮素污染问题是目前困扰我国水产养殖业可持续发展的一大难题。生物脱氮技术被认为是目前最具发展前景的水体脱氮技术,其效果的优劣与所采用菌株的特性密切相关。传统反硝化细菌仅能在厌氧及低氧条件下发挥脱氮作用,与养殖水体的高溶氧环境矛盾,而好氧反硝化细菌则可在高溶氧环境中发挥脱氮作用,显著提高生物脱氮技术在养殖水体中的应用效果,实现养殖水体的绿色、零污染脱氮。因而,对好氧反硝化细菌开展高效选育方法的研究,找到可适应养殖水体水环境的微生物菌株具有重要的理论价值和经济价值。  相似文献   

6.
好氧反硝化生物脱氮技术的研究进展   总被引:3,自引:1,他引:3  
好氧反硝化生物脱氮技术自提出以来,凭借能实现同步硝化反硝化、节省基建投资及运行费用等诸多优点,受到国内外环境领域学者的广泛关注。本文首先总结了近年来好氧反硝化菌种的筛选分离情况,以及环境因子对好氧反硝化菌脱氮效能的影响,包括溶解氧(dissolved oxygen,DO)、碳氮比(C/N)、温度等。然后深入探讨了好氧反硝化生物脱氮技术的原理,好氧反硝化过程中的关键功能基因及酶,同时介绍了分子生物技术在好氧反硝化研究过程中的应用,以及好氧反硝化生物脱氮技术在实际应用方面的研究现状。最后,基于目前的研究瓶颈问题,对未来好氧反硝化生物脱氮技术的研究方向提出了科学展望。  相似文献   

7.
【目的】氮污染已成为当今水体污染的一个重要因素,为了解滇池可培养好氧反硝化细菌的多样性,获得高效好氧反硝化细菌资源,为污染水体或浅层地下水的生物修复提供材料。【方法】采用富集培养方法从滇池沉积物和水体样品中分离好氧反硝化细菌,对好氧反硝化细菌的16S r RNA基因序列进行系统发育分析,并筛选其中的高效好氧反硝化细菌。【结果】分离出260株好氧反硝化菌,经16S rRNA基因序列分析,260株菌分属于2门13科14属的59个种。假单胞菌属(Pseudomonas)为优势细菌属,其次是不动杆菌属(Acinetobacter)、气单胞菌属(Aeromonas)和代尔夫特菌属(Delftia)。筛选到12株高效好氧反硝化细菌菌株,其中8株属于假单胞菌(Pseudomonas spp.),4株为不动杆菌(Acinetobacter spp.)。定量分析发现菌株N15-6-1的反硝化效果较好。对菌株N15-6-1的脱氮条件优化结果显示,在以蔗糖为碳源,温度为30–35℃、C/N=12、静止培养时,反硝化能力较强,其在48 h内硝态氮的去除率达到98.81%,总氮的去除率达96.27%。【结论】滇池存在着较丰富的可培养好氧反硝化细菌,好氧反硝化细菌的分离丰富了好氧反硝化菌的种类,其中的高效脱氮菌株为污染水体或浅层地下水的生物修复提供了初步的候选菌株。  相似文献   

8.
异养硝化-好氧反硝化细菌的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
异养硝化-好氧反硝化菌株的发现是对传统硝化反硝化的突破和发展。近年来由于其独特的生物学特性及其在污水处理中的巨大优势,受到众多学者的青睐。文章介绍了异养硝化-好氧反硝化菌的筛选,异养硝化-好氧反硝化代谢途径和异养硝化-好氧反硝化菌的影响因素,并总结了异养硝化-好氧反硝化菌在废水处理中的研究进展,最后展望未来研究的方向。  相似文献   

9.
一株海洋好氧反硝化细菌的鉴定及其好氧反硝化特性   总被引:4,自引:1,他引:4  
【目的】从处理海洋养殖循环水的生物滤器生物膜中分离到1株具有好氧反硝化活性的细菌(菌株2-8),并进一步研究了该菌的分类地位及反硝化特性。【方法】采用16S rRNA基因序列分析对菌株进行初步鉴定,采用好氧培养技术,探讨了碳源种类、起始pH、NaCl浓度、C/N、温度和摇床转速对菌株2-8好氧反硝化活性的影响。【结果】该菌株的16S rRNA基因序列与Pseudomonas segetis FR1439T(AY770691)的相似性最高,达到99.9%,因此初步鉴定菌株2-8属于假单胞菌属(Pseudomonas sp.2-8)。碳源类型和C/N对其好氧反硝化作用的影响最为显著,以柠檬酸钠为唯一碳源,C/N为15时脱氮效率最高,低C/N导致亚硝酸盐的积累;其好氧反硝化的最适温度和pH分别为30℃和7.5;菌株2-8在摇床转速为160r/min下脱氮效果最好;NaCl浓度对其反硝化活性的影响不明显。【结论】在初始硝酸氮浓度为140mg/L,以柠檬酸钠为唯一碳源、C/N为15、pH为7.5、NaCl浓度为30g/L,30℃以及160r/min摇床培养的条件下,菌株2-8在48h内脱氮率可达92%且无亚硝酸盐积累。  相似文献   

10.
为了获得异养硝化-好氧反硝化菌株,从养殖池塘污泥中分离筛选到一株具有异养硝化-好氧反硝化能力的酵母菌,命名为DW-1。经形态学观察和26S rDNA序列分析后鉴定为皱褶念珠菌DW-1(Diutina rugosa DW-1)。以氨氮为唯一氮源,初步探讨了碳源、C/N、初始pH值、培养温度、摇床转速对菌株DW-1除氮性能的影响。结果表明,在以乙酸钠为唯一碳源,C/N为25,pH为6.0、适宜培养温度为32℃、转速为170 r/min的条件下,菌株DW-1氨氮降解率和总氮去除率分别为94.94%、48.69%,而整个过程中亚硝氮积累量仅为0.067 mg/L。皱褶念珠菌DW-1的异养硝化-好氧反硝化特性表明其在降解含氮废水方面具有良好的应用前景。  相似文献   

11.
A mixed culture containing nitrifying bacteria and denitrifying bacteria was investigated for aerobic simultaneous nitrification and denitrification. A mixture of NaHCO3 and CH3COONa was selected as the appropriate carbon source for cell growth and nitrogen removal, the concentrations of carbon and nitrogen sources were also examined. Ammonia could be oxidized aerobically to nitrite by the mixed culture, and the intermediate nitrite was then reduced to dinitrogen gas. No nitrite was detected during the process. 0.212 g of ammonia/l could be removed in 30 h and nitrate could not be utilized aerobically by the mixed culture. Nitrite could be degraded aerobically as well as anaerobically. Very little ammonia was degraded anaerobically, but the ability to degrade ammonia could be recovered even after oxygen had been supplied for 42 h.  相似文献   

12.
从稳定运行处理竹子加工废水的生物接触氧化反应器中分离得到一株好氧反硝化菌DN7,其72 h NO3-降解率达99.4%.细胞显微镜观察显示,菌株为革兰氏阴性小杆菌,大小为0.5 μm×1.5 μm,菌落为乳白色.通过生理生化特性及16S rDNA同源性分析,初步推断该菌株为根瘤菌中的Defluvibacter lusatiensis str.碳源、C/N、硝酸盐初始浓度、溶解氧(DO)、pH对DN7反硝化性能影响的结果表明:菌株对柠檬酸钠、葡萄糖等小分子有机物的利用较好;C/N为9时,脱氮率达99.0%;硝酸盐浓度低于138.48 mg·L-1情况下,DN7脱氮率在96%以上,且亚硝酸盐浓度均在1.0mg·L-1以下;菌株DN7对DO不敏感,中性偏碱性环境有利于DN7反硝化反应的进行;DN7具有良好的异养硝化性能,72 h铵氮降解率达84.7%.  相似文献   

13.
从稳定运行处理竹子加工废水的生物接触氧化反应器中分离得到一株好氧反硝化菌DN7,其72 h NO3-降解率达99.4%.细胞显微镜观察显示,菌株为革兰氏阴性小杆菌,大小为0.5 μm×1.5 μm,菌落为乳白色.通过生理生化特性及16S rDNA同源性分析,初步推断该菌株为根瘤菌中的Defluvibacter lusatiensisstr.碳源、C/N、硝酸盐初始浓度、溶解氧(DO)、pH对DN7反硝化性能影响的结果表明:菌株对柠檬酸钠、葡萄糖等小分子有机物的利用较好;C/N为9时,脱氮率达99.0%;硝酸盐浓度低于138.48 mg·L-1情况下,DN7脱氮率在96%以上,且亚硝酸盐浓度均在1.0 mg·L-1以下;菌株DN7对DO不敏感,中性偏碱性环境有利于DN7反硝化反应的进行;DN7具有良好的异养硝化性能,72 h铵氮降解率达84.7%.  相似文献   

14.
一株海水异养硝化-好氧反硝化菌系统发育及脱氮特性   总被引:9,自引:0,他引:9  
【目的】确定一株分离自海水的异养硝化-好氧反硝化菌的系统发育地位并探索其脱氮特性和机理,以期为解释异养硝化-好氧反硝化机理以及改进海水养殖及废水的生物脱氮工艺提供理论依据。【方法】通过形态观察、生理生化实验和16S rRNA基因序列分析,鉴定该菌株;通过测定菌株在不同无机氮源降解测试液中的生长和脱氮效率,分析其异养硝化和好氧反硝化性能。【结果】经鉴定该菌株属于盐单胞菌属(Halomonas);最适生长条件为盐度3%、pH 8.5、温度28℃、碳氮比10:1,在盐度为15%的培养液中仍能生长;可以同时去除氨氮、亚硝酸氮和硝酸氮,24 h时对NH4+-N、NO2--N、和NO3--N的去除率可分别达到98.29%、99.07%、96.48%,3种形态无机氮同时存在时,会优先利用NH4+-N,且总无机氮去除率较单一存在时更高,说明该菌株可实现同步硝化反硝化。【结论】该分离自海水的异养硝化-好氧反硝化菌属于盐单胞菌属(Halomonas),在高盐环境中仍能生长,同时具有高效的异养硝化和好氧反硝化能力,能够独立完成脱氮的全部过程。  相似文献   

15.
一株异养硝化-反硝化不动杆菌的分离鉴定及脱氮活性   总被引:4,自引:0,他引:4  
[目的]分离筛选并鉴定一株异养硝化-反硝化细菌,并探讨其在脱氮中的作用.[方法]富集培养分离筛选微生物,通过形态观察和生理生化特征及16S rDNA鉴定细菌,定时测定其OD600研究生长曲线,正交试验研究其脱氮影响因素和最佳条件,与污水处理厂活性污泥共同作用检验其脱氮活性.[结果]分离到一株异养硝化-反硝化细菌,鉴定结果表明是一株不动杆菌,命名为Acinetobacter sp.YF14,这是已知报道的第一株进行异养硝化和好氧反硝化的不动杆菌.该菌在12 h时进入对数期,22 h时进入稳定期,45 h以后进入衰亡期.该菌能进行异养硝化,3d后氨氮和总氮的去除率可以达到92%和91%,且无硝酸盐氮和亚硝酸盐氮积累.好氧条件下该菌能进行反硝化,在硝酸盐和亚硝盐培养基中均能将氮几乎完全去除.对该菌脱氮的影响程度大小依次为转速>接种量>碳源>碳氮比> pH.当转速为160 r/min,碳源取葡萄糖,接种量1%,碳氮比为8∶1,pH为6.5时,脱氮效果最好.该菌株可以提高活性污泥对于生活污水总氮脱除率约30%.[结论]菌YF14可以明显加强活性污泥脱氮效果,显示了良好的应用前景.  相似文献   

16.
潘超  过志鹏  付贵萍  唐佳  赵林 《微生物学通报》2023,50(11):4751-4769
【背景】近年来,随着海水养殖规模的扩大,养殖产品产生的排泄物与残留的饲料大量积累,导致养殖水域的氮磷元素含量上升,水体富营养化加剧并对环境造成危害。【目的】从红树林人工湿地中筛选出好氧反硝化聚磷菌株并研究各菌株的最佳除氮除磷效率,随后通过响应面法构建菌群,进一步强化菌株去除污染物的能力。【方法】将前期筛选出的5株耐盐异养硝化-好氧反硝化菌通过异染颗粒染色和聚-β-羟基丁酸(poly-β-hydroxybutyricacid,PHB)染色进行好氧反硝化聚磷菌的筛选,通过单因素试验明确各菌株的最佳除氮除磷条件,并利用Design-Expert软件和Box-Benhnken响应面法进行配比试验。【结果】经过筛选获得3株耐盐好氧反硝化聚磷菌,分别为肺无色杆菌(Achromobacter pulmonis) strain E43、氧化木糖无色杆菌(Achromobacterxylosoxidans)strainJ1和食油假单胞菌(Pseudomonasoleovorans)strain F2,发现菌株E43具有聚磷功能,确定了耐盐好氧反硝化聚磷菌群的最优降解投加比例为E43:J1:F2=1:1:...  相似文献   

17.
Thiosphaera pantotropha, a facultative anaerobe is capable of mixotrophic and heterotrophic growth on a wide range of substrates. It can oxidize reduced sulfur compounds, nitrify ammonia heterotrophically to nitrite, and reduce nitrate or nitrite to nitrogen gas irrespective of the ambient dissolved oxygen concentration.1 The ammonia oxygenase has similarities with that of autotrophic nitrifiers (such as, light sensitivity, Mg2+ requirement, and NAD(P)H utilization), so has hydroxylamine oxidoreductase (cytochrome C oxidation, hydrazine inhibition) but there are some differences too (e.g., hydroxylamine inhibition of ammonia oxidation).2 It is the denitrifying enzyme system expression and operation under aerobic conditions, however, which is shrouded with controversy. The typical enzyme system of the bacterium throws open interesting possibilities of its applications for wastewater treatment. T. pantotropha has been tested in mixed bacterial cultures in suspended as well as fixed film systems to treat simulated industrial and domestic wastewaters. It has also been used in a flocculating algal-bacterial system to treat synthetic fertilizer wastewater. Fixed film systems have yielded better results. High rates of simultaneous removal of organics and nitrogen have been achieved. This indicates a vast improvement over conventional treatment strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号