首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendrobium is the largest genus of tropical epiphytic orchid, some of which are traditional Chinese medicinal plants. The therapeutic components varied significantly among species. Endophytic microbes (fungi) hidden in medicinal plants may play an important effect on the overall quality of herb. Investigation of fungal composition in host plants is the first step toward elucidating the relationship endophyte-therapeutic content of herbal medicine. In this study, 401 culturable fungal endophytes were isolated and identified from 10 species of medicinal Dendrobium based on morphological and molecular techniques. The results showed that endophytic fungi from Dendrobium plants exhibited high biodiversity (37 genera, about 80 species). Acremonium, Alternaria, Ampelomyces, Bionectria, Cladosporium, Colletotrichum, Fusarium, Verticillium and Xylaria were the dominant fungal endophytes. Tropical epiphytic orchids appear to vary in degree of host specificity in their endophytic fungi.  相似文献   

2.
Dendrobium spp. are traditional Chinese medicinal plants, and the main effective ingredients (polysaccharides and alkaloids) have pharmacologic effects on gastritis infection, cancer, and anti-aging. Previously, we confirmed endophytic xylariaceous fungi as the dominant fungi in several Dendrobium species of tropical regions from China. In the present study, the diversity, taxonomy, and distribution of culturable endophytic xylariaceous fungi associated with seven medicinal species of Dendrobium (Orchidaceae) were investigated. Among the 961 endophytes newly isolated, 217 xylariaceous fungi (morphotaxa) were identified using morphological and molecular methods. The phylogenetic tree constructed using nuclear ribosomal internal transcribed spacer (ITS), large subunit of ribosomal DNA (LSU), and beta-tubulin sequences divided these anamorphic xylariaceous isolates into at least 18 operational taxonomic units (OTUs). The diversity of the endophytic xylariaceous fungi in these seven Dendrobium species was estimated using Shannon and evenness indices, with the results indicating that the dominant Xylariaceae taxa in each Dendrobium species were greatly different, though common xylariaceous fungi were found in several Dendrobium species. These findings implied that different host plants in the same habitats exhibit a preference and selectivity for their fungal partners. Using culture-dependent approaches, these xylariaceous isolates may be important sources for the future screening of new natural products and drug discovery.  相似文献   

3.
Fungal endophytes are micro-organisms that colonize healthy plant tissues without causing disease symptoms. They are described as plant growth and disease resistance promoters and have shown antimicrobial activity. The spatial-temporal distribution of endophytic communities in olive cultivars has been poorly explored. This study aims to investigate the richness and diversity of endophytic fungi in different seasons and sites, within the Alentejo region, Portugal. Additionally, and because the impact of some pathogenic fungi (e.g. Colletotrichum spp.) varies according to olive cultivars; three cultivars, Galega vulgar, Cobrançosa and Azeiteira, were sampled. 1868 fungal isolates were identified as belonging to 26 OTUs; 13 OTUs were identified to the genera level and 13 to species level. Cultivar Galega vulgar and season autumn showed significant higher values in terms of endophytic richness and diversity. At site level, Elvas showed the lowest fungal richness and diversity of fungal endophytes. This study reinforces the importance of exploring the combined spatio-temporal distribution of the endophytic biodiversity in different olive cultivars. Knowledge about endophytic communities may help to better understand their functions in plants hosts, such as their ecological dynamics with pathogenic fungi, which can be explored for their use as biocontrol agents.  相似文献   

4.
Endophytic fungi show no symptoms of their presence but can influence the performance and vitality of host trees. The potential use of endophytes to indicate vitality has been previously realized, but a standard protocol has yet to be developed due to an incomplete understanding of the factors that regulate endophyte communities. Using a culture-free molecular approach, we examined the extent to which host genotype influences the abundance, species richness, and community composition of endophytic fungi in Norway spruce needles. Briefly, total DNA was extracted from the surface-sterilized needles of 30 clones grown in a nursery field and the copy number of the fungal internal transcribed spacer (ITS) region of ribosomal DNA was estimated by quantitative PCR. Fungal species richness and community composition were determined by denaturing gradient gel electrophoresis and DNA sequencing. We found that community structure and ITS copy number varied among spruce clones, whereas species richness did not. Host traits interacting with endophyte communities included needle surface area and the location of cuttings in the experimental area. Although Lophodermium piceae is considered the dominant needle endophyte of Norway spruce, we detected this species in only 33 % of samples. The most frequently observed fungus (66 %) was the potentially pathogenic Phoma herbarum. Interestingly, ITS copy number of endophytic fungi correlated negatively with the richness of ectomycorrhizal fungi and thus potential interactions between fungal communities and their influence on the host tree are discussed. Our results suggest that in addition to environmental factors, endophyte communities of spruce needles are determined by host tree identity and needle surface area.  相似文献   

5.
Recent research has shown the bioprospecting of endophytic fungi from Cupressaceae. Here, we further uncover that the healthy cypress plants such as Cupressus arizonica, Cupressus sempervirens var. cereiformis, and Thuja orientalis host highly bioactive endophytic Alternaria fungal species. Indeed, endophytic Alternaria alternata, Alternaria pellucida, and Alternaria tangelonis were recovered from healthy Cupressaceous trees. Biodiversity and bioactivity of recovered endophytic Alternaria species were a matter of biogeography and host identity. We further extracted such Alternaria’s metabolites and highlighted their significant antiproliferative, growth inhibitory, and antibacterial activities against the model target fungus Pyricularia oryzae and the model pathogenic bacteria Bacillus sp., Erwinia amylovora, and Pseudomonas syringae. In vitro assays also indicated that endophytic Alternaria species significantly inhibited the growth of cypress fungal phytopathogens Diplodia seriata, Phaeobotryon cupressi, and Spencermartinsia viticola. In conclusion, since the recovered Alternaria species were originally reported as pathogenic and allergenic fungi, our findings suggest a possible ecological niche for them inside the foliar tissues of Cupressaceous trees. Moreover, in this study, the significant bioactivities of endophytic Alternaria species in association with Cupressaceae plant family are reported.  相似文献   

6.
Xing YM  Chen J  Cui JL  Chen XM  Guo SX 《Current microbiology》2011,62(4):1218-1224
Endophytic fungi are rich in orchids and have great impacts on their host plants. 53 endophytes (30 isolates from Dendrobium devonianum and 23 endophytic fungi from D. thyrsiflorum) were isolated, respectively, from roots and stems of Dendrobium species. All the fungi were identified by way of morphological and/or molecular biological methods. 30 endophytic fungi in D. devonianum were categorized into 11 taxa and 23 fungal endophytes in D. thyrsiflorum were grouped into 11 genera, respectively. Fusarium was the dominant species of the two Dendrobium species in common. Antimicrobial activity of ethanol extract of fermentation broth of these fungi was explored using agar diffusion test. 10 endophytic fungi in D. devonianum and 11 in D. thyrsiflorum exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among 6 pathogenic microbes (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus). Out of the fungal endophytes isolated from D. devonianum and D. thyrsiflorum, Phoma displayed strong inhibitory activity (inhibition zones in diameter >20 mm) against pathogens. Epicoccum nigrum from D. thyrsiflorum exhibited antibacterial activity even stronger than ampicillin sodium. Fusarium isolated from the two Dendrobium species was effective against the pathogenic bacterial as well as fungal pathogens. The study reinforced the assumption that endophytic fungi isolated from different Dendrobium species could be of potential antibacterial or antifungal resource.  相似文献   

7.
Biotic and abiotic conditions in soil pose major constraints on growth and reproductive success of plants. Fungi are important agents in plant soil interactions but the belowground mycobiota associated with plants remains poorly understood. We grew one genotype each from Sweden and Italy of the widely-studied plant model Arabidopsis thaliana. Plants were grown under controlled conditions in organic topsoil local to the Swedish genotype, and harvested after ten weeks. Total DNA was extracted from three belowground compartments: endosphere (sonicated roots), rhizosphere and bulk soil, and fungal communities were characterized from each by amplification and sequencing of the fungal barcode region ITS2. Fungal species diversity was found to decrease from bulk soil to rhizosphere to endosphere. A significant effect of plant genotype on fungal community composition was detected only in the endosphere compartment. Despite A. thaliana being a non-mycorrhizal plant, it hosts a number of known mycorrhiza fungi in its endosphere compartment, which is also colonized by endophytic, pathogenic and saprotrophic fungi. Species in the Archaeorhizomycetes were most abundant in rhizosphere samples suggesting an adaptation to environments with high nutrient turnover for some of these species. We conclude that A. thaliana endosphere fungal communities represent a selected subset of fungi recruited from soil and that plant genotype has small but significant quantitative and qualitative effects on these communities.  相似文献   

8.
Endophytic fungi have been widely used as biotic elicitors to stimulate the growth and production of metabolites in plant cells, tissues and organ cultures. Here, mycelium extract (ME), supernatant liquor (SL), ethanol sediment (ES) and protein-polysaccharide fraction (PPF) were prepared from four endophytic fungi, DO14 (Pestalotiopsis sp.), DO18 (Talaromyces sp.), DO19 (Xylariaceae sp.) and DO120 (Hypoxylon sp.), and applied to their host Dendrobium catenatum. After 8 weeks of co-culturing, ME, ES and PPF exhibited strong stimulation on biomass yields and contents of active ingredients. Among the three elicitors, PPF was found to be the active constituent responsible for the enhanced biomass and active ingredients in D. catenatum. Under the treatment of 240 mg/L PPF from DO14, we achieved maximum stem fresh weight (FW) and leaf FW. However, to maximize the productions of polysaccharides, naringenin and schaftoside one need only 60 mg/L of PPF from DO14. PPF from DO18, DO19 and DO120 showed different effects. Under 30 mg/L treatment, the ethanol extractives, total flavonoids and total phenols contents increased most. These results indicate that fungal elicitor PPFs can be used for industrial production of high quality D. catenatum seedlings and may be served as a broad microbial fertilizer resource for other plant growth.  相似文献   

9.
To clarify the effects of forest fragmentation and a change in tree species composition following urbanization on endophytic fungal communities, we isolated fungal endophytes from the foliage of nine tree species in suburban (Kashiwa City, Chiba) and rural (Mt. Wagakuni, Ibaraki; Mt. Takao, Tokyo) forests and compared the fungal communities between sites and host tree species. Host specificity was evaluated using the index of host specificity (Si), and the number of isolated species, total isolation frequency, and the diversity index were calculated. From just one to several host-specific species were recognized in all host tree species at all sites. The total isolation frequency of all fungal species on Quercus myrsinaefolia, Quercus serrata, and Chamaecyparis obtusa and the total isolation frequency of host-specific species on Q. myrsinaefolia, Q. serrata, and Eurya japonica were significantly lower in Kashiwa than in the rural forests. The similarity indices (nonmetric multidimensional scaling (NMS) and CMH) of endophytic communities among different tree species were higher in Kashiwa, as many tree species shared the same fungal species in the suburban forest. Endophytic fungi with a broad host range were grouped into four clusters suggesting their preference for conifer/broadleaves and evergreen/deciduous trees. Forest fragmentation and isolation by urbanization have been shown to cause the decline of host-specific fungal species and a decrease in β diversity of endophytic communities, i.e., endophytic communities associated with tree leaves in suburban forests were found to be depauperate.  相似文献   

10.
Root endophytic fungi are seen as promising alternatives to replace chemical fertilizers and pesticides in sustainable and organic agriculture systems. Fungal endophytes structure formations play key roles in symbiotic intracellular association with plant-roots. To compare the morphologies of Ascomycete endophytic fungi in wheat, we analyzed growth morphologies during endophytic development of hyphae within the cortex of living vs. dead root cells. Confocal laser scanning microscopy (CLSM) was used to characterize fungal cell morphology within lactofuchsin-stained roots. Cell form regularity Ireg and cell growth direction Idir, indexes were used to quantify changes in fungal morphology. Endophyte fungi in living roots had a variable Ireg and Idir values, low colonization abundance and patchy colonization patterns, whereas the same endophyte species in dead (γ-irradiated) roots had consistent form of cells and mostly grew parallel to the root axis. Knot, coil and vesicle structures dominated in living roots, as putative symbiotic functional organs. Finally, an increased hypha septation in living roots might indicate local specialization within endophytic Ascomycota. Our results suggested that the applied method could be expanded to other septate fungal symbionts (e.g. Basidiomycota). The latter is discussed in light of our results and other recent discoveries.  相似文献   

11.
A total of 1,897 isolates of endophytic fungi from Madhuca indica Gmel., representing 40 morphologically distinct fungal taxa were obtained from 2,700 segments of stem, bark and leaf from three different locations (Loc 1, Loc 2 and Loc 3) in Uttar Pradesh, India. Out of 40 taxa, 28 were identified microscopically and the remaining 12 by molecular methods. Coelomycetes (62.41 %) were the most prevalent fungal group followed by hyphomycetes (28.89 %) and ascomycetes (8.70 %). Colonisation frequency (CF) was greater in stem (82.55 %) than in leaf (65.00 %) and bark (63.22 %). Due to the dominance of a few taxa, species richness and Shannon and Simpson diversity indices were lower in stem than in leaf and bark at each location. Interestingly, less rainfall and lower temperatures disfavoured the overall colonisation of fungal endophytes at Loc 2. The stem samples from all locations were very similar in their endophytic composition, whereas bark and leaf samples showed differences. The dominant endophytic fungi isolated were Phomopsis sp. 1 (9.185 %), and Colletotrichum gloeosporioides (7.00 %). Principal component analysis showed 55 % tissue specificity with 51.08 % maximum variance. Antibacterial activity revealed that 58.33 % endophytic fungi were active against at least one or more bacterial pathogens, whereas the crude extract of five endophytic fungi inhibited the growth of five or more than five (50 %) of the pathogens tested. This report illustrates the value of having an adequate sample size from different tissues and different locations for species and chemical diversity in search of novel natural products.  相似文献   

12.
云南会泽铅锌矿废弃矿渣堆常见植物内生真菌多样性   总被引:2,自引:0,他引:2  
李东伟  徐红梅  梅涛  李海燕 《生态学报》2012,32(7):2288-2293
从云南会泽铅锌矿废弃矿渣堆上的常见植物硬毛南芥(Arabis hirsuta)、毛萼香茶菜(Rabbosia eriocalyx)和倒挂刺(Rosa longicuspis)等6种植物的690个组织块中共分离得到内生真菌495株,内生真菌的分离频率在0.42—0.93之间,平均为0.72,所有植物茎内生真菌的分离频率都明显高于叶(P<0.05)。经形态学鉴定,内生真菌分属于茎点霉属(Phoma)、交链孢属(Alternaria)和派伦霉属(Peyronellaea)等20个分类单元,其中茎点霉属和派伦霉属为该废弃矿渣堆上常见植物的优势内生真菌属。6种植物内生真菌的多样性指数在1.05—2.29之间,与其它非重金属污染环境植物内生真菌的多样性指数相似,说明在重金属污染地区仍然存在多种重金属耐受的内生真菌种类。6种植物内生真菌的相似性系数(0.455—0.833)表明,会泽铅锌矿区植物内生真菌的宿主专一性较小。  相似文献   

13.
《Flora》2014,209(12):704-710
Fungal endophytes comprise a highly diverse group of particular interest for their relevant implications to the ecosystems they inhabit. The objective of this study was to infer the phylogenetic affinity between strains of Peroneutypa scoparia exhibiting different lifestyles to elucidate possible shifts in ecological roles. Specimens and living cultures used in the present study were obtained from decaying wood and from live stem tissues of the invasive host species Broussonetia papyrifera. The similarity between the fungal strains was studied through molecular analyses. The results showed a close phylogenetic link and high genetic similarity between endophytic and saprotrophic strains. The main findings suggest that P. scoparia has primary access to the substrate as an endophyte and then this organism may change its use of the available resources presenting a saprotrophic growth. These results provide valuable information about the roles that diatrypaceous fungi play as endophytes or as decaying wood inhabitants and contributes to evaluate the ecological significance of this group.  相似文献   

14.
Biodiversity and biogeography of leaf-inhabiting endophytic fungi have not been resolved yet. This is because host specificity, life cycles and species concepts, in this heterogeneous ecological guild of plant-associated microfungi, are far from being understood. Even though it is known that culture-based collection techniques are often biased, this has been the method of choice for studying fungal endophytes. Isolation of fungal endophytes only through culture-based methods could potentially mask slow growing species as well as species with low prevalence, preventing the capture of the communities’ real diversity and composition. This bias can be partially resolved by the use of cultivation-independent approaches such as direct sequencing of plant tissue by next generation techniques. Irrespective of the chosen sampling method, an efficient analysis of community ecology is urgently needed in order to evaluate the driving forces acting on fungal endophytic communities. In the present study, endophytic ascomyceteous fungi from three different plant genera (Vasconcellea microcarpa, Tillandsia spp., and Hevea brasiliensis) distributed in Peru, were isolated through culture-based sampling techniques and sequenced for their ITS rDNA region. These data sets were used to assess host preferences and biogeographic patterns of endophytic assemblages. This study showed that the effect of the host’s genetic background (identity) has a significant effect on the composition of the fungal endophytic community. In other words, the composition of the fungal endophytic community was significantly related to their host’s taxonomic identity. However, this was not true for all endophytic groups, since we found some endophytic groups (e.g. Xylariales and Pleosporales) occurring in more than one host genus. Findings from this study promote the formulation of hypotheses related to the effect of altitudinal changes on the endophytic communities along the Eastern Andean slopes. These hypotheses and perspectives for fungal biodiversity research and conservation in Peru are addressed and discussed.  相似文献   

15.
从蔓草虫豆(Atylosia scarabaeoides)、余甘子(Phyllanthus emblica)和黄花稔(Sida acuta)等5种云南元江干热河谷植物的525个组织块中,共分离得到内生真菌371株,内生真菌的分离频率在0.61~0.92之间,且所有植物叶内生真菌的分离频率都明显高于茎(P<0.05)。经形态学鉴定,内生真菌分属于拟茎点霉属(Phomopsis sp.)、离蠕孢属(Bipolaris sp.)和交链孢属(Alternaria sp.)等32个分类单元。拟茎点霉属为干热河谷植物优势内生真菌属,从所有被调查植物的茎叶中都分离得到该属真菌,且相对分离频率高达12.90%~50.54%。内生真菌群落组成的多样性和相似性分析结果表明,云南元江干热河谷植物内生真菌多样性偏低、宿主专一性较小。  相似文献   

16.
Epichloe bromicola is an endophytic fungal species that systemically and perennially colonizes intercellular spaces of leaf blades, leaf sheaths and culms of Bromus grass species. E. bromicola causes choke disease in B. erectus, suppressing maturation of most, if not all, host inflorescences. In an investigation of the interaction between fungus and host, we used a quantitative polymerase chain reaction technique to estimate the amount of fungal DNA, and thereby fungal concentration, in host plants. Fungal concentration was directly correlated with vegetative vigour of the plant, as measured by longest leaf length, number of tillers and vegetative above-ground biomass, suggesting that, during vegetative growth, the endophytic fungus is most beneficial for the plant when present in high concentrations. In contrast, the reproduction of the plant, as measured by the number of functional inflorescences, was inversely correlated with fungal concentration: the majority of infected plants, and all that were associated with high concentrations of fungi, were diseased. Thus, the benefit of endophyte infection for the plant is coupled with the disadvantages of infertility. Fungal concentration was shown to be at least in part genetically determined because fungal concentration differed significantly in different plant-endophyte genotype combinations (symbiotum). In a field experiment with normal and CO2-enriched environments, elevated CO2 levels favoured fungal reproductive vigour over host reproductive vigour, suggesting that these plant endophytes would be at a selective advantage in a corresponding environmental-change scenario. We conclude that a dynamic and complex relationship between fungal endophyte infection, fungal concentration, genotype and environment affects growth and fecundity of B. erectus and should contribute to the evolution of these plant-fungal interactions.  相似文献   

17.
Foliar endophytic fungi are present in almost all vascular plants. The composition of endophyte communities varies among plant individuals. Likely, but understudied, sources of this variation are the species composition of the plant community and initial attacks by insect herbivores. We addressed these issues by characterizing fungal endophyte communities on leaves of chestnut (Castanea sativa) grown in pure vs. mixed stands. We used ITS metabarcoding methods to identify endophytic fungi associated with galls caused by the invasive gall wasp, Dryocosmus kuriphilus, and with surrounding chestnut leaf tissues. We found 1378 different OTUs. The richness, diversity and composition of endophyte communities differed between galls and surrounding leaf tissues but were independent of forest stand composition. Fungal endophyte richness was lower in galls than in surrounding leaf tissues. Most differences in the composition of fungal endophyte communities between galls and foliar tissues were due to OTU turnover. These results suggest that insect-induced galls provide a particular habitat condition for endophytic microorganisms, regardless of forest species composition. A better understanding of endophyte biology is important to improve their use as biocontrol agents of galling insects.  相似文献   

18.
Ash dieback disease (caused by Hymenoscyphus fraxineus) has affected European ash species (Fraxinus spp.) in recent decades. However, some Asian and American species of Fraxinus and certain genotypes of Fraxinus excelsior are less affected by the disease. We used ITS1-metabacoding to explore the drivers influencing diversity and composition of the twig fungal communities of Fraxinus species and F. excelsior genotypes. Our results revealed that fungi in the classes Eurotiomycetes and Dothideomycetes were among the most prevalent taxa in both Fraxinus species and F. excelsior genotypes. The diversity of the fungal communities differed significantly among Fraxinus species and could be explained by seed origin. Neither host genotype nor season had a significant effect on the community diversity of F. excelsior genotypes. On the other hand, the composition of twig fungal communities differed significantly among host species and among F. excelsior genotypes, and in F. excelsior there was also a significant effect of season on the composition of the fungal community. We did not find a clear effect of ash dieback susceptibility on either diversity or composition of fungal communities in twigs of Fraxinus species, although the effect was significant on the composition of fungal communities among F. excelsior genotypes. Our results demonstrated differences in fungal communities among species of Fraxinus and of F. excelsior genotypes, suggesting specific relationship between individual host genotypes and endophytic fungi.  相似文献   

19.
Trichoderma fungal species are universal soil residents that are also isolated from decaying wood, vegetables, infected mushroom and immunocompromised patients. Trichoderma species usually biosynthesize a plethora of secondary metabolites. In an attempt to explore endophytic fungi from healthy foliar tissues of the plant family Cuppressaceae, we explored Cupressus arizonica, C. sempervirens var. cereiformis, C. sempervirens var. fastigiata, C. sempervirens var. horizontalis, Juniperus excelsa, Juniperus sp. and Thuja orientalis plants and recovered several endophytic Trichoderma fungal strains from Trichoderma atroviride and Trichoderma koningii species. We found that the host plant species and biogeographical location of sampling affected the biodiversity and bioactivity of endophytic Trichoderma species. Furthermore, the bioactivity of Trichoderma isolates and the methanol extracts of their intra- and extra-cellular metabolites were assessed against a panel of pathogenic fungi and bacteria. Fungal growth inhibition, conidial cytotoxicity, minimum inhibitory concentration and minimum bactericidal concentration were evaluated and analyzed by statistical methods. Our data showed that both intra- and extracellular secondary metabolites from all endophytic isolates had significant cytotoxic and antifungal effects against the model target fungus Pyricularia oryzae and the cypress fungal phytopathogens Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. Further research indicated their significant antimicrobial bioactivity against the model phytopathogenic bacteria Pseudomonas syringae, Erwinia amylovora and Bacillus sp., as well. Altogether, the above findings show for the first time the presence of T. atroviride and T. koningii as endophytic fungi in Cupressaceae plants and more importantly, the Trichoderma isolates demonstrate significant bioactivity that could be used in future for agrochemical/drug discovery and pathogen biocontrol.  相似文献   

20.
In bromeliads, nothing is known about the associations fungi form with seeds and seedling roots. We investigated whether fungal associations occur in the seeds and seedling roots of two epiphytic Aechmea species, and we explored whether substrate and fungal associations contribute to seed germination, and seedling survival and performance after the first month of growth. We found a total of 21 genera and 77 species of endophytic fungi in the seeds and seedlings for both Aechmea species by Illumina MiSeq sequencing. The fungal associations in seeds were found in the majority of corresponding seedlings, suggesting that fungi are transmitted vertically. Substrate quality modulated the germination and growth of seedlings, and beneficial endophytic fungi were not particularly crucial for germination but contributed positively to survival and growth. Overall, this study provides the first evidence of an endophytic fungal community in both the seeds and seedlings of two epiphytic bromeliads species that subsequently benefit plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号