首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The literature on 506 selected chemicals has been evaluated for evidence that these chemicals induce tumors in experimental animals and this assessment comprises the Gene-Tox Carcinogen Data Base. Three major sources of information were used to create this evaluated data base: all 185 chemicals determined by the International Agency for Research on Cancer to have Sufficient evidence of carcinogenic activity in experimental animals, 28 selected chemicals bioassayed for carcinogenic activity by the National Toxicology Program/National Cancer Institute and found to induce tumors in mice and rats, and 293 selected chemicals which had been evaluated in genetic toxicology and related bioassays as determined from previous Gene-Tox reports. The literature data on the 239 chemicals were analyzed by the Gene-Tox Carcinogenesis Panel in an organized, rational and consistent manner. Criteria were established to assess individual studies employing single chemicals and 4 categories of response were developed: Positive, Negative, Inconclusive (Equivocal) and Inconclusive. After evaluating each of the individual studies on the 293 chemicals, the Panel placed each of the 506 chemicals in an overall classification category based on the strength of the evidence indicating the presence or absence of carcinogenic effects. An 8-category decision scheme was established using a modified version of the International Agency for Research on Cancer approach. This scheme included two categories of Positive (Sufficient and Limited), two categories of Negative (Sufficient and Limited), a category of Equivocal (the evidence of carcinogenicity from well-conducted and well-reported lifetime studies had uncertain significance and was neither clearly positive nor negative), and three categories of Inadequate (the evidence of carcinogenicity was insufficient to make a decision, however, the data suggested a positive or negative indication). Of the 506 chemicals in the Gene-Tox Carcinogen Data Base, 252 were evaluated as Sufficient Positive, 99 as Limited Positive, 40 as Sufficient Negative, 21 as Limited Negative, 1 as Equivocal, 13 as Inadequate with the data suggesting a positive indication, 32 as Inadequate with the data suggesting a negative indication, and 48 Inadequate with the data not suggesting any indication of activity.This data base was analyzed and examined according to chemical class, using a 29 chemical class scheme. The major chemical classes represented were: acyl, alkyl and aryl halides (38 chemicals); alcohols and phenols (28 chemicals); alkyl and aryl epoxides (20 chemicals); amines, amides and sulfonamides (70 chemicals); aromatic azo, azide, azoxy, diazo, hydrazo and nitrile chemicals (28 chemicals); aziridines, nitrogen and sulfur mustards (25 chemicals); carbamates, dicarboximides, thioureas and ureas (21 chemicals); metals and organometallics (41 chemicals); nitroalkanes, nitroaromatics, nitrofurans, nitroimidazoles and nitroquinolines (23 chemicals); nitrosamines (19 chemicals); and polycyclic aromatic hydrocarbons and dihydrodiol derivatives (57 chemicals). The Gene-Tox Carcinogen Data Base provides a basis for future in-depth analyses of genetic toxicology bioassay systems with regard to their ability to predict the carcinogenic effects of chemicals.  相似文献   

2.
3.
From a literature survey, 117 chemicals are tabulated that have been assayed in 179 assays for their clastogenic effects in Pisum. Of the 117 chemicals that have been assayed, 65 are reported at giving a positive reaction (i.e. causing chromosome aberrations), 30 positive with a dose response, five borderline positive. Seventeen chemicals gave a negative response. Eighty-one percent of the chemicals gave a definite positive response. A c-mitotic effect was detected from treatment with 17 chemicals. In addition to the above tabulation of chemicals, 39 chemicals have been reported with an antimitotic effect. Thirteen assays have been recorded for five types of radiation, which with the exception of ultrasound reacted positively. The results of assays with 38 chemicals and/or radiations in combined treatments, as well as 15 chemicals and three types of radiations that induce somatic mutations are tabulated. The Pisum sativum (2n=14) bioassay has been shown to be a very good plant bioassay for assessing chromosome damage both in mitosis and meiosis for somatic mutations induced by chemicals, radiations, and environmental pollutants. For some chemicals, the Pisum assay is not as sensitive in assessing clastogenicity as the Allium assay, although this should be considered in relative terms. Pisum fulvum (2n=14) has been used in clastogenic studies also, but to a much lesser extent.  相似文献   

4.
Although the statutory goals for chemical regulation are consistent with the precau tionary principle, the current U.S. regulatory program governing synthetic chemicals generally adopts little precautionary controls for the manufacture of most chemicals. For the vast majority of chemicals in use, current law places the burden of producing scientific evidence on the regulatory agency, which actually may serve to discourage companies from testing the safety of their chemicals, since the results could then be used against them in regulatory proceedings. By contrast, for a small subset of chemicals — new chemicals that belong to suspect categories — regulatory controls are quite precautionary. The result of this schizophrenic approach to chemical regulation is a regulatory system that is characterized by the absence of preventative regulation for most existing chemicals, an inequitable barrier to entry for newer safer chemicals, and a lack of information upon which to understand the safety of most chemicals in the U.S. Informal reforms of the current regulatory program are already underway to provide a more consistent and precautionary approach to chemical regulation, although to fully advance the dual goals of regulatory consistency and precaution in the regulation of chemicals, legislative action is necessary.  相似文献   

5.
An analysis is presented in which are evaluated correlations among chemical structure, mutagenicity to Salmonella, and carcinogenicity to rats and mice among 301 chemicals tested by the U.S. NTP. Overall, there was a high correlation between structural alerts to DNA reactivity and mutagenicity, but the correlation of either property with carcinogenicity was low. If rodent carcinogenicity is regarded as a singular property of chemicals, then neither structural alerts nor mutagenicity to Salmonella are effective in its prediction. Given this, the database was fragmented and new correlations sought between the derived sub-groups. First, the 301 chemicals were segregated into six broad chemical groupings. Second, the rodent cancer data were partially segregated by target tissue. Using the previously assigned structural alerts to DNA reactivity (electrophilicity), the chemicals were split into 154 alerting chemicals and 147 non-alerting chemicals. The alerting chemicals were split into three chemical groups; aromatic amino/nitro-types, alkylating agents and miscellaneous structurally-alerting groups. The non-alerting chemicals were subjectively split into three broad categories; non-alerting, non-alerting containing a non-reactive halogen group, and non-alerting chemical with minor concerns about a possible structural alert. The tumor data for all 301 chemicals are re-presented according to these six chemical groupings. The most significant findings to emerge from comparisons among these six groups of chemicals were as follows: (a) Most of the rodent carcinogens, including most of the 2-species and/or multiple site carcinogens, were among the structurally alerting chemicals. (b) Most of the structurally alerting chemicals were mutagenic; 84% of the carcinogens and 66% of the non-carcinogens. 100% of the 33 aromatic amino/nitro-type 2-species carcinogens were mutagenic. Thus, for structurally alerting chemicals, the Salmonella assay showed high sensitivity and low specificity (0.84 and 0.33, respectively). (c) Among the 147 non-alerting chemicals less than 5% were mutagenic, whether they were carcinogens or non-carcinogens (sensitivity 0.04).  相似文献   

6.
A current concern with in vitro mammalian cell genotoxicity testing is the high frequency of false or misleading positive results caused in part by the past use of excessively high test concentrations. A dataset of 249 industrial chemicals used in Japan and tested for genotoxicity was analyzed. Of these, 116 (46.6%) were positive in the in vitro chromosomal aberration (CA) test, including 6 that were positive only at test concentrations >10mM. There were 59 CA-positive chemicals at test concentrations ≤ 1mM. At >1mM, 51 chemicals were CA-positive, including 13 Ames-positive chemicals, which were therefore not "missed" by the test battery. Thus, 38 potentially positive chemicals would not have been detected in the test battery if the top test concentration was limited to 1mM in CA test. Analysis of the relevance of CA results on the 38 missed chemicals was conducted based on a weight of evidence approach, including evaluations of effects of extreme culture conditions (low pH, high toxicity, or precipitation), in silico structural alert analysis, in vivo genotoxicity and carcinogenicity test data (where available), mode of action, or information from closely related chemicals. After an exhaustive review, there were four chemicals with some concern for human health risk assessment, nine with minimal concern, and the remaining 25 with negligible concern. We apply different top concentrations to the 38 missed chemicals to identify the most accurate approach for predicting the genotoxicity of industrial chemicals. Of these 2mM or 1mg/mL, whichever is higher, was the most effective in detecting these chemicals, i.e., relatively higher (8/13) or lower (17/25) detection among 13 chemicals with some or minimal concern, or 25 with negligible concern, respectively. Lower top concentration limits, 1mM or 0.5mg/mL, whichever is higher, are not as effective (2/13) for detecting these chemicals with concern. Therefore, we conclude 2mM or 1mg/mL, whichever is higher, would be an appropriate top concentration limit for testing industrial chemicals for chromosome damage.  相似文献   

7.
Since the 1950s, the numbers of species and chemicals produced have significantly increased. Despite the fact that industrial chemicals have given us numerous benefits, there is no doubt that they have damaged the environment. The chemicals being dispersed on the earth should be carefully controlled to prevent adverse effects. Bioassay is one of the methods to assess chemical safety. In bioassay systems, chemical safety is estimated by monitoring biological responses to environmental pollutants and newly synthesized chemicals. This report introduces multiple-end-point bioassay systems that are based on chemical sensitivities of microorganisms, responses of one kind of organism, and micro-array technology. Multiple-end-point bioassays enable the prediction of chemicals in the environment and the understanding of toxicities of newly synthesized chemicals.  相似文献   

8.
转Bt基因棉花主要抗虫黄酮类化合物时空动态的HPLC分析   总被引:1,自引:1,他引:0  
棉花植株中的黄酮类化台物是重要的抗病虫害物质。运用高效液相色谱技术,对转Bt基因棉花主要抗虫黄酮类化合物的种类、含量和时空动态进行了初步探讨。结果表明,棉花组织中主要抗虫黄酮类化台物(包括异斛皮苷、芳香苷和槲皮素等)能够用HPLC方法检测并进行定量;异树皮苷、芳香苷和树皮素的含量均以花瓣中最高,花萼、苞叶和棉铃中较少;棉花生长中后期顶端嫩叶中抗虫黄酮类化合物的含量明显高于苗期.不同组织不同生长期的主要抗虫黄酮类化合物含量有一定的差异,所起的抗虫作用也有所不同.  相似文献   

9.
1. Behavioural studies show that larvae of Locusta migratoria (L.) can discriminate between certain simple chemicals and between chemicals obtained from plant sources. 2. Electrophysiological tests show that within each sensillum the same neurones respond to different chemicals. 3. The frequency of occurrence of sensilla with enhanced specificity to certain chemicals is investigated. 4. Statistical tests confirm that, despite the variability of response, across-fibre analysis could allow discrimination between chemicals provided an adequate number of senilla are used. 5. The conclusions are discussed in relation to current theories of chemoreceptor functioning.  相似文献   

10.
Several arachnid species use chemicals to detect sexual partners. In harvestmen, there are evidences that chemicals may play a role in intraspecific communication. Using the behavior of Discocyrtus prospicuus (Holmberg 1876), whose males expose the penis to females before they engage in mating posture, we tested if males detect females by contact chemoreception (chemicals left on the substrate) and if males detect females by olfaction. First, we exposed males to three experimental groups, where males had to choose between two substrates: female chemicals/blank control; male chemicals/blank control; female/male chemicals. Then, we gave males access to volatiles of males, females, and control simultaneously. We predicted that males would expose the penis when approaching volatiles and chemicals deposited on the substrate by females. We also tested if males spent more time close to the source of female volatiles and on the substrate with female chemicals and if males tapped the substrate with female chemicals for more time than the others. Finally, we put males and females together to observe if males would expose the penis upon touching the female’s cuticle. Most of our predictions were not supported, though males did tap for more time when exposed to female cues instead of male cues and exposed the penis in 70% of the observations when interacting with the female but only after touching her. Our data does not support olfaction as a way to detect females and corroborate the idea that contact chemicals, either on the substrate or on female’s cuticle, play an important role in the detection and recognition of the opposite sex. This is the first evidence in harvestmen that males may react differently to female/male chemicals.  相似文献   

11.
The ECVAM-funded skin irritation validation study (SIVS) was initiated in 2003, with the aim to evaluate whether the EpiDerm, EPISKIN and the SIFT alternative methods were able to reliably identify skin irritant and non-irritant chemicals, and could therefore be candidates for replacing the rabbit Draize test for skin irritation. The primary goal of the study was to evaluate the predictive capacity of the assays with regard to the EU classification system, which employs the risk phrases, "R38", for skin irritants, and "no label" for non-irritants. A secondary objective was the retrospective analysis of the data, to assess whether the in vitro tests would be able to discriminate between strong irritants (category 2), mild irritants (category 3) and non-irritants (no category), as defined by the OECD and United Nations proposal for a Globally Harmonised System (GHS) for the classification and labelling of dermal irritancy. A Chemicals Selection Sub-Committee (CSSC) was appointed to identify test chemicals to be used in the SIVS, for which existing, high quality in vivo data were available, with which to correlate the in vitro measurements. Since chemicals from the European Centre for the Ecotoxicology and Toxicology of Chemicals (ECETOC) database of reference chemicals for skin irritation/skin corrosion had been extensively used in preceding studies, the CSSC made use of novel sources for potential test chemicals. The first source of chemicals screened was the New Chemicals Database (NCD), which is the central archive within the EU notification scheme for 'new' commercial chemicals. Data registered in the NCD originate from standard assays, submitted in compliance with the legislation which regulates the marketing of industrial chemicals, and are subject to quality assurance by the competent authorities of the EU Member States. In addition, to obtain 'existing' chemicals which were readily available from major manufacturing and/or distribution sources, additional databases were surveyed, such as the Toxic Substance Control Act (TSCA) database maintained by the US Environmental Protection Agency (EPA), and the ECETOC database, with the exclusion of the chemicals used in the previous optimisation and prevalidation phases. A total of approximately 3500 chemicals from the NCD and 1600 from the additional databases were screened. Pre-determined selection criteria were applied, primarily to ensure the quality of the in vivo data and the practicability of their use in testing. Overall, the number of chemicals fulfilling the CSSC selection criteria was found to be limited, particularly in the case of GHS category 2 chemicals. However, a total set of 60 chemicals were selected and proposed to the Management Team of the SIVS for independent coding and supply to the participating laboratories. The selected chemicals: i) represented statistically justified sample sizes for distinguishing R38 from no-label chemicals; ii) provided a balanced representation of the three GHS categories, to allow for the post hoc evaluation of the performance of the assays for that classification system; and iii) acknowledged, to a certain degree, the large prevalence known to exist for chemicals which have oedema and erythema scores of 0. The selected chemicals represented a variety of molecular structures, functional chemical groups, and effect and use categories, as well as a wide range of physico-chemical properties. They represented a challenging set of chemicals, relevant to current industrial commerce, with which to validate the alternative methods.  相似文献   

12.
《Biotechnology advances》2017,35(6):726-750
Softwood bark is an important source for producing chemicals and materials as well as bioenergy. Extraction is regarded as a key technology for obtaining chemicals in general, and valorizing bark as a source of such chemicals in particular. In this paper, properties of 237 compounds identified in various studies dealing with extraction of softwood bark were described. Finally, some challenges and perspectives on the production of chemicals from bark are discussed.  相似文献   

13.
Existing data indicate that chemicals freshly added to soils are more amenable to losses, including biodegradation, than chemicals that have been in contact with soils for extended periods of time. This review presents the results of studies that indicate that increased soil‐chemical contact time increased the resistance of chemicals to desorption, volatilization, biodegradation, and extraction. Thus, results from studies conducted on chemicals freshly added to soils should not be used to predict the behavior of chemicals that have been in contact with soils for extended periods of time. In addition, a measure of the total chemical concentration present in a soil does not adequately indicate the availability of the chemicals for biodegradation or release, and does not indicate the potential for the chemical to be transported to and have an adverse effect on a human or ecological receptor.  相似文献   

14.
Platform chemicals composed of 2–6 carbons derived from fossil resources are used as important precursors for making a variety of chemicals and materials, including solvents, fuels, polymers, pharmaceuticals, perfumes, and foods. Due to concerns regarding our environment and the limited nature of fossil resources, however, increasing interest has focused on the development of sustainable technologies for producing these platform chemicals from renewable resources. The techniques and strategies for developing microbial strains for chemicals production have advanced rapidly, and it is becoming feasible to develop microbes for producing additional types of chemicals, including non‐natural molecules. In this study, we review the current status of the bio‐based production of major C2–C6 platform chemicals, focusing on the microbial production of platform chemicals that have been used for the production of chemical intermediates, building block compounds, and polymers. Biotechnol. Bioeng. 2012; 109: 2437–2459. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Over a 6-year period (1991-1996), the chromosomal aberration testing of high production volume (HPV) industrial chemicals had been conducted using Chinese hamster lung (CHL/IU) cells according to OECD HPV testing program and the national program in Japan. A total of 98 chemicals were tested for the induction of chromosome aberration (CA), consisting of structural CA and polyploidy. Of the 98 chemicals, structural CA and/or polyploidy were induced by 39 chemicals (40%). Anilines and phenols tended to induce only structural CA. p-tert-Butylphenol had a peculiar feature in inducing not only structural CA but also polyploidy at considerably high frequency (93.2%) after continuous treatment for 48 h, posing an aneugenic potential. Not all, but six of 11 carboxylic acids or esters also showed the simultaneous induction of structural CA and polyploidy. The majority of organic phosphates, alcohols or ethers, alkyl benzenes and non-cyclic alkanes had no CA induction activity. For chemicals which were negative in the bacterial reverse mutation assay (Ames test), the proportion of the chemicals that induced CA at a severely cytotoxic dose (doses manifesting more than 50% cytotoxicity) was similar to that of the CA-negative chemicals manifesting severe cytotoxicity, suggesting that severely cytotoxic chemicals do not always induce CA.  相似文献   

16.
From biomass to renewable chemicals: while industrial biotechnology offers a clear value proposition, a number of hurdles need to be addressed to fully realize the commercial potential of bio-based products and chemicals over the coming decade. A review of an early roadmap for biological production of chemicals from renewable sugars reveals a focus on those that would provide co-products for integrated biorefineries producing biofuels and bioenergy. A growing number of companies are now focusing on specialty chemicals as an entry point to build the bio-based economy.  相似文献   

17.
Zeiger E 《Mutation research》2001,492(1-2):29-38
In the National Toxicology Program database of 172 chemicals that were judged non-carcinogenic or equivocal in 2 year rodent studies in both sexes of rats and mice, there are 38 chemicals that were mutagenic in Salmonella. All but two of the chemicals had structural alerts for mutagenicity. The largest proportion of the mutagenic non-carcinogens were benzeneamines and substituted benzeneamines. In all, 12 of the mutagenic non-carcinogens had mutagenic carcinogen analogues, and for two chemicals, the carcinogenic analogues were not mutagenic. Non-carcinogens that were mutagenic in Salmonella also tended to be mutagenic and clastogenic in mammalian in vitro tests. The mutagenic responses are discussed and explanations offered for the mutagenicity and lack of carcinogenic activity of these chemicals.  相似文献   

18.
A statistical model is proposed for analyzing the mutagenic responses produced by mixtures of two chemicals in the Salmonella reversion assay. This model is based on the simplex-lattice design for mixtures with the total concentration fixed. The dose-response relationship is expressed as a function of both the proportions of the two chemicals and the total concentration of the chemicals in the mixture. If the joint action of two chemicals can be predicted by response-additivity, then the response of the mixture at the total concentration T can be represented by the weighted average of the responses produced by the individual chemicals at the same concentration T with the weights for individual responses being equal to the proportions of the chemicals in the mixture. Two non-additive models, synergism and antagonism, are discussed. An example is illustrated by analyzing the joint mutagenic effects of 1-nitrobenzo(a)pyrene (1-NBP), and 3-NBP in the Salmonella reversion assay.  相似文献   

19.
The relevance of the pulsed field gel electrophoresis (PFGE) assay for the estimation of the DNA damaging effects of chemicals was studied. Four chemicals were randomly chosen from the list of 50 Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) reference chemicals with known human acute systemic toxicity: acetylsalicylic acid, paracetamol, ethylene glycol and sodium chloride. Human fibroblasts (VH-10) were used as a model system. For the estimation of cytotoxic effect, cell monolayers were treated with chemicals for 24 hours. Cloning efficiency (colony-forming ability) at different concentrations of the test chemicals was estimated, and the 50% inhibitory concentration (IC50) was determined. The IC50 values obtained demonstrated a correlation with human lethal blood concentrations. The induction of DNA double-strand breaks, measured by PFGE as the fraction of activity released, was detected after treatment with paracetamol. However, the other three chemicals tested mainly induced DNA degradation.  相似文献   

20.
This paper examines the potential for carbohydrate fermentation as an alternative process technology for bulk organic chemicals. Major limitations restricting the broadening of scope for fermentation chemicals are identified. These involve the high process energy requirements in pretreating abundant cellulosic feedstocks, low overall conversion, low weight yield and limited product applications of directly biosynthesized fermentation chemicals. The new development directions for chemicals derived directly and indirectly from carbohydrate fermentation are reviewed. The significance of their potential impact on the evolving organic chemical industry is projected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号