首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This study was performed to investigate the weaning-to-estrus interval (WEI) in primiparous and multiparous sows in relation to their weight and back-fat thickness changes and serum hormone imbalance (insulin, growth hormone, and cortisol) at the end of gestation and during lactation. Ten primiparous and ten multiparous Camborough sows, fourth to seventh parity, were used in this experiment. During gestation, daily food intake was 2.4 kg (sow commercial diet: 2.96 Mcal/kg, 16% crude protein) and during lactation all sows were fed on a wet commercial diet (3.34 Mcal/kg, 17% crude protein) ad libitum, three times per day. Blood samples were collected and back-fat thickness at the P(2) site were recorded at 6 days before and 2, 7, 14, 21 and 25 days after farrowing. Body weight was recorded on the same dates, except the date before farrowing. The WEI was also recorded. The average daily feed intake was different (P<0.05) between primiparous and multiparous sows during lactation (5.23 versus 5.72kg per day, respectively). There was a difference (P<0.05) between primiparous and multiparous sows in total percentage of back-fat thickness loss from the end of gestation until weaning (-20.18 and -9.03%, respectively). The total percentage of weight loss during lactation was slightly greater (P>0.05) in multiparous than primiparous sows. Weaning-to-estrus interval was greater (P<0.05) in the primiparous group when compared with the multiparous group (5.55 and 4.22 days, respectively). No differences were found in insulin, growth hormone (GH), and cortisol concentrations between parity groups, except on the 21st day of lactation, when GH was greater in primiparous sows. There was no correlation between percentage of total weight loss and WEI, or percentage of back-fat thickness loss (total or by periods) and WEI. There were positive correlations between GH serum concentration on the 14th and 21st days and the percentage of weight loss in the third week of lactation (r=0.46, P<0.04 and r=0.52, P<0.02, respectively), and between GH concentration on the 21st and on weaning days and WEI (r=0.54, P<0.02 and r=0.42, P<0.06, respectively). Our results indicate that the hormone change (imbalance) during lactation, mainly GH, seems to be a better parameter to explain the difference in WEI between primiparous and multiparous sows than change in body condition.  相似文献   

2.
Nutritional requirements of the Iberian pig, a slow-growing, obese porcine breed, are not well defined and seem to differ from those of conventional or high-performing pigs. The effects of the dietary protein content and the feeding level on the utilisation of metabolisable energy (ME) and the rates of gain, protein, and fat deposition were studied with 81 Iberian castrates growing from 50 to 100 kg body weight (BW) by using the comparative slaughter technique. The animals were fed 4 diets providing 145, 120, 95, and 70 g ideal crude protein (CP) per kg dry matter (DM), and containing 13.94, 14.29, 14.56, and 14.83 MJ ME per kg DM, respectively. Three levels of feeding were evaluated: 0.60, 0.80, and 0.95 × ad libitum intake. Growth rate increased (linear and quadratic, P < 0.001) as the dietary ideal CP content decreased. It also increased with the feeding level (linear, P < 0.001; quadratic, P < 0.05). Gain:feed and gain:ME intake improved by decreasing the ideal CP content in the diet (linear, P < 0.001 and P < 0.05, respectively; quadratic P < 0.001 for both variables). Increasing the feeding level improved linearly gain:feed and gain:ME intake ( P < 0.001). Protein deposition (PD):ME intake ranged between 1.23 and 1.44 g/MJ, and it showed a tendency to reach the maximum value when the diet providing 95 g ideal CP per kg DM was fed (quadratic, P = 0.078). When this diet was offered at 0.95 × ad libitum, PD reached a maximum value of 71 g/day. This dietary treatment resulted in average values for average daily gain and retained energy (RE) of 854 g/day and 21.4 MJ/day, respectively. The average rate of gain was 19.93 g/MJ increase in ME intake, equivalent to an energy cost of 50.2 kJ ME per g gain, irrespective of the dietary ideal CP content. Also, the overall marginal efficiency of protein deposition (ΔPD:ΔME; g/MJ) was 1.34. Increasing the feeding level led to increases in PD (linear, P <  0.001) and RE (linear, P <  0.001; quadratic, P <  0.01) irrespective of the dietary ideal CP concentrations. Between 50 and 100 kg BW, the chemical composition of 1 kg gain averaged 78, 592, 28.7, and 284 g for CP, fat, ash, and water respectively. The net efficiency of use of ME for growth ( kg) and the maintenance energy requirements were 0.606 and 396 kJ/kg BW 0.75 per day, respectively. The results support earlier findings that the genotype has marked effects on protein and energy metabolism of growing pigs and underline important compositional differences of the Iberian pig compared with conventional or modern porcine genotypes.  相似文献   

3.
Bone metabolism fluctuates throughout the reproductive cycle of sows to enable foetal growth and milk production. Although increased bone mineralisation is conceivable in sows during reproduction, a study of mineralisation in function of parity has not been performed. This study evaluated the fluctuations of markers for bone metabolism in primiparous and multiparous sows throughout a reproductive cycle. The experiment included ten multiparous and five primiparous commercial hybrid sows from one herd. The sows were monitored for one reproductive cycle and fed according to commercial dietary standards. Blood samples were taken in the morning before feeding at fixed time intervals before (day -5) and during gestation (insemination (day 0), 21, 42, 63, 84), around parturition (day 108, 112, parturition (115), 118), and during lactation (day 122, 129, 143). Serum osteocalcin (OC) concentration increased in early and mid-gestation (P=0.002) and decreased at the end of gestation (P=0.001), whereas crosslaps (CTX) concentration decreased during early and mid-gestation (P=0.002) and increased towards the end of gestation (P=0.001). Towards the end of lactation serum levels of both markers increased (P=0.007 and 0.013, respectively). For hydroxyproline (HYP) no significant fluctuation in function of the reproductive cycle was detected. Matrix metalloproteinase 2 (MMP2) concentration increased towards parturition for both primiparous and multiparous sows (P=0.001), whereas during lactation no significant fluctuations in function of the reproductive cycle were found. A parity effect was found for OC and CTX (P<0.010), but not for the other markers. These results demonstrate that bone metabolism differed between primiparous and multiparous sows, although in both groups a similar fluctuation throughout the reproductive cycle was observed.  相似文献   

4.
Forages can contribute to the nutrient supply for sows but the extent to which they can replace concentrate feeding is not well known. The objective of this study was to assess the effect of level of feed restriction and type of forage on the performance and activity of gestating sows under outdoor conditions. A total of 45 sows were distributed among three treatments, with five replicates of three sows/treatment, from week 5 of gestation until farrowing. Treatments differed in the daily level of concentrate feed provided and the type of forage offered during gestation: 90% of metabolisable energy (ME) requirements provided by concentrates and free access to a pasture (P90); 40% of ME requirements provided by concentrates and free access to a pasture (P40); and 40% of ME requirements provided by concentrates and free access to a bare paddock with hay ad libitum (H40). From farrowing to weaning (5 weeks), concentrate feed was offered to all sows ad libitum. Body weight and backfat thickness (BF) were measured seven times during gestation and lactation. Postures of sows and time spent in the pasture were assessed at the beginning, middle and end of gestation. Forage intake was estimated with a method based on sow performance using the InraPorc® model. At farrowing, P90 sows were heavier and had greater BF than P40 and H40 sows. At weaning, P90 sows maintained a higher BW and tended to have greater BF than H40 sows, but no longer differed from P40 sows. Treatments did not influence litter size, but piglets from P40 sows were lighter at birth than those from P90 sows (1.44 vs. 1.69 kg, P = 0.004). In late gestation, P90 sows spent less time standing over 24 h and less time in the pasture during daytime than P40 sows, suggesting less foraging behaviour. Sows fed concentrates to meet 40% of ME requirements during gestation did not consume enough forage to maintain the same body condition as sows fed at 90% of ME requirements. Despite their inability to fully compensate for concentrate restriction during gestation by consuming more forage, P40 sows reached a similar body condition to P90 sows at weaning. In conclusion, forage intake for outdoor gestating sows can compensate a concentrate feed reduction of 10% and possibly more, but not as much as 60%.  相似文献   

5.
Animal performances were monitored in 30 Friesean dry cows (18 multiparous, MP-cows and 12 primiparous, PP-cows) starting six weeks before calving to eight weeks after calving. The cows were kept indoors and fed individually with a prepartum diet containing either low, moderate or high energy (0.75, 1.00 or 1.25 of the calculated ME requirement) and supplemented with low (0.3 kg day−1) or high (1.5 kg day−1) rapeseed meal (RSM). The diets were consisted of 1.5 kg hay, 20–25 kg wilted grass silage and grain (barley and oat, 1 : 1 DM basis) with RSM. The average ME intake during six weeks of prepartum was 75, 97 and 123 MJ day−1 on three different energy levels. After calving the cows were fed grass silage ad lib, 6.5 kg (primiparous) or 8.5 kg (multiparous) grain and 1.5 kg RSM. Liver biopsy and blood samples were taken to determine differences in metabolites due to diet and parity. Reduction of prepartum energy allowance to 0.75 of the moderate level did not affect the calf's birth weight and colostrum composition. Cows fed prepartum low energy–high rapeseed meal diet (LEHR) showed a faster increase in feed intake and milk production after parturition. Continuous low feed intake and milk production were observed in cows fed a prepartum high energy–low rapeseed meal diet (HELR). Milk yield was constantly lower for cows fed prepartum high energy diet, the difference being significant (p<0.01 and p<0.05) at six and seven weeks of lactation. Overall milk yield also showed a linear decrease with energy feeding level and an increase (p<0.10) with RSM feeding levels. Prepartum high energy feeding increased (p<0.01) milk protein content. Neither energy nor RSM feeding level affected the liver fat infiltration of the experimental cows. Cow parity however showed a significant influence on liver fat content, β-hydroxybutyrate (BHBA) and plasma glucose. A week before calving, the plasma concentration of essential amino acids (EAA) was lower for cows fed prepartum low energy diet. During the first four weeks of lactation, the concentrations of plasma non-esterified fatty acids (NEFA) and insulin were similar for all the treatment group.  相似文献   

6.
Hyper-prolific sows nurse more piglets than less productive sows, putting a high demand on the nutrient supply for milk production. In addition, the high production level can increase mobilization from body tissues. The effect of increased dietary protein (104, 113, 121, 129, 139 and 150 g standardized ileal digestible (SID) CP/kg) on sow body composition, milk production and plasma metabolite concentrations was investigated from litter standardization (day 2) until weaning (day 24). Sow body composition was determined using the deuterium oxide dilution technique on days 3 and 24 postpartum. Blood samples were collected weekly, and milk samples were obtained on days 3, 10 and 17 of lactation. Litter average daily gain (ADG) peaked at 135 g SID CP/kg (P < 0.001). Sow BW and back fat loss reached a breakpoint at 143 and 127 g SID CP/kg (P < 0.001). Milk fat increased linearly with increasing dietary SID CP (P < 0.05), and milk lactose decreased until a breakpoint at 124 g SID CP/kg and 5.3% (P < 0.001) on day 17. The concentration of milk protein on day 17 increased until a breakpoint at 136 g SID CP/kg (5.0%; P < 0.001). The loss of body protein from day 3 until weaning decreased with increased dietary SID CP until it reached a breakpoint at 128 g SID CP/kg (P < 0.001). The body ash loss declined linearly with increasing dietary SID CP (P < 0.01), and the change in body fat was unaffected by dietary treatment (P=0.41). In early lactation (day 3 + day 10), plasma urea N (PUN) increased linearly after the breakpoint at 139 g SID CP/kg at a concentration of 3.8 mmol/l, and in late lactation (day 17 + day 24), PUN increased linearly after a breakpoint at 133 g SID CP/kg (P < 0.001) at a concentration of 4.5 mmol/l. In conclusion, the SID CP requirement for sows was estimated to 135 g/kg based on litter ADG, and this was supported by the breakpoints of other response variables within the interval 124 to 143 g/kg.  相似文献   

7.
In sows, n-3 fatty acids increase litter sizes, however, effects on gilt reproductive development have not been adequately studied. Moreover, not determined are effects of feeding n-3 fatty acids to sows on reproduction in offspring. The objective here was to determine effects of 4% dietary menhaden oil on growth and puberty in gilts farrowed by sows fed menhaden oil. Sows (n = 44) were assigned to: (1) control gestation and lactation diets, or (2) diets including menhaden oil. For primiparous sows only, total litter size and born alive were greater (P < 0.05) in females fed menhaden oil. Conversely, pigs from primiparous controls were heavier (P < 0.05) than pigs from primiparous sows fed menhaden oil (parity by diet interactions, P < 0.01). Diet did not affect (P > 0.20) other sow and litter characteristics. At weaning, 84 gilts from control- or menhaden oil sows were placed three gilts per pen and provided control diets or diets containing menhaden oil. Nursery and grow-finish feed intake and feed efficiency were similar (P > 0.21) for gilts from the different sows and weight gain was similar (P > 0.24) for gilts fed control or menhaden diets. Gilts fed menhaden oil tended to eat less in the nursery (1.18±0.08 kg v. 0.98±0.08 kg; P = 0.09) and overall (1.83±0.04 kg v. 1.72±0.04 kg; P = 0.06). Thus, overall feed to gain was greater (2.52±0.03 v. 2.33±0.03; P < 0.01) and nursery (2.12±0.04 v. 1.80±0.04; P = 0.10) and grow-finish (3.07±0.19 v. 2.58±0.19; P = 0.08) feed to gain tended to be greater, for control gilts. Age at puberty was greater (P = 0.02) for gilts from menhaden oil-fed sows (205.1±3.2 days) compared to gilts from controls (193.9±3.2 days) and tended to be greater (P = 0.09), for controls (203.5±3.2 days) compared to gilts fed menhaden oil (195.5±3.2 days). A tendency existed (P = 0.09) for greater follicular fluid in gilts fed menhaden oil, however, ovulation rate and ovarian, luteal and uterine weights were not affected by sow diet, gilt diet or the interaction (P > 0.23). Feeding gilts menhaden oil enhanced feed efficiency and hastened puberty onset. Gilts from sows consuming menhaden oil exhibited delayed puberty and retaining females from sows fed this feedstuff may be ill advised.  相似文献   

8.
Defining a maternal plane of nutrition during gestation is pivotal for improving sow productivity and the cost-effectiveness of feeding. The benefits of increasing the amount of feed during late gestation have been controversial. The objective of this study was to investigate the effects of different planes of nutrition during gestation on reproductive performance of hyperprolific sows and pre-weaning litter performance. One hundred and thirty-five gestating sows were randomly assigned to one of three planes of nutrition throughout parities three and four (P4), as follows: Req – plane designed to meet requirements of prolific sows (2.3 kg per day from day 1 to 21; 1.8 kg per day from day 22 to 75; 2.3 kg per day from day 76 to farrowing); Bump – plane designed as the Req, with increased feed intake during late gestation (3.0 kg per day from day 91 to farrowing); and Maintenance – plane designed to closely meet maintenance requirements of sows (1.8 kg per day from day 1 to farrowing). All treatments were fed the same gestation diet (2.50 MCal NE/kg; 0.67% SID Lysine; 15.17% CP). Sow biometrical parameters at farrowing and at weaning, and litter characteristics were recorded. Also, blood samples were collected for pre- and post-prandial serum glucose and plasma insulin, as well as triglycerides, calcium, and phosphorus analyses. Culling, stratified by cause, and retention rates were recorded in all treatments for each parity. Over two parities, Bump sows had higher weight gain and, at P4, had a higher number of piglets born alive (P < 0.05). Bump sows lost more weight between the end of gestation and weaning over two parities (P < 0.05). Maintenance sows showed reduced body condition score with a higher percentage of piglets removed throughout lactation (due to inappetence and inability to reach the udder) at P4 (P = 0.03). Pre- and post-prandial glucose levels were higher in Bump sows, as well as post-prandial insulin and phosphorus levels at P4 (P < 0.05). Bump sows also showed increased plasma triglycerides compared to the other treatments (P = 0.03). Retention rate was reduced in Maintenance compared to Bump and Req sows at parity 5 (P = 0.02). Taken together, our results indicate that higher feed intake allowance during late gestation may improve the sow’s nutritional status triggering positive results on litter size of hyperprolific sows (e.g., more than 17 total born). However, body condition score must be carefully evaluated to prevent excessive weight gain during successive parities.  相似文献   

9.
The effect of three feeding regimens on progesterone level was tested during early pregnancy in multiparous sows. A total of eighteen sows in their eighth parity (8.1 +/- 2.8, mean +/- S.D.) were used. During lactation the sows were fed to appetite and after weaning they received 4 kg (52 MJ) a commercial feed per day. Following ovulation, sows were allocated to one of three treatment groups and fed 2 kg/day (low feeding, LLL) or 4 kg/day (high feeding, HHH) throughout the trial or 2 kg/day for 11 days, 4 kg/day for 10 days, and 2 kg/day for the remaining days of the study (modified feeding, LHL). Blood for progesterone and cortisol analyses was collected daily throughout the study, and for luteinizing hormone (LH) assay for 12 h at 15 min intervals on days 14 and 21 of pregnancy. An adrenocorticotropic hormone (ACTH) challenge test was performed on all sows day 28 of pregnancy. Dietary treatment did not significantly affect hormonal parameters. However, progesterone concentration tended to be lower (P = 0.08) in the HHH group than in the LLL group. In the LHL group venous progesterone concentration seemed to fluctuate. No effects of feeding were observed on progesterone concentration in allantoic fluid on day 35 of pregnancy. Venous cortisol level was significantly higher (P < 0.05) during proestrus and oestrus in all groups and there was no significant difference between groups in response to ACTH challenge. The mean amplitude of LH pulses decreased significantly (P < 0.01) from days 14 to 21 of pregnancy in all groups. In addition, an interaction was found between feeding level and baseline LH concentration and also between feeding level and mean LH concentration. Embryonic recovery was highest in the LLL (69%), lowest in the HHH (45%) and moderate in the LHL (55%) group. Neither high feeding nor modified feeding provided any benefits for reproductive performance in multiparous sows. A low feeding regimen thus appears optimal for multiparous sows in early pregnancy at least with the management regime described.  相似文献   

10.
Feed form is well recognized to improve broiler performance, specially by increasing feed intake (FI). However, when different diet energy levels are used, the results differ in the literature. Therefore, this experiment was conducted to evaluate the influence of feed form and dietary metabolizable energy (ME) levels on broiler performance, carcass yield and on the digestibility of DM, CP, starch and gross energy. In total, 1152 male Cobb 500 broilers were evaluated between 35 and 47 days. The birds were distributed according to a completely randomized design in a 2 × 4 factorial arrangement, consisting of two feed forms (mash or pellet) and four ME levels (12.73, 13.06, 13.40 or 13.73 MJ/kg), totaling eight treatments with eight replicates of 18 birds. Broilers fed the lowest ME level presented the lowest weight gain (WG) and worst feed per unit gain (P < 0.01). Metabolizable energy intake increased (P < 0.01) with progressive increments of ME, which, however, did not affect caloric conversion (CC, P > 0.05). Pelleted diets promoted higher FI, WG, ME intake (P < 0.01) and better feed per unit gain and CC (P < 0.05) compared with mash. In mash diets, increasing dietary ME levels promoted a linear increase in WG (P < 0.01) and reduced feed per unit gain (P ≤ 0.05), but did not affect FI (P > 0.05). In pelleted diets, on the other hand, increasing ME levels linearly reduced FI (P < 0.05) and feed per unit gain (P < 0.01). Broilers fed pelleted diets presented higher abdominal fat deposition than those fed mash (P < 0.05). Increasing ME levels reduced the coefficients of ileal apparent digestibility of DM (P < 0.01) and total starch (P < 0.05) but did not affect the digestibility of other evaluated nutrients. The digestibility of all nutrients was lower when pelleted diets were fed compared with mash. Increasing inert material inclusion in the diets at the expense of soybean oil to reduce dietary ME levels promoted higher pellet durability index values (P < 0.05) and the percentage of fines (P < 0.01). Overall, the results suggest that pelleted diets promote better broiler performance because they increase FI, since the digestibility of dietary fractions is reduced. Chickens consuming low-energy pelleted diets may increase FI to compensate for energy deficit. In contrast, broilers fed mash diets may have reached their maximum intake capacity and did not regulate FI by changing feed energy density. When feeding pelleted diets, dietary energy reduction should be considered to reduce feed costs and to improve the carcass quality of broilers.  相似文献   

11.
The metabolisable energy (ME) content of feeds is a better estimate of their ‘true’ energy value than their digestible energy (DE) content, because ME takes account of the gross energy of methane (GEgas) and the gross energy of urine (GEurine) losses. The accuracy and precision of the Gesellschaft für Ernährungsphysiologie (GfE) and Institut National de la Recherche Agronomique (INRA) systems for predicting the DE and ME contents of diets for horses were compared using the results of a study comprising 15 mixed diets. The INRA system was more accurate than the GfE system for predicting DE, GEurine and ME: the biases between the predicted and the measured values were − 0.26 vs –0.46 MJ/kg DM for DE (P < 0.05), − 0.03 vs 0.13 MJ/kg DM for GEurine (P < 0.05) and − 0.09 vs –0.62 MJ/kg DM for ME (P < 0.05). The biases for GEgas were not significantly different (P > 0.05) between systems. In addition, a study was carried out with 24 forages to compare the ME value of permanent meadow and lucerne hays predicted with the GfE and the INRA systems. The INRA system gave higher prediction values of DE than the GfE system (P < 0.001) and lower estimates of GEgas (0.34 vs 0.63 MJ/kg DM for permanent meadow hays and 0.38 vs 0.63 MJ/kg DM for lucerne hays) (P < 0.001) and GEurine (0.85 vs 0.93 MJ/kg DM for grassland hays and 1.08 vs 1.37 MJ/kg DM for lucerne hays) (P < 0.001). The INRA system thus gave higher estimates of ME (7.57 vs 6.77 MJ/kg DM for permanent meadow hays and 8.80 vs 6.46 MJ/kg DM for lucerne hays, P < 0.001) in agreement with the results obtained with mixed diets. The ME values of permanent meadow hays and legume hays should therefore be predicted separately using specific equations as previously established for the DE value.  相似文献   

12.
Limited information is available on lysine requirement estimates of modern, high-producing gestating sows Therefore, the objective of this study was to evaluate the effects of increasing standardized ileal digestible (SID) lysine during gestation on piglet birthweight and reproductive performance of gilts and sows. A total of 936 females (498 gilts, 438 sows; Camborough®, PIC, Hendersonville, TN) were group-housed (approximately 275 females per pen) and individually fed with electronic sow feeders. Females were moved from the breeding stall to pens on d 4 of gestation and allotted to one of four dietary treatments on d 5. Dietary treatments included increasing SID lysine intake (11.0, 13.5, 16.0, and 18.5 g/d). Gilts (parity 1) and sows (parity 2+) received 2.1 and 2.3 kg (22.2 and 24.3 MJ net energy per day) of feed throughout the entire gestation period, respectively. Dietary treatments were achieved by different blends of low (0.48% SID lysine) and high (0.88% SID lysine) lysine diets, prepared by changing the amount of corn and soybean meal in these two diets. Female weight and backfat were recorded on d 4 and 111 of gestation. Individual piglet weight was obtained within 12 h of birth on litters from 895 females. Final weight, and calculated maternal BW, body lipid, and body lean at d 111 of gestation increased (linear, P < 0.01) for gilts and sows as SID lysine increased. There was no evidence for differences in final backfat depth. Average total born for gilts and sows was 15.3 and 16.0 pigs with no evidence for differences among treatments. The percentage of pigs born alive increased (P = 0.01) with increasing SID lysine intake for sows, but not in gilts as a result of a treatment by parity group interaction (P = 0.04) for percentage of stillborn pigs. Increasing SID lysine intake during gestation did not affect the percentage of mummified fetuses, total born, or birthweight of piglets born alive in this study. In addition, increasing SID lysine intake during gestation did not affect subsequent reproductive performance. In conclusion, increasing dietary SID lysine intake in gestation increased female BW, without changing backfat depth. The minimal effects on female reproductive performance and piglet birthweight suggest that 11 g/day of SID lysine intake appears to be adequate for gestating gilts and sows; however, providing sows with 18.5 g/d SID lysine reduced (P = 0.01) stillbirth rate by 2.3 percentage points.  相似文献   

13.
This study was conducted to investigate the effects of konjac flour (KF) inclusion in gestation diets of sows on nutrients digestibility, lactation feed intake, reproductive performance of sows and preweaning performance of piglets. Two isoenergetic and isonitrogenous gestation diets were formulated: a control diet and a 2.1% KF-supplemented diet (KF diet). Both diets had the same NDF and insoluble fiber (ISF) levels, but the KF diet had higher soluble fiber (SF) level. The day after breeding, 96 multiparous sows were assigned to the two dietary treatments. Restrict-fed during gestation, in contrast, all sows were offered the same lactation diet ad libitum. Response criteria included sow BW, backfat depth, lactation feed intake, weaning-to-estrus interval, litter size and piglet’s weight at parturition and day 21 of lactation. On day 60 of gestation, 20 sows were used to measure nutrient digestibility. Results showed that the digestibility of dry matter, gross energy, crude fiber and ADF were not affected by the dietary treatments. The inclusion of KF in gestation diets increased NDF digestibility (P<0.05) and tended to increase the digestibility of CP (P=0.05) compared with the control diet group. In addition, dietary treatment during gestation did not affect litter size, BW and backfat gain during gestation, lactation weight, backfat loss or weaning-to-estrus interval of sows. However, sows fed the KF diet consumed more (P<0.05) lactation diet per day than sows in the control group. Accordingly, sows fed the KF diet showed greater average piglet weights on day 21 of lactation (P=0.09), and the litter weight of sows fed the KF diet on day 21 of lactation increased by 3.95 kg compared with sows fed the control diet (not significant). In conclusion, the inclusion of KF in gestation diets increased lactation feed intake of sows and tended to improve litter performance.  相似文献   

14.
A total of 200 (Large White × Landrace) sows were used in a 39-day study to evaluate the effects of feeding a non-starch polysaccharide (NSP)-hydrolysing enzyme multicomplex (Rovabio® Excel) in conjunction with a high- or reduced nutrient-density diet during lactation on sow body condition, feed intake and progeny performance. Eight sows were selected each week for 25 weeks, blocked by parity and BW into groups of four, and within the block randomly assigned to one of the four treatments (n = 50/treatment). Treatments were: (1) LND: low energy (13.14 MJ of DE/kg), low CP (15%) diet; (2) LND + RE: LND with 50 mg/kg NSP-hydrolysing enzyme; (3) HND: high energy (14.5 MJ of DE/kg), high CP (16.5%) diet; and (4) HND + RE: HND with 50 mg/kg NSP-hydrolysing enzyme. Sows were fed treatment diets from day 109 of gestation until the day of subsequent service. Between weaning and re-service, Rovabio® Excel addition to LND diets resulted in an increase in energy intake; however, a reduction was observed when supplemented to the HND diet (P < 0.05). The inclusion of Rovabio® Excel increased feed and energy intake during week 3 (days 15 to 21) of lactation (P < 0.05). Sows fed diets supplemented with Rovabio® Excel had greater back-fat depth at weaning and service (P < 0.05); however, the magnitude of change in back-fat depth during lactation and from farrowing to service was not different between treatments. Feeding the HND diet increased energy intake before farrowing, throughout lactation and during the weaning to service interval (P < 0.01); however, overall, average daily feed intake tended to be reduced (P < 0.10). At service, sows fed the HND diet were heavier than sows fed the LND diet (P < 0.05); however, the magnitude of change in BW between treatments was not different. Feeding the HND diet to sows resulted in a tendency for heavier piglets at birth (P = 0.10) that tended to grow at a faster rate and be heavier at weaning than piglets from sows fed the LND diet (P = 0.06). These results indicate that NSP-degrading enzymes offer minimal benefit to sows and their progeny when fed before and during lactation; however, increasing energy intake of sows during lactation may beneficially affect progeny.  相似文献   

15.
Over the last decades, genetic selection has increased sows’ litter size. Consequently, there is a high proportion of piglets born with low weight which are vulnerable. Their viability may potentially be enhanced through early nutrition. The aim of the current study was to evaluate whether including a fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the diets of the sow and piglets was able to increase concentrations of anti-inflammatory molecules in their blood. Thirty-six sows, in four consecutive batches, were randomly assigned to either a control diet with animal fat (15 g/kg in gestation and 30 g/kg in lactation) or an n-3 long-chain fatty acid (n-3 LCFA) diet from insemination until the end of lactation. From day 11 of lactation, piglets were also offered a diet containing 30 g/kg of animal fat or n-3 LCFA. To prepare the n-3 LCFA diet, 15 g/kg or 30 g/kg of animal fat in the control diet were replaced by an equivalent amount of solid fish oil for sows and piglets, respectively. All the sows were sampled for serum and plasma at day 108 of gestation and at weaning. Additionally, only for the first batch of sows, blood samples were also obtained at weaning from the two lightest (>800 g) and the two heaviest birth weight piglets in each litter. Serum fatty acids (FAs) were quantified by gas chromatography, plasma oxylipins by ultra-HPLC-MS and plasma immunoglobulins (Ig) and cytokines by ELISA. The n-3 LCFA diet increased the concentrations of n-3 FAs in gestating and lactating sows and in piglets (P < 0.001, P < 0.001 and P = 0.011, respectively), particularly EPA (P < 0.001, P < 0.001 and P < 0.001, respectively) and DHA (P < 0.001, P < 0.001 and P < 0.001, respectively), and also their oxygenated derivatives. In addition, fish oil increased plasma IgM in gestating and lactating sows (P = 0.014 and P = 0.008, respectively), interleukin (IL) 6 in sows at weaning (P = 0.012), and IL1β in piglets (P = 0.018). Birth BW of piglets, regardless of diet, slightly influenced some of the n-6-derived oxylipins. In conclusion, fish oil addition in diets increased the blood concentrations of n-3 FAs and their oxygenated derivatives, some of which have anti-inflammatory activity, in gestating and lactating sows and piglets, IgM in gestating and lactating sows, IL6 in lactating sows and IL1β in piglets.  相似文献   

16.
Selection for increased litter size have generated hyper-prolific sows that nurses large litters, however limited knowledge is available regarding the connection between milk production, feed intake and body mobilization of these modern sows. The aim of the current study was to determine what characterized sows with high milk production and nursing large litters, differences between sows of different parities and effects of lactational performance on next reproductive cycle. In total 565 sows (parity 1 to 4) were studied from 7 days before farrowing until weaning. On day 2 postpartum litters were standardized to 14 piglets. Weight and back fat thickness of sows were measured at day 7 prepartum, day 2 postpartum and at weaning. Litters were weighed at day 2 and at weaning. Pearson correlation coefficients between variables were calculated and regression models were developed. The average daily feed intake (ADFI) of the sows was 6.1±1.1 kg/day, average daily gain (ADG) of the litter was 2.92±0.53 kg/day and sows weaned 13.0±1.1 piglets. First parity sows generally had a lower ADFI and milk production and a decrease in total born piglets in next litter compared with parity 2 to 4 sows, which could be explained by a relatively higher proportion of their body reserves being mobilized compared with multiparous sows. The ADG of the litter was positively related by ADFI of the sows, litter size and BW loss and increasing the ADFI with 1 kg/day throughout lactation likely increased the ADG of the litter with 220 to 440 g/day in parity 1 to 4, respectively. Increasing the ADFI by 1 kg/day reduced the BW loss with 6.6 to 13.9 kg of parity 1 to 4 sows, respectively, during lactation, whereas increasing the average milk yield with 1 kg/day raised the BW loss with 4.3 to 21.0 kg of the four parities during lactation. The number of total born piglets in the next litter was positively related to the number of piglets born in the previous litter. In conclusion, both a high feed intake and a high mobilization of body reserves was a prerequisite for a high milk production. The sows might be very close to the physical limit of what they can ingest and future research should therefore, focus on optimizing the dietary energy and nutrient concentrations of diets for lactating hyper-prolific sows and herein distinguish between primiparous and multiparous sows.  相似文献   

17.
The nutritional composition of diets and the provision of exogenous enzymes play important roles in animal performance. Here, we evaluated the individual and combined impact of nutrients (metabolizable energy (ME), digestible lysine (dLys), available phosphorus and calcium (avP–Ca)) and exogenous multicarbohydrase and phytase complex (MCPC) enyzmes on the growth performance and feed efficiency of broiler chickens from 10 to 42 days (d) of age. Experimental diets were formulated in a Box-Behnken design to contain various levels of ME (11.89, 12.21, 12.54 or 13.06 MJ/kg), dLys (0.91%, 0.93%, 0.96% or 1.00%) and avP/Ca (0.12/0.47%, 0.21/0.58% or 0.33/0.68%). The effect of MCPC was expressed in terms of the extra nutrients released. The diets were formulated to have consistent substrate contents (i.e., arabinoxylan and phytate). Feed intake (FI), BW gain (BWG) and feed conversion ratio (FCR) were described via polynomial equations (R2 = 0.99, 0.98 and 0.81, respectively), with interconnections between variables (ME, dLys and avP–Ca). Available P–Ca was the most important factor affecting FI (quadratically), and BWG and FCR (linearly). Reducing the avP content from 0.33% to 0.12% in diets lacking MCPC resulted in 25% and 33% decreases in FI and BWG, respectively, and a 12% increase in FCR. The ME and dLys contents also linearly affected these performance parameters to a lesser degree; FI decreased by 400 g when the ME was reduced by 1.17 MJ/kg, and by 300 g following a 0.09% reduction of dLys, while the same reductions in ME and dLys decreased BWG by 120 g and 150 g, respectively. The inclusion of MCPC alleviated the reduction of FI, BWG and FCR by decreasing the avP–Ca. Thus, ME and dLys were the most important factors affecting BWG and FCR in broilers fed diets containing MCPC. When MCPC was added, ME negatively affected FI (r = −0.89, P < 0.001), whereas the dLys content was correlated with BWG (r = 0.74, P < 0.001). Both ME and dLys affected FCR (r = −0.83 and −0.85, respectively). Supplementing MCPC allowed the reduction of ME, dLys and avP–Ca in the diet without affecting performance. Indeed, MCPC’s effect promoted with the release of the following nutrients: 0.56 MJ ME/kg, 0.06% dLys, and 0.15% and 0.13% avP and Ca, respectively. The results indicate nutrient effect and interaction on performance and feed additive potential for nutrient release.  相似文献   

18.
A total of 50 mixed parity sows of a high-prolificacy genetic line were used to evaluate the impact of feed restriction during lactation on their production and reproductive performance and their performance in the subsequent lactation. From day 7 of lactation, sows were distributed according to a completely randomized experimental design into two treatments. In treatment 1, sows were fed 8.0 kg feed/day (control) and in treatment 2, sows were fed 4.0 kg/day. The same suckling pressure was maintained until weaning on day 28 of lactation. Average minimum and maximum temperatures measured during the experimental period were 32.1°C and 16.5°C, respectively. Control sows presented significantly higher feed intake (P<0.001) compared with the restricted sows (6.43 v. 4.14 kg/day, respectively). Treatments influenced BW and backfat thickness losses (P<0.001). Control sows lost less BW than the restricted-fed sows (7.8 v. 28.2 kg). Restricted-fed sows lost more backfat thickness than those in the control group (3.97 v. 2.07 mm; P<0.01). Restricted-fed sows tended (P<0.10) to be lighter at weaning compared with the control sows (211 v. 227 kg). The composition of BW loss was influenced by the treatments (P<0.001), as the restricted-fed sows lost more body protein, lipids and energy compared with the control sows (3.90 v. 0.98 kg, 11.78 v. 4.83 kg and 584 v. 224 MJ, respectively). Litter weight gain was greater (P<0.05) in control sows than in restricted-fed sows (2.70 v. 2.43 kg/day). Daily milk production was 19% higher (P<0.01) in the control sows compared with the restricted-fed sows (8.33 v. 6.99 kg/day). However, restricted-fed sows presented a higher (P<0.05) lactation efficiency than the sows of the control group (82.30% v. 72.93%). No differences were detected (P>0.10) in weaning-to-estrus interval and averaged 4.3 days. No effect of the treatment (P>0.10) was observed on any of the studied performance traits in the subsequent lactation, except for litter size at birth that tended (15.2 v. 14.1; P<0.10) to be lower for the restricted sows. In conclusion, the present study demonstrated that feed restriction during lactation leads to intense catabolism of the body tissues of sows, negatively affecting their milk production, and the litter weight gain and possibly number of piglets born in the next litter. On the other hand, restricted-fed sows are more efficient, producing more milk per amount of feed intake.  相似文献   

19.
Piglet birth weight and litter uniformity are important for piglet survival. Insulin-stimulating sow diets before mating may improve subsequent piglet birth weights and litter uniformity, but the physiological mechanisms involved are not clear. This study evaluated effects of different levels of insulin-stimulating feed components (dextrose plus starch; fed twice daily) during the weaning-to-estrus interval (WEI) on plasma insulin and IGF-1 concentrations, and on follicle development and subsequent luteal, fetal and placental development and uniformity at days 42 to 43 of pregnancy. During WEI, multiparous sows were isocalorically fed diets supplemented with 375 g/day dextrose plus 375 g/day corn starch (INS-H), with 172 g/day dextrose plus 172 g/day corn starch and 144 g/day animal fat (INS-L), or with 263 g/day animal fat (CON). Jugular vein catheters were inserted through the ear vein at 1.5 days before weaning to asses plasma insulin and IGF-1 concentrations. After estrus, all sows received a standard gestation diet until slaughter at days 42 to 43 of pregnancy. The dextrose plus starch-diets enhanced the postprandial insulin response in a dose-dependent manner (e.g. at day 2 insulin area under the curve was 4516 μU/444 min for CON, 8197 μU/444 min for INS-L and 10 894 μU/444 min for INS-H; s.e.m. = 694; P < 0.001), but did not affect plasma IGF-1 concentrations during the first 3 days of WEI. Follicle development and subsequent luteal, fetal and placental development and uniformity were not affected by the dietary treatments, nor related to plasma insulin and IGF-1 concentrations during WEI. Pre-weaning plasma insulin and IGF-1 concentrations were negatively related to sow body condition loss during lactation, but were not related to subsequent reproduction characteristics. This study shows that dietary dextrose plus starch are effective in stimulating insulin secretion (both postprandial peak and long-term concentration), but not IGF-1 secretion during the first 3 days after weaning in multiparous sows. The extreme insulin-stimulating diets during WEI did, however, not improve follicle development, or subsequent development and uniformity of fetuses and placentas in these high-prolific sows (27.0 ± 0.6 ovulations; 18.6 ± 0.6 vital fetuses).  相似文献   

20.
The objective was to define the Val requirement for weaned piglets in the context of reducing the dietary protein content. A dose–response experiment was conducted to estimate the standardized ileal digestible (SID) Val to Lys ratio required to support the optimum growth of post-weaned piglets. In this study, 96 pigs weighing 8 kg were allotted to one of six dietary treatments (16 pigs for each dietary treatment) and were housed individually. Diets were formulated to provide 0.58, 0.62, 0.66, 0.70, 0.74 and 0.78 SID Val : Lys by adding graded levels of crystallinel-Val to the 0.58 SID Val : Lys diet. Lysine was sub-limiting and supplied 90% of the recommendation (10.95 g SID Lys/kg equal to 11.8 g/kg total Lys). Average daily feed intake (ADFI), average daily gain (ADG) and gain to feed ratio (G : F) were determined during a 14-day period ofad libitum feeding. Blood and urine samples were taken at the end of each week (day 7 and 14 of the experiment) 3 h after feeding the experimental diets. The maximum ADFI and ADG were obtained in pigs fed the 0.78 SID Val : Lys diet; it was not different from the results of pigs fed 0.70 SID Val : Lys diet. The highest G : F was obtained in pigs fed 0.70 SID Val : Lys. The plasma concentration of Val increased linearly (P<0.001) as the dietary SID Val : Lys increased. The increasing dietary Val : Lys also resulted in a linear increase in Cys (P<0.001) and a quadratic increase in Arg (P=0.003), Lys (P=0.05) and Phe (P=0.009). The plasma Gly showed a quadratic decrease (P=0.05) as the dietary Val : Lys increased. Neither plasma nor urinary urea to creatinine ratio was affected by treatment. The minimum SID Val : Lys required to maximize ADFI, ADG and G : F was estimated at 0.67 SID Val : Lys by a broken-line model, and at 0.71 SID Val : Lys by a curvilinear plateau model. The Val deficiency caused a reduction in ADFI, and Val supplementation above the requirement did not impair animal performance. In conclusion, 0.70 SID Val : Lys is suggested as the Val requirement for 8 to 14 kg individually housed pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号