首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An accurate value for metabolizable energy (ME) requirement for maintenance (MEm) is essential to enable sheep husbandry practice to reach its potential. The objectives of the study were to use calorimetry chamber data of dry ewes (Hu × thin-tail Han F1 crossbred) to develop updated MEm, examine effects of substituting concentrate feed with lucerne hay on energy partitioning, and explore the relationships between energy utilization and fasting heat production (FHP). Data were collected from three experiments. In Exps. 1, 2a and 2b, lucerne hay was used to replace concentrates in three levels (0:40%, 15:25% and 30:10%), with diets containing 60% maize stover (Exp. 1), fresh rye forage (Exp. 2a) or dry rye forage (Exp. 2b). Within each experiment, diets were isoenergetic (digestible energy, DE) and isonitrogenous. Exp. 3 aimed at evaluating effects of three BW levels on nutrient utilization of dry ewes offered diets containing 60% maize stover, 15% lucerne hay and 25% concentrates. Energy metabolism data were measured using the respiration calorimeter chamber technique in all three experiments, followed by the measurement of FHP in Exps. 1, 2b and 3. The MEm derived from the linear regression between energy balance (EB) and ME intake was 0.440 MJ/kg BW0.75. The average FHP was 0.326 MJ/kg BW0.75. The fasting metabolism, net energy requirement for maintenance (NEm) and MEm were estimated to be 0.336, 0.359 and 0.511 MJ/kg BW0.75, respectively, through adjustment of FHP using fasting urinary energy output, activity allowance and efficiency of ME use for maintenance. The FHP was negatively correlated to EB/metabolic BW, ME/gross energy (GE), ME/DE, EB/GE intake and EB/ME intake, while positively correlated to HP/GE intake, HP/ME intake and CH4-E/GE intake. Compared to zero lucerne hay diet, the 15% lucerne hay intake decreased HP (MJ/d), and had no negative effects on EB (MJ/d) or energy utilization efficiencies. The results indicate that nutrient requirement standards currently used across the world are likely to underestimate MEm for dry ewes, and the selection of low FHP ewes for breeding has the potential to improve sheep production efficiency.  相似文献   

2.
Nutrient requirements in cattle are dependent on physiological stage, breed and environmental conditions. In Holstein × Gyr crossbred dairy heifers, the lack of data remains a limiting factor for estimating energy and protein requirements. Thus, we aimed to estimate the energy and protein requirements of Holstein × Gyr crossbred heifers raised under tropical conditions. Twenty-two crossbred (½ Holstein × ½ Gyr) heifers with an average initial BW of 102.2 ± 3.4 kg and 3 to 4 months of age were used. To estimate requirements, the comparative slaughter technique was used: four animals were assigned to the reference group, slaughtered at the beginning of the experiment to estimate the initial empty BW (EBW) and composition of the animals that remained in the experiment. The remaining animals were randomized into three treatments based on targeted rates of BW gain: high (1.0 kg/day), low (0.5 kg/day) and close to maintenance (0.1 kg/day). At the end of the experiment, all animals were slaughtered to determine EBW, empty body gain (EBG) and body energy and protein contents. The linear regression parameters were estimated using PROC MIXED of SAS (version 9.4). Estimates of the parameters of non-linear regressions were adjusted through PROC NLIN of SAS using the Gauss–Newton method for parameter fit. The net requirements of energy for maintenance (NEm) and metabolizable energy for maintenance (MEm) were 0.303 and 0.469 MJ/EBW0.75 per day, respectively. The efficiency of use of MEm was 64.5%. The estimated equation to predict the net energy requirement for gain (NEg) was: NEg (MJ/day) = 0.299 × EBW0.75 × EBG0.601. The efficiency of use of ME for gain (kg) was 30.7%. The requirement of metabolizable protein for maintenance was 3.52 g/EBW0.75 per day. The equation to predict net protein requirement for gain (NPg) was: NPg (g/day) = 243.65 × EBW−0.091 × EBG. The efficiency of use of metabolizable protein for gain (k) was 50.8%. We observed noteworthy differences when comparing to ME and protein requirements of Holstein × Gyr crossbred heifers with other systems. In addition, we also observed differences in estimates for NEm, NEg, NPg, kg and k. Therefore, we propose that the equations generated in the present study should be used to estimate energy and protein requirements for Holstein × Gyr crossbred dairy heifers raised in tropical conditions in the post-weaning phase up to 185 kg of BW.  相似文献   

3.
It can be hypothesized that the body composition characteristics of different sheep breeds affect their nutritional requirements. However, no study has yet been carried out to determine the nutritional requirements for maintenance of Texel purebred lambs, despite their growing importance in sheep meat production globally. Our objective was therefore to determine the energy and protein requirements for maintenance of Texel lambs. Thirty-four Texel lambs were used, all intact males that were weaned at 50 days old, and confined in individual pens. Two experiments were conducted, as follows. In Experiment 1, a digestibility assay was performed to determine the dietary energy value, in a 3×3 double Latin square design, in which lambs were submitted to three levels of feed restriction (0%, 55% and 70% of ad libitum feed intake). In Experiment 2, the energy and protein requirements for maintenance of Texel lambs from 21 to 40 kg BW were determined using a randomized block design, in which lambs were also submitted to three levels of feed restriction (0%, 55% and 70% of ad libitum feed intake). The requirements for net energy for maintenance (NEm), metabolizable energy for maintenance (MEm), net protein for maintenance (NPm) and metabolizable protein for maintenance (MPm) were determined. The digestibility of dry matter, energy, protein and metabolizability were similar between food restriction levels, averaging 74.4%, 75.5%, 80.3% and 0.636, respectively. The NEm determined for growing Texel lambs was 263 kJ/kg of the metabolic fasting BW (FBW), the MEm was 417 kJ/kg0.75 FBW and the efficiency of use of MEm was 0.63. In addition, the NPm was 1.24 g/day per kg0.75 FBW and the MPm was 2.98 g/day per kg0.75 FBW. The energy requirements of Texel lambs are different from those reported in the literature, possibly due to differences between breeds, diets and environmental effects, whereas the protein requirements are different from literature mainly due to methodological differences; further studies are need to address these aspects that affects the nutritional requirements for raising sheep from different breeds in different environments.  相似文献   

4.
Livestock grazing plays a significant role in maintaining grasslands and promoting animal production globally. To understand the livestock performance in sown pasture (SP) vs native pasture (NP) is important to ensure more effective grassland-livestock interactions with minimal environmental impact. A 2 (treatment) * 2 (period) Latin Square design experiment was conducted with 10 growing Hu sheep ♂ × thin-tailed Han sheep ♀ rams grazed perennially SP vs NP in an inland arid region of China. The objectives were to evaluate the effects of grazing management on nutrient digestibility, nitrogen (N) and energy utilisation and methane (CH4) emission. The N intake, N retained and energy intake (gross energy (GE), and digestible and metabolisable energy) of sheep grazing in SP were significantly increased compared with those grazing in NP. There were significant linear relationships between DM intake (DMI) (g/kg BW or g/kg BW0.75) or CH4 (g/kg BW or g/kg BW0.75) emissions and forage nutrient and GE concentrations within each grassland type. The linear regression analysis indicated that forage CP or ether extract concentration was a good predictor for DMI (g/kg BW or g/kg BW0.75) (R2 = 0.756 or 0.752), and CH4 emission could be predicted using forage nutrient and GE concentrations (R2 = 0.381–0.503). These results suggest that DMI and CH4 emissions per unit metabolic BW were accurately predicted by multiple-factor combinations of forage nutrients, including ether extract and CP paired with GE. The present output could provide useful information for the development of sustainable sheep grazing systems in the inland arid regions of the world.  相似文献   

5.
An experiment was carried to evaluate the energy and protein requirements for the growth and maintenance of lambs of different sex classes. In all, 38 hair lambs (13.0±1.49 kg initial BW and 2 months old) were allocated in a factorial design with diet restriction levels (ad libitum, 30% and 60% feed restriction) and sex classes (castrated and non-castrated males). Four animals from each sex class were slaughtered at the beginning of the trial as a reference group to estimate the initial empty BW and body composition. The remaining lambs were weighed weekly to calculate BW gain (BWG), and when the animals fed ad libitum reached an average BW of 30 kg, all of the experimental animals were slaughtered. Before slaughter, fasted BW (FBW) was determined after 18 h without feed and water. Feed restriction induced reductions in body fat and energy concentration, whereas water restriction showed the opposite effect, and the protein concentration was not affected. The increase in BW promoted increases in body fat and energy content, and these increases were greater in castrated lambs, whereas the protein content was similar between classes tending to stabilize. The net energy required for gain (NEg) and the net protein required for gain (NPg) were not affected by sex class; therefore, an equation was generated for the combined results of both castrated and non-castrated lambs. The NEg varied from 1.13 to 2.01 MJ/day for lambs with BW of 15 and 30 kg and BWG of 200 g. The NPg varied from 24.57 to 16.33 g/day for lambs with BW of 15 and 30 kg and BWG of 200 g. The metabolizable energy efficiency for gain (kg) was 0.37, and the metabolizable protein efficiency for gain (kpg) was 0.28. The net energy required for maintenance (NEm) and the net requirement of protein for maintenance (NPm) did not differ between castrated and non-castrated lambs, with values of 0.241 MJ/kg FBW0.75 per day and 1.30 g/kg FBW0.75 per day, respectively. The metabolizable energy efficiency for maintenance (km) was 0.60, and the efficiency of metabolizable protein use for maintenance (kpm) was 0.57. Nutritional requirements for growth and maintenance did not differ between castrated and non-castrated lambs. This study emphasizes the importance of updating the tables of international committees and of including data obtained from studies with sheep breeds raised in tropical conditions, with the purpose of improving the productive efficiency of the animals  相似文献   

6.
Eight Boer (75%) × Spanish (BS) and eight Spanish (S) wether goats (155 ± 8 days of age and 19.2 ± 2.3 kg BW, initial) were used in a replicated crossover design experiment with a 2 × 2 factorial arrangement of treatments to determine the effects of genotype and diet quality on heat production with ad libitum, near maintenance and fasting levels of feed intake. Diets were 65% concentrate (CON 15% CP, DM basis) and coarsely ground alfalfa hay (FOR 23% CP). There were no significant interactions between genotype and diet. ME intake was similar between genotypes and greater (P < 0.05) for CON versus FOR both when intake was ad libitum (7.60 versus 5.43 MJ/day) and near maintenance (4.31 versus 4.09 MJ/day). DE concentration was greater (P < 0.05) for CON than for FOR with ad libitum (74.4 versus 55.5%) and restricted intake (77.0 versus 59.6%). Energy expenditure (EE), determined by respiration calorimetry, at all levels of intake was similar between genotypes. EE was greater (P < 0.05) for CON than for FOR at each of the three levels of intake, ad libitum (573 and 521 kJ/kg BW0.75 while fasting), near maintenance (426 and 400 kJ/kg BW0.75) and fasting (280 and 255 kJ/kg BW0.75). Efficiencies of ME utilization for maintenance (km) and gain (kg) and the ME requirement for maintenance (MEm) were similar between genotypes. km was similar between diets (0.705 and 0.690 for CON and FOR, respectively), although kg was greater (P < 0.05) for CON than for FOR (0.603 versus 0.387). MEm was numerically greater (P < 0.17) for CON than for FOR (407 versus 379 kJ/kg BW0.75), which may have involved higher ME intake with CON. In conclusion, under the conditions of this experiment energy requirements and efficiency of utilization were not different between growing Boer crossbred and Spanish goats regardless of diet quality.  相似文献   

7.
In the nutrition of browsing ruminants in captivity, adequate nutrient digestibility and energy content of diet is debated. Problems related to energy‐provision and low forage intake have been reported for the okapi and other browsers like the giraffe, particularly during winter. High‐fiber concentrates like unmolassed beet pulp have some potential to improve the nutritional management of these species. Using a total of six okapis in captivity, seven feeding trials were carried out at two facilities (A+B) on a structured but opportunistic base. Three trials (A1, A2, B1) were conducted when animals were fed their regular diet including grain based energy concentrates, fruits and vegetables, and alfalfa (Medicago sativa) hay. Two trials (A5, B2) examined the effect of unmolassed beet pulp, and two (A3,4) examined the effect of unmolassed beet pulp+fresh browse. Daily intake and feces production were quantified over 8–12 days. Samples were analyzed for dry matter, crude ash, neutral detergent fiber (NDF)/acid detergent fiber (ADF)/acid detergent lignin (ADL), crude protein, and gross energy. Metabolizable energy content of diets was estimated via a factor (0.83) from digestible energy. The proportion of beet pulp in diets was 13% (A3), 24% (A4), 20% (A5), and 21% (B2). Browse proportion was 11% (A3) and 32% (A4). Daily feed intake ranged between 1.5–1.7% of body weight (BW), digestibility of organic matter between 61–74%. Digestibility of fiber (NDF) was higher in beet pulp diets (A3=39%, A4=60%, A5=54%, B2=61%) than in the others (A1=48%, A2=33%, B1=48%). Supply of metabolizable energy (ME) ranged between 0.50–0.70 MJ ME/(kg BW0.75*day), meeting energy requirements of okapis of 0.50–0.53 MJ ME/(kg BW0.75*day) in general. Diets with beet pulp+browse were not found to be highest, but in the upper level of the range of forage proportions of this study. Palatable browse species were preferred over all other feedstuff offered. The use of unmolassed beet pulp as energy‐concentrate for browsing ruminants like the okapi can be recommended because diets high in this high‐fibre feedstuff resulted in adequate energy intakes. Zoo Biol 0:1–14, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

8.
This study investigated the effect of forage type (grass or red clover) and harvesting time (primary growth or regrowth) of silage on energy and N utilisation by sheep fed at maintenance level. Specifically, the assumption of constant loss of energy of digestible organic matter from energy losses in urine and CH4 applied in evaluation of silage metabolisable energy (ME) was investigated. Urinary excretion of high-energy phenolic compounds related to solubilisation of lignin was assumed to affect urinary energy (UE) losses from sheep fed highly digestible grass silage (GS). A total of 25 primary growth and regrowth silages of timothy (Phleum pratense) and meadow fescue (Festuca pratensis) grass mixtures and red clover (Trifolium pratense) samples collected in digestibility trials with sheep, including faecal and urine samples, were used for energy and N determinations. Urinary concentration of monophenolic compounds and CH4 emissions in vitro were also analysed. Daily faecal N output, CH4 yield (MJ/kg DM intake), proportion of CH4 energy in digestible energy (DE) and proportion of UE in DE were greater (P ≤ 0.03) in sheep fed red clover silage (RCS) than GS. Furthermore, less (P = 0.01) energy was lost as UE of DE in sheep fed primary growth GS compared with the other treatments. The relationship between UE and silage N intake or urinary N output for both silage types (i.e. grass v. red clover) was strong, but the fit of the regressions was better for GS than RCS. The CH4/DE ratio decreased (P < 0.05) and the UE/DE ratio increased (P < 0.05) with increasing organic matter digestibility in RCS. These relationships were not significant (P < 0.05) for the GS diets. The regression coefficient was higher (P < 0.05) for GS than RCS when regressing ME concentration on digestible organic matter. The results of this study imply that ME/DE ratio is not constant across first-cut GS of different maturities. The ME production response may be smaller from highly digestible first-cut GS but could not be clearly related to urinary excretion of monophenols derived from solubilisation of lignin. Furthermore, energy lost in urine was not clearly defined for RCS and was much more predictable for GS from silage N concentration.  相似文献   

9.
Porcine embryonic loss during early gestation is a serious problem in swine production. Improving embryonic survival can be achieved by maternal manipulation. Protein and energy are two major components of the diet, which play decisive roles in embryonic survival. This study was performed to evaluate the effects of enhancing maternal protein or energy intake on embryonic survival during early gestation in gilts and to explore the underlying mechanism. From day (d) 0 to 30 of gestation, 40 gilts (Landrace × York) were randomly allocated to 5 diets according to daily intake of low (L, National Research Council (NRC) recommendation for gestation gilts), medium (M, 20% higher than NRC) or high (H, 40% higher than NRC) CP or metabolisable energy (ME) (LCPLME, MCPLME, HCPLME, LCPHME, HCPHME). Gilts were sacrificed on d 30 of gestation, and number of foetuses and corpora lutea, embryonic survival rate, uterine weight, and total volume of allantoic fluid were recorded or calculated. Gene expression was determined by Quantitative Real-time PCR (qPCR), western blot or immunohistochemistry. Results showed that increasing protein or ME intake significantly increased embryonic survival rate. Compared with diet LCPLME, plasma progesterone (P4) concentration in diet LCPHME increased at d 14 and d 30 of gestation. Progesterone receptor (PGR) was found not to be expressed in the epithelia but was strongly expressed in the stroma of the endometrium. Increasing protein or ME intake did not alter PGR expression in the endometrium. There was also no change in the amount of P4, hepatocyte growth factor, and fibroblast growth factor-7 in the endometrium. The mRNA abundance of cationic amino acid transporter 1 in the endometrium in diet LCPHME and HCPHME was significantly lower than in diet LCPLME. Diet HCPLME showed a tendency to increase neutral amino acid transporter 1 mRNA expression in the endometrium compared to diet LCPLME (P = 0.087). In conclusion, increasing maternal protein or ME intake had a positive effect on the embryonic survival. Increased protein intake by 20 or 40% did not alter plasma P4 level, but increasing ME intake by 40% improved plasma P4 concentration at d 14 and 30 of gestation. Increasing maternal protein or ME intake did not induce PGR expression in the endometrium. Maternal protein and energy intake likely mediate transportation of cationic and neutral amino acids from mother to foetus to affect embryonic survival and development.  相似文献   

10.

Two slaughter experiments were carried out to determine whether the protein content of the diet has an influence upon the efficiency of utilization of ME in fast growing chickens. A normal‐protein diet (NPD, 204 g CP/kg DM; 14.7 MJ ME/kg DM) based on soybean meal as the sole source of protein was given at four different levels of intake (ad libitum or restricted at about 90, 65 and 40% ad lib) to 10‐d‐old animals for 2 weeks. In a parallel experiment the chickens were fed ad libitum a low protein diet (LPD, 66 g CP/kg DM; 15.0 MJ ME/kg DM) based on soybean meal. The intake of metabolizable energy ranged from 1675 to 777 and 1770 to 832 kJ/kgW0.75 per day for NPD and LPD treatments, respectively. Mean values of energy retention, gross efficiency of energy utilization and energy retained as protein were significantly (P<. 05) lower and heat production (expressed as both kJ/kgW0.75 per day and kJ/kg body protein content0.75 per day) was significantly higher (P < .05) for the chickens fed on LPD. These findings support the concept of dietary‐induced thermogenesis in response to reductions in dietary protein concentration. It is concluded that the increased heat production found in the birds fed on the low‐protein diet can be explained by both an increase in energy requirements for maintenance (MEm) and a sharp decrease in the efficiency of utilization of ME for growth (k8).  相似文献   

11.
Growing concerns regarding sustainability in agriculture include the availability of drinking water, which is putting pressure on livestock production, especially the beef sector, for more efficient practices. Thus, genetic parameters were estimated for traits related to water intake and water use efficiency in Senepol cattle. Senepol females (n = 925) and males (n = 191) were evaluated in performance tests carried out from 2014 to 2019. Daily dry matter intake (DMI) and water intake (WI) were recorded by electronic feed and water bunks (Intergado Ltd.). Other traits assessed included average daily gain (ADG); mid-test metabolic BW (BW0.75); residual water intake based on ADG (RWIADG), estimated as the residual of the linear regression equation of WI on ADG and BW0.75; residual water intake based on DMI (RWIDMI), estimated as the residual of the linear regression equation of WI on DMI and BW0.75 (RWIDMI); water conversion ratio (= WI/ADG); gross water efficiency (GWE = ADG/WI); residual feed intake estimated as the residual of the linear regression equation of DMI on ADG and BW0.75 (RFI); feed conversion ratio (= DMI/ADG) and gross feed efficiency. Genetic (co)variances were estimated with bivariate analyses. The heritabilities for WI, RWIADG and RWIDMI were 0.38, 0.36 and 0.33, respectively. Water conversion ratio, RWIADG and RWIDMI showed positive genetic and phenotypic correlations with WI, whereas GWE was negatively correlated with WI, suggesting that traits related to water use efficiency may be useful to identify cattle with reduced WI. Water intake showed positive genetic (r = 0.79) and phenotypic (r = 0.60) correlations with DMI, suggesting the use of WI to estimate DMI in future studies. Both RWIADG and RWIDMI were genetically correlated with RFI (0.67 and 0.57, respectively) and ADG (0.49 and 0.44, respectively), showing that RWI is positively associated with feed efficiency, but has an antagonistic relationship with growth. This antagonism, however, may be managed using selection indexes. Genetic improvement of water use efficiency in Senepol cattle is possible through selection and may reduce the water requirements of beef production systems.  相似文献   

12.
In the captive Indian rhinoceros (Rhinoceros unicornis), two disease complexes with a high incidence—chronic foot problems and uterine leiomyomas—may be linked to excess body weight (BW). In this study, intake and digestion trials were conducted (by means of 7‐day weigh‐backs, and 5‐day total fecal collections, respectively) with 11 Indian rhinoceroses at four zoological institutions in Europe and the United States to quantify energy and mineral nutrition on conventional or roughage‐only diets. Diets comprising a variety of forages (grass hay only, a combination of grass hay and grass silage, straw, or a mixture of grass and legume hay) were offered as the roughage source, along with various concentrates, produce, and supplements. Water intake was quantified, and urine samples were obtained opportunistically. The animals consumed 0.5–1.1% of their BW in dry matter (DM) daily, with calculated digestible energy (DE, in megajoules MJ) values ranging from 0.27 to 0.99 MJ DE/kg BW0.75/day compared to an estimated requirement of 0.49–0.66 MJ DE/kg BW0.75/day. Seven of 11 rhinos (64%) fed restricted levels of concentrate plus forage consumed DE in excess of this estimate. Even on roughage‐only diets, some individuals consumed energy well above the presumed metabolic requirements. Hence, restriction of both concentrates and roughage may be important for weight management in this species. Water intake ranged from 30 to 49 mL/kg BW daily (3.4–5.2 L/kg ingested DM), similar to values that have been reported for domestic equids. Excretion amounts and patterns also resembled those found in horses. Endogenous fecal losses measured for Ca, P, Cu, Fe, and Zn indicate that the maintenance requirements of these minerals should be met in Indian rhinoceroses by diets that meet recommendations for domestic horses. It is particularly important to evaluate dietary adequacy in mineral nutrition in this species in concert with the need for restricted energy intake, especially with regard to the hypothetical involvement of a low Zn supply in chronic foot problems. Zoo Biol 24:1–14, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

13.
Increasing the concentration of dietary lipid is a promising strategy for reducing methane (CH4) emissions from ruminants. This study investigated the effect of replacing grass silage with brewers’ grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. The experiment was a two×two factorial design comprising two breeds (LIMx, crossbred Limousin; and LUI, purebred Luing) and two diets consisting of (g/kg diet dry matter (DM)) barley straw (687) and grass silage (301, GS), or barley straw (763) and brewers’ grains (226, BG), which were offered ad libitum. Replacing GS with BG increased the acid-hydrolysed ether extract concentration from 21 to 37 g/kg diet DM. Cows (n=48) were group-housed in equal numbers of each breed across two pens and each diet was allocated to one pen. Before measurements of CH4, individual dry matter intake (DMI), weekly BW and weekly body condition score were measured for a minimum of 3 weeks, following a 4-week period to acclimatise to the diets. CH4 emissions were subsequently measured on one occasion from each cow using individual respiration chambers. Due to occasional equipment failures, CH4 measurements were run over 9 weeks giving 10 observations for each breed×treatment combination (total n=40). There were no differences between diets for daily DMI measured in the chambers (9.92 v. 9.86 kg/day for BG and GS, respectively; P>0.05). Cows offered the BG diet produced less daily CH4 than GS-fed cows (131 v. 156 g/day: P<0.01). When expressed either as g/kg DMI or kJ/MJ gross energy intake (GEI), BG-fed cows produced less CH4 than GS-fed cows (13.5 v. 16.4 g/kg DMI, P<0.05; 39.2 v. 48.6 kJ/MJ GEI, P<0.01). Breed did not affect daily DMI or CH4 expressed as g/day, g/kg DMI or kJ/MJ GEI (P>0.05). However, when expressed as a proportion of metabolic BW (BW0.75), LUI cows had greater DMI than LIMx cows (84.5 v. 75.7 g DMI/kg BW0.75, P<0.05) and produced more CH4 per kg BW0.75 than LIMx cows (1.30 v. 1.05 g CH4/kg BW0.75; P<0.01). Molar proportions of acetate were higher (P<0.001) and propionate and butyrate lower (P<0.01) in rumen fluid samples from BG-fed compared with GS-fed cows. This study demonstrated that replacing GS with BG in barley straw-based diets can effectively reduce CH4 emissions from beef cows, with no suppression of DMI.  相似文献   

14.
The aim of this study was to investigate the effects of different energy supplies from roughage and concentrates on performance, health and energy efficiency during early lactation. For this purpose an experiment was conducted containing 64 pluriparous German Holstein cows from 3 weeks prepartum until 16 weeks postpartum. During dry period all cows received an equal dry cow ration. After calving, cows were assigned in a 2 × 2 factorial arrangement to one of four groups, receiving either a moderate (MR, 6.0 MJ NEL) or a high (HR, 6.4 MJ NEL) energy concentration in roughage and furthermore moderate (MC, 150 g/kg energy-corrected milk (ECM)) or high amounts of concentrates (HC, 250 g/kg ECM) on dry matter (DM) basis, which were allocated from an automatic feeding system. Higher allocation of concentrates resulted in an increase of DM intake at expense of roughage intake. HC cows had a higher milk yield than MC cows, whereas ECM was higher in HR cows due to a decrease of milk fat yield in MR groups. Energy balance and body condition score were elevated in HC cows, but no differences occurred in development of subclinical ketosis. Furthermore, energy efficiency variables were lower in HC groups because the greater energy intake was not associated with a considerable elevation of milk yield. Consistency of faeces did not indicate digestive disorders in any of the treatment groups although the faecal manure score was significantly lower in HR groups. Our results underline the importance of a high energy uptake from roughage, which can contribute to an adequate performance and beneficial efficiency, especially at lower amounts of concentrates in ration. Feeding concentrates on an average amount of 9.4 kg/d compared to 6.4 kg/d on DM basis improved the energy balance in our trial, but without consequences for metabolic blood variables and general health of the cows.  相似文献   

15.
Published analyses of enteric methane (CH4) emissions from sheep and cattle show an inverse relationship between feed intake and CH4 yield (g CH4/kg dry matter (DM) intake), which suggests opportunities for reducing CH4 emissions from feed eaten and per unit of animal production. Most relationships between feed intake and CH4 yield have been based on animals fed conserved feeds, especially silages and grains. Our research is a series of experiments with fresh white clover (Trifolium repens) and perennial ryegrass (Lolium perenne; ryegrass) forages fed to sheep at a range of feed intake levels. This study was comprised of four experiments where good quality freshly harvested white clover or ryegrass were fed to sheep over a three-fold range in DM intake, and CH4 emissions were measured in respiration chambers for two consecutive days in each experiment. Measurements were made from 16 sheep in Experiment 1 (fed at 1.6 × metabolizable energy requirements for maintenance; MEm), 28 sheep in Experiment 2 (at 0.8 and 2.0 × MEm), eight sheep and two measurement periods in Experiment 3 (at 1.6 × MEm), and 30 sheep in Experiment 4 (fed at 0.8, 1.2, 1.6, 2.0 and 2.5 × MEm). Prior to each experiment, sheep had a 10 d acclimatization period to diets. Apparent digestibility was measured over 7 d from sheep in Experiments 1, 3 and 4, along with collection of rumen digesta for volatile fatty acid (VFA) determination. Although CH4 yields differed when sheep were fed white clover or ryegrass at similar intakes, the differences were inconsistent and mean values similar across all experiments. This, and a similar structure of all experiments, enabled combined analysis of data from all four experiments using the restricted maximum likelihood (REML) procedure to estimate effects of feed intake level on digestibility, digestible nutrient intake, gas emissions, and VFA concentrations in the rumen. The REML analysis showed that when DM intake increased from 0.40 to 1.60 kg/d, the predicted responses were an increase in CH4 production (g/d) of 187% (12.4–35.6 g/d; P<0.001), and a decline in CH4 yield of 21% (25.6–20.2 g/kg DM intake; P<0.001). High feed intake levels were associated with increased molar proportions (mM of total VFA) of propionate from 0.17 to 0.21 (P=0.038). Single and multiple regressions were completed on the data from all experiments, with organic matter (OM) intake predicting 0.87 of the variation in CH4 production, and molar proportion of propionate predicting 0.60 of the variation in CH4 yield. Increasing feed intakes by 1 kg/d of DM reduced CH4 yield by 4.5 g/kg DM intake. Plant chemical composition was weakly related to CH4 yield. High intakes of fresh forages will lower CH4 yield from fermentation, but effects of feed composition on CH4 emissions were minor. The interaction between effects of feed intake and rumen function requires further investigation to understand relationships with CH4 emissions.  相似文献   

16.
Using a meta-analysis of literature data, this study aimed to quantify the dry matter (DM) intake response to changes in diet composition, and milk responses (yield, milk component yields and milk composition) to changes in dietary net energy for lactation (NEL) and metabolizable protein (MP) in dairy cows. From all studies included in the database, 282 experiments (825 treatments) with experimentally induced changes in either NEL or MP content were kept for this analysis. These treatments covered a wide range of diet characteristics and therefore a large part of the plausible NEL and MP contents and supplies that can be expected in practical situations. The average MP and NEL contents were, respectively (mean±SD), 97±12 g/kg DM and 6.71±0.42 MJ/kg DM. On a daily supply basis, there were high between-experiment correlations for MP and NEL above maintenance. Therefore, supplies of MP and NEL above maintenance were, respectively, centred on MP supply for which MP efficiency into milk protein is 0.67, and NEL above maintenance supply for which the ratio of NEL milk/NEL above maintenance is 1.00 (centred variables were called MP67 and NEL100). The majority of the selected studies used groups of multiparous Holstein-Friesian cows in mid lactation, milked twice a day. Using a mixed model, between- and within-experiment variation was split to estimate DM intake and milk responses. The use of NEL100 and MP67 supplies substantially improved the accuracy of the prediction of milk yield and milk component yields responses with, on average, a 27% lower root mean square error (RMSE) relative to using dietary NEL and MP contents as predictors. For milk composition (g/kg), the average RMSE was only 3% lower on a supply basis compared with a concentration basis. Effects of NEL and MP supplies on milk yield and milk component yields responses were additive. Increasing NEL supply increases energy partitioning towards body reserve, whereas increasing MP supply increases the partition of energy towards milk. On a nitrogen basis, the marginal efficiency decreases with increasing MP supply from 0.34 at MP67=−400 g/day to 0.07 at MP67=300 g/day. This difference in MP67 supply, assuming reference energy level of NEL100=0, equates to a global nitrogen efficiency decrease from 0.82 to 0.58. The equations accurately describe DM intake response to change in dietary contents and milk responses to change in dietary supply and content of NEL and MP across a wide range of dietary compositions.  相似文献   

17.
The objective was to investigate the effect of intake before fasting on concentrations of metabolites and hormones, respiratory quotient (RQ) and fasting heat production (HP) using the washed rumen technique and to compare these values with those from the fed state. Six Holstein steers (360±22 kg) were maintained at 21°C and fed three different energy intakes within a replicated 3×3 Latin square design with 21-day periods. Steers were fed alfalfa cubes to provide 1.0, 1.5 and 2.0×NEm during 19 days of each experimental period. Steers were placed in individual metabolism stalls fitted with indirect calorimetry head-boxes on day 20 of each experimental period (FED steers) and fed their normal meal. On day 21 of each period the reticulorumen was emptied, washed and refilled with ruminal buffer (NaCl=96; NaHCO3=24; KHCO3=30; K2HPO4=2; CaCl2=1.5; MgCl2=1.5 mmol/kg of buffer) aerated with 75% N2 and 25% CO2 before introduction to the rumen (steers were not fed; WASHED steers). Each gas exchange was measured over 24 h. HP for 1.0, 1.5 and 2.0×NEm were 479, 597 and 714 kJ/daykg0.75 (s.e.m. =16), respectively. The plateau RQ was 0.756, 0.824 and 0.860 for the 1.0, 1.5 and 2.0×NEm intakes for the FED steers, respectively. After rumen washing, fasting HP was 331, 359 and 400 kJ/daykg0.75 (s.e.m.=13) for 1.0, 1.5, and 2.0×NEm intakes before fasting, respectively. The RQ for WASHED rumen steers was 0.717, 0.710 and 0.719, respectively. Cortisol and β-hydroxybutyrate concentrations in WASHED rumen steers did not exceed threshold levels for severe energy deficit and stress as can be induced from prolonged fasting. This study demonstrates that a fasting state can be emulated using the washed rumen technique, minimizing the time required as opposed to traditional fasting methodologies, without causing a severe energy deficit and stress.  相似文献   

18.
The aim of this study was to test the hypotheses that differences in residual feed intake (RFI) of beef steers are related to diet sorting, diet nutrient composition, energy intake and apparent digestibility. To phenotype steers for RFI, 69 weaned Angus × Hereford steers were fed individually for 56 days. A finishing diet was fed twice daily on an ad libitum basis to maintain approximately 0.5 to 1.0 kg refusals. Diet offered and refused was measured daily, and DM intakes (DMI) were calculated by difference. Body weights were recorded at 14-day intervals following an 18-h solid feed withdrawal. The residual feed intake was determined as the residual of the regression of DMI versus mid-test metabolic BW (BW 0.75) and average daily gain (ADG). Particle size distributions of diet and refusals were determined using the Penn State Particle Separator to quantify diet sorting. Sampling of diet, refusals and feces were repeated in four sampling periods which occurred during weeks 2, 4, 6 and 8 of the study. Particle size distributions of refusals and diet were analyzed in weeks 2, 4 and 6, and sampling for chemical analysis of refusals and feces occurred in all four periods. Indigestible neutral detergent fiber (288 h in situ) was used as an internal marker of apparent digestibility. We conclude that preference for the intakes of particles > 19 mm and 4 to 8 mm were negatively correlated to RFI and ADG, respectively. Although steers did sort to consume a different diet composition than offered, diet sorting did not impact intake energy, digestible energy or DM digestibility.  相似文献   

19.
Dietary protein adjustments can reduce environmental impact and economic losses in production systems. However, we lack information regarding nitrogen (N) metabolism and protein requirements for maintenance of crossbred animals such as Red Norte breed, precluding a precise dietary management. The objective was to evaluate the effect of increasing dietary CP levels (9%, 11%, 13%, 15% and 17%) on intake, digestibility and N balance, as well as to estimate the metabolizable protein requirements for maintenance (MPm) of growing Red Norte bulls. Thirty five animals averaging 280 ± 4.0 kg BW were fed during 45 days in a 60 : 40 forage : concentrate ratio diet in which the last 5 days were used for the digestibility trial. Intakes of CP and non-fibrous carbohydrates (NFCs) and feed efficiency linearly increased (P < 0.05) as CP levels increased, while DM, NDF, nitrogen efficiency use and ether extract were not influenced by CP levels (P > 0.05). Digestibilities of DM, organic matter, ether extract, NFC and CP as well as metabolizable energy intake linearly increased (P < 0.05), and true digestibility of CP was not affected (P > 0.05) by treatments. Urinary N and retained N linearly increased (P < 0.05) with the increase in dietary N. The MPm were estimated as 4.46 g/BW0.75 and the efficiency of use of MPm was 0.673. In conclusion, obtained MPm requirements of growing Red Norte bulls are greater than the values reported in literature for Zebu cattle and dietary CP levels of 15% and 17% exhibited great responses for growing Red Norte cattle. However, a cost-benefit evaluation should be done before its use.  相似文献   

20.
Cashew nut meal (CNM) is widely used in tropical countries due to the high protein and energy levels; therefore, it has potential to be an alternative feed supplementation for livestock. Our objective was to evaluate the use of CNM as feed supplement for lambs. Twenty-four lambs were divided into a randomized block design with four treatments, starting with a diet control of Tifton 85 (Cynodon spp.) hay and CNM as a supplement at three different levels representing 6, 12, and 18% of the total mixed ration (TMR) provided. There were evaluated intake (g/day and g/kgBW0.75); the digestibility of DM and nutrients; nitrogen balance; and ingestive behavior. The CP and ether extract (EE) intake (g/day) as well as DM, and organic matter (OM) intake (g/kgBW0.75) were influenced by supplementation with CNM in a positive linear increase (P < 0.05). The digestibility of DM, OM and NDF increased according to the levels of CNM up to 12% and markedly decreased at the higher level (P < 0.05). The EE and CP digestibility raised according to the CNM levels (P < 0.05) and consequently increased the nitrogen retention resulting in a positive nitrogen balance. The protein and energetic characteristics of CNM show that it can be used as an alternative supplementation to low-quality forages for lambs. However, its use as a single supplement ingredient above 7% on total mixed ration may reduce fiber digestibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号