首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently developed a longer lasting recombinant factor VIII-Fc fusion protein, rFVIIIFc, to extend the half-life of replacement FVIII for the treatment of people with hemophilia A. In order to elucidate the biological mechanism for the elongated half-life of rFVIIIFc at a cellular level we delineated the roles of VWF and the tissue-specific expression of the neonatal Fc receptor (FcRn) in the biodistribution, clearance and cycling of rFVIIIFc. We find the tissue biodistribution is similar for rFVIIIFc and rFVIII and that liver is the major clearance organ for both molecules. VWF reduces the clearance and the initial liver uptake of rFVIIIFc. Pharmacokinetic studies in FcRn chimeric mice show that FcRn expressed in somatic cells (hepatocytes or liver sinusoidal endothelial cells) mediates the decreased clearance of rFVIIIFc, but FcRn in hematopoietic cells (Kupffer cells) does not affect clearance. Immunohistochemical studies show that when rFVIII or rFVIIIFc is in dynamic equilibrium binding with VWF, they mostly co localize with VWF in Kupffer cells and macrophages, confirming a major role for liver macrophages in the internalization and clearance of the VWF-FVIII complex. In the absence of VWF a clear difference in cellular localization of VWF-free rFVIII and rFVIIIFc is observed and neither molecule is detected in Kupffer cells. Instead, rFVIII is observed in hepatocytes, indicating that free rFVIII is cleared by hepatocytes, while rFVIIIFc is observed as a diffuse liver sinusoidal staining, suggesting recycling of free-rFVIIIFc out of hepatocytes. These studies reveal two parallel linked clearance pathways, with a dominant pathway in which both rFVIIIFc and rFVIII complexed with VWF are cleared mainly by Kupffer cells without FcRn cycling. In contrast, the free fraction of rFVIII or rFVIIIFc unbound by VWF enters hepatocytes, where FcRn reduces the degradation and clearance of rFVIIIFc relative to rFVIII by cycling rFVIIIFc back to the liver sinusoid and into circulation, enabling the elongated half-life of rFVIIIFc.  相似文献   

2.
Factor VIII (FVIII) is a glycoprotein that plays an important role in the intrinsic pathway of coagulation. In circulation, FVIII is protected upon binding to von Willebrand factor (VWF), a chaperone molecule that regulates its half-life, distribution, and activity. Despite the biological significance of this interaction, its molecular mechanisms are not fully characterized. We determined the equilibrium and activation thermodynamics of the interaction between FVIII and VWF. The equilibrium affinity determined by surface plasmon resonance was temperature-dependent with a value of 0.8 nM at 35 °C. The FVIII-VWF interaction was characterized by very fast association (8.56 × 10(6) M(-1) s(-1)) and fast dissociation (6.89 × 10(-3) s(-1)) rates. Both the equilibrium association and association rate constants, but not the dissociation rate constant, were dependent on temperature. Binding of FVIII to VWF was characterized by favorable changes in the equilibrium and activation entropy (TΔS° = 89.4 kJ/mol, and -TΔS(++) = -8.9 kJ/mol) and unfavorable changes in the equilibrium and activation enthalpy (ΔH° = 39.1 kJ/mol, and ΔH(++) = 44.1 kJ/mol), yielding a negative change in the equilibrium Gibbs energy. Binding of FVIII to VWF in solid-phase assays demonstrated a high sensitivity to acidic pH and a sensitivity to ionic strength. Our data indicate that the interaction between FVIII and VWF is mediated mainly by electrostatic forces, and that it is not accompanied by entropic constraints, suggesting the absence of conformational adaptation but the presence of rigid "pre-optimized" binding surfaces.  相似文献   

3.
ABO blood groups are known to influence the plasma level of von Willebrand factor (VWF), but little is known about the relationship between ABO and coagulation factor VIII (FVIII). We analyzed the influence of ABO genotypes on VWF antigen, FVIII activity, and their quantitative relationship in 11,673 participants in the Atherosclerosis Risk in Communities (ARIC) study. VWF, FVIII, and FVIII/VWF levels varied significantly among O, A (A1 and A2), B and AB subjects, and the extent of which varied between Americans of European (EA) and African (AA) descent. We validated a strong influence of ABO blood type on VWF levels (15.2%), but also detected a direct ABO influence on FVIII activity (0.6%) and FVIII/VWF ratio (3.8%) after adjustment for VWF. We determined that FVIII activity changed 0.54% for every 1% change in VWF antigen level. This VWF-FVIII relationship differed between subjects with O and B blood types in EA, AA, and in male, but not female subjects. Variations in FVIII activity were primarily detected at low VWF levels. These new quantitative influences on VWF, FVIII and the FVIII/VWF ratio help understand how ABO genotypes differentially influence VWF, FVIII and their ratio, particularly in racial and gender specific manners.  相似文献   

4.

Background

Von Willebrand factor (VWF) is critical for the in vivo survival of factor VIII (FVIII). Since FVIII half-life correlates with VWF-antigen pre-infusion levels, we hypothesized that VWF levels are useful to predict FVIII half-life.

Methodology

Standardized half-life studies and analysis of pre-infusion VWF and VWF-propeptide levels were performed in a cohort of 38 patients with severe haemophilia A (FVIII <1 IU/ml), aged 15–44 years. Nineteen patients had blood-group O. Using multivariate linear regression-analysis (MVLR-analysis), the association of VWF-antigen, VWF-propeptide, age and body-weight with FVIII half-life was evaluated.

Principal Findings

FVIII half-life was shorter in blood-group O-patients compared to non-O-patients (11.5±2.6 h versus 14.3±3.0 h; p = 0.004). VWF-antigen levels correlated with FVIII half-life considerably better in patients with blood-group non-O than O (Pearson-rank = 0.70 and 0.47, respectively). Separate prediction models evolved from MVLR-analysis for blood-group O and non-O patients, based on VWF-antigen and VWF/propeptide ratio. Predicted half-lives deviated less than 3 h of observed half-life in 34/38 patients (89%) or less than 20% in 31/38 patients (82%).

Conclusion

Our approach may identify patients with shorter FVIII half-lives, and adapt treatment protocols when half-life studies are unavailable. In addition, our data indicate that survival of FVIII is determined by survival of endogenous VWF rather than VWF levels per se.  相似文献   

5.
Complex formation between coagulation factor VIII (FVIII) and von Willebrand factor (VWF) is of critical importance to protect FVIII from rapid in vivo clearance and degradation. We have now employed a chemical footprinting approach to identify regions on VWF involved in FVIII binding. To this end, lysine amino acid residues of VWF were chemically modified in the presence of FVIII or activated FVIII, which does not bind VWF. Nano-LC-MS analysis showed that the lysine residues of almost all identified VWF peptides were not differentially modified upon incubation of VWF with FVIII or activated FVIII. However, Lys-773 of peptide Ser-766–Leu-774 was protected from chemical modification in the presence of FVIII. In addition, peptide Ser-764–Arg-782, which comprises the first 19 amino acid residues of mature VWF, showed a differential modification of both Lys-773 and the α-amino group of Ser-764. To verify the role of Lys-773 and the N-terminal Ser-764 in FVIII binding, we employed VWF variants in which either Lys-773 or Ser-764 was replaced with Ala. Surface plasmon resonance analysis and competition studies revealed that VWF(K773A) exhibited reduced binding to FVIII and the FVIII light chain, which harbors the VWF-binding site. In contrast, VWF(S764A) revealed more effective binding to FVIII and the FVIII light chain compared with WT VWF. The results of our study show that the N terminus of VWF is critical for the interaction with FVIII and that Ser-764 and Lys-773 have opposite roles in the binding mechanism.  相似文献   

6.
We previously demonstrated that coagulation factor VIII (FVIII) accelerates proteolytic cleavage of von Willebrand factor (VWF) by A disintegrin and metalloprotease with thrombospondin type 1 repeats (ADAMTS13) under fluid shear stress. In this study, the structural elements of FVIII required for the rate-enhancing effect and the biological relevance of this cofactor activity are determined using a murine model. An isolated light chain of human FVIII (hFVIII-LC) increases proteolytic cleavage of VWF by ADAMTS13 under shear in a concentration-dependent manner. The maximal rate-enhancing effect of hFVIII-LC is ∼8-fold, which is comparable with human full-length FVIII and B-domain deleted FVIII (hFVIII-BDD). The heavy chain (hFVIII-HC) and the light chain lacking the acidic (a3) region (hFVIII-LCΔa3) have no effect in accelerating VWF proteolysis by ADAMTS13 under the same conditions. Although recombinant hFVIII-HC and hFVIII-LCΔa3 do not detectably bind immobilized VWF, recombinant hFVIII-LC binds VWF with high affinity (KD, ∼15 nm). Moreover, ultra-large VWF multimers accumulate in the plasma of fVIII−/− mice after hydrodynamic challenge but not in those reconstituted with either hFVIII-BDD or hFVIII-LC. These results suggest that the light chain of FVIII, which is not biologically active for clot formation, is sufficient for accelerating proteolytic cleavage of VWF by ADAMTS13 under fluid shear stress and (patho) physiological conditions. Our findings provide novel insight into the molecular mechanism of how FVIII regulates VWF homeostasis.  相似文献   

7.
Factor (F) VIII consists of a heavy chain (A1A2B domains) and light chain (A3C1C2 domains). The activated form of FVIII, FVIIIa, functions as a cofactor for FIXa in catalyzing the membrane-dependent activation of FX. Whereas the FVIII C2 domain is believed to anchor FVIIIa to the phospholipid surface, recent x-ray crystal structures of FVIII suggest that the C1 domain may also contribute to this function. We constructed a FVIII variant lacking the C2 domain (designated ΔC2) to characterize the contributions of the C1 domain to function. Binding affinity of the ΔC2 variant to phospholipid vesicles as measured by energy transfer was reduced ∼14-fold. However, the activity of ΔC2 as measured by FXa generation and one-stage clotting assays retained 76 and 36%, respectively, of the WT FVIII value. Modest reductions (∼4-fold) were observed in the functional affinity of ΔC2 FVIII for FIXa and rates of thrombin activation. On the other hand, deletion of C2 resulted in significant reductions in FVIIIa stability (∼3.6-fold). Thrombin generation assays showed peak thrombin and endogenous thrombin potential were reduced as much as ∼60-fold. These effects likely result from a combination of the intermolecular functional defects plus reduced protein stability. Together, these results indicate that FVIII domains other than C2, likely C1, make significant contributions to membrane-binding and membrane-dependent function.  相似文献   

8.
Von Willebrand factor (VWF) is a pro-hemostatic multimeric plasma protein that promotes platelet aggregation and stabilizes coagulation factor VIII (FVIII) in plasma. The metalloproteinase ADAMTS13 regulates the platelet aggregation function of VWF via proteolysis. Severe deficiency of ADAMTS13 is associated with thrombotic thrombocytopenic purpura, but does not always correlate with its clinical course. Therefore, other proteases could also be important in regulating VWF activity. In the present study, we demonstrate that VWF is cleaved by the cytotoxic lymphocyte granule component granzyme M (GrM). GrM cleaved both denaturated and soluble plasma-derived VWF after Leu at position 276 in the D3 domain. GrM is unique in that it did not affect the multimeric size and pro-hemostatic platelet aggregation ability of VWF, but instead destroyed the binding of VWF to FVIII in vitro. In meningococcal sepsis patients, we found increased plasma GrM levels that positively correlated with an increased plasma VWF/FVIII ratio in vivo. We conclude that, next to its intracellular role in triggering apoptosis, GrM also exists extracellularly in plasma where it could play a physiological role in controlling blood coagulation by determining plasma FVIII levels via proteolytic processing of its carrier VWF.  相似文献   

9.

Background

The coagulation protein von Willebrand Factor (VWF) is known to be elevated in pregnancy. However, the timing and nature of changes in VWF and associated parameters throughout pregnancy are not well understood.

Objectives

To better understand the changes in VWF provoked by pregnancy, we studied VWF-associated parameters in samples collected over the course of healthy pregnancies.

Methods

We measured VWF antigen (VWF:Ag), VWF propeptide (VWFpp), Factor VIII (FVIII), and ADAMTS13 activity in samples collected from 46 women during pregnancy and at non-pregnant baseline. We also characterized pregnant vs. non-pregnant VWF multimer structure in 21 pregnancies, and performed isoelectric focusing (IEF) of VWF in two pregnancies which had samples from multiple trimesters.

Results

VWF:Ag and FVIII levels were significantly increased during pregnancy. ADAMTS13 activity was unchanged. VWFpp levels increased much later in pregnancy than VWF:Ag, resulting in a progressive decrease in VWFpp:Ag ratios. FVIII:VWF ratios also decreased in pregnancy. Most pregnancies exhibited a clear loss of larger VWF multimers and altered VWF triplet structure. Further evidence of acquired VWF qualitative changes in pregnancy was found in progressive, reversible shifts in VWF IEF patterns over gestation.

Conclusions

These data support a new view of pregnancy in which VWF can acquire qualitative changes associated with advancing gestational age. Modeling supports a scenario in which both increased VWF production and doubling of the VWF half-life would account for the data observed. We propose that gestation induces a prolongation in VWF survival, which likely contributes to increased total VWF levels and altered VWF structure.  相似文献   

10.
Factor VIII (FVIII) is activated by proteolytic cleavages with thrombin and factor Xa (FXa) in the intrinsic blood coagulation pathway. The anti-C2 monoclonal antibody ESH8, which recognizes residues 2248-2285 and does not inhibit FVIII binding to von Willebrand factor or phospholipid, inhibited FVIII activation by FXa in a clotting assay. Furthermore, analysis by SDS-polyacrylamide gel electrophoresis showed that ESH8 inhibited FXa cleavage in the presence or absence of phospholipid. The light chain (LCh) fragments (both 80 and 72 kDa) and the recombinant C2 domain dose-dependently bound to immobilized anhydro-FXa, a catalytically inactive derivative of FXa in which dehydroalanine replaces the active-site serine. The affinity (K(d)) values for the 80- and 72-kDa LCh fragments and the C2 domain were 55, 51, and 560 nM, respectively. The heavy chain of FVIII did not bind to anhydro-FXa. Similarly, competitive assays using overlapping synthetic peptides corresponding to ESH8 epitopes (residues 2248-2285) demonstrated that a peptide designated EP-2 (residues 2253-2270; TSMYVKEFLISSSQDGHQ) inhibited the binding of the C2 domain or the 72-kDa LCh to anhydro-FXa by more than 95 and 84%, respectively. Our results provide the first evidence for a direct role of the C2 domain in the association between FVIII and FXa.  相似文献   

11.
During the initiation of intrinsic coagulation factors XI and XIa interact intimately with several other coagulation proteins (factor XIIa, high Mr kininogen, and factor IX) as well as with the platelet surface. To help elucidate these complex intramolecular interactions, we have prepared a collection of monoclonal antibodies directed against various epitopes in factor XI. We have utilized these reagents to isolate factor XI and the light chain of factor XIa on affinity columns, and to probe structure-function relationships involved in the interactions of factor XIa with factor IX. The isolated light chain of factor XIa retained greater than 90% of its amidolytic activity against the oligopeptide substrate pyro-Glu-Pro-Arg-pNA (S-2366), but only 3.8% of its clotting activity in a factor XIa assay and 1% of its factor IX activating activity in an activation peptide release assay. This suggests that regions of the heavy chain are required for development of coagulant activity and specifically for the interaction of factor XIa with factor IX. To test this hypothesis, the effects of three of the monoclonal antibodies (5F4, 1F1, and 3C1) on the function of factor XIa were examined. The results show that in a clotting assay the light chain-specific antibody (5F4) inhibits 100% of the factor XIa activity, whereas of the heavy chain-specific antibodies, one (3C1) inhibits 75% and another (1F1) only 17%. Similarly in the factor IX activation peptide release assay, antibody 5F4 inhibits 100% of the factor XIa activity, whereas 3C1 inhibits 75% and 1F1 inhibits 33%. We conclude that regions located in the heavy chain, in addition to those in the light chain, are involved in the interaction of factor XIa with factor IX and in the expression of the coagulant activity of factor XI.  相似文献   

12.

Background

Point mutations resulting in reduced factor VIII (FVIII) binding to von Willebrand factor (VWF) are an important cause of mild/moderate hemophilia A. Treatment includes desmopressin infusion, which concomitantly increases VWF and FVIII plasma levels, apparently from storage pools containing both proteins. The source of these VWF/FVIII co-storage pools and the mechanism of granule biogenesis are not fully understood.

Methodology/Principal Findings

We studied intracellular trafficking of FVIII variants implicated in mild/moderate hemophilia A together with VWF in HEK293 cells and primary endothelial cells. The role of VWF binding was addressed using FVIII variants displaying reduced VWF interaction. Binding studies using purified FVIII proteins revealed moderate (Arg2150His, Del2201, Pro2300Ser) to severe (Tyr1680Phe, Ser2119Tyr) VWF binding defects. Expression studies in HEK293 cells and primary endothelial cells revealed that all FVIII variants were present within VWF-containing organelles. Quantitative studies showed that the relative amount of FVIII storage was independent of various mutations. Substantial amounts of FVIII variants are co-stored in VWF-containing storage organelles, presumably by virtue of their ability to interact with VWF at low pH.

Conclusions

Our data suggest that the potential of FVIII co-storage with VWF is not affected in mild/moderate hemophilia A caused by reduced FVIII/VWF interaction in the circulation. These data support the hypothesis that Weibel-Palade bodies comprise the desmopressin-releasable FVIII storage pool in vivo.  相似文献   

13.
This study summarises the biochemical and functional properties of a new generation plasma-derived, double virus inactivated von Willebrand Factor/Factor VIII (VWF/FVIII) concentrate, Wilate, targeted for the treatment of both von Willebrand disease (VWD) and haemophilia A. The manufacturing process comprises two chromatographic steps based on different performance principles, ensuring a high purity of the concentrate (mean specific activity in 15 consecutive production batches: 122 IU FVIII:C/mg total protein) and, thus, minimising the administered protein load to the patient (specification: < or = 15 mg total protein per 900 IU Wilate). The optimised solvent/detergent (S/D) treatment and prolonged terminal dry-heat (PermaHeat) treatment of the lyophilised product at a specified residual moisture (RM) provide two mechanistically independent, effective and robust virus inactivation procedures for enveloped viruses and one step for non-enveloped viruses. These process steps are aggressive enough to inactivate viruses efficiently, but yet gentle enough to maintain the structural integrity and function of the VWF and FVIII molecules, as proven by state-of-the-art assays covering the diverse features of importance. The VWF multimeric pattern is close to the one displayed by normal plasma, with a consistent content of more than 10 multimers, but a relatively lower portion of the very high multimers. The multimeric triplet structure is normal, underlining the gentle and effective manufacturing process, which does not require the addition of protein stabilisers at any step. The balanced activity ratio of VWF to FVIII is close to that of plasma from healthy subjects, rendering Wilate suitable also for the safe and effective treatment of patients with VWD.  相似文献   

14.
We have developed a solid-phase clotting assay which uses peroxidase-fibrinogen in solution and fibrinogen bound to microtiter plates as a substrate for the thrombin generated from the clotting cascade. We have developed this assay for measurement of the extrinsic pathway factors thromboplastin (tissue factor, factor III), VII and VIIa, X, and II. Using long incubation times (40-90 min), thromboplastin could be measured in extracts of human brain at very low concentrations. Specificity for thromboplastin was demonstrated by showing a requirement for factors II, V, X, and VII but not for VIII, IX, XI, or XII; both substrate plasmas monodeficient in single factors and mixtures of the pure factors were used in demonstrating this specificity. The assay was modified to measure factors II, VII, VIIa, and X using appropriate deficient plasmas. The limit of detection was 2-3 orders of magnitude lower than a one-stage clotting test for all factors assayed. This assay has the advantages of convenience, specificity comparable to standard clotting tests, and high sensitivity.  相似文献   

15.
J chain is covalently bound to both monomer subunits in human secretory IgA   总被引:4,自引:0,他引:4  
Previous work has established that the secretory component (SC) in human secretory IgA is covalently linked to only one of the two IgA monomer subunits, but it has not been clear whether the J chain is covalently linked to one or to both of these subunits. In view of the asymmetry in the disulfide bonding between SC and the IgA subunits, an arrangement which follows disulfide interchange, several models for the disulfide linkage of J chain and the bonds between IgA subunits were envisaged and investigated. When sIgA was gel filtered through Sephadex G-200 in acetic acid, a single major symmetrical peak eluted at the front. This material contained SC, alpha and L chains, and all of the J chain. The greater resolution afforded by polyacrylamide gel electrophoresis in detergent confirmed that human sIgA contains no major noncovalently linked components in the 150,000-200,000 molecular weight range. In another series of experiments the Fc monomer, which is not covalently attached to SC, isolated after treatment of sIgA with IgA protease and cyanogen bromide, was investigated to learn whether alpha chain COOH-terminal octapeptides could be released by reduction. The results were negative. The available data thus favor a model in which J chain is disulfide-bonded to both IgA monomer subunits in sIgA.  相似文献   

16.
Factor VIII (FVIII) is the nonproteolytic cofactor for FIXa in the tenase complex of blood coagulation. FVIII is proteolytically activated by thrombin and FXa in vitro to form a heterotrimer with full procoagulant activity. Activated protein C inactivates thrombin-activated FVIII through cleavage adjacent to position Arg 336 in the cofactor. We have investigated the interaction of FIXa and FVIII and subjected FVIII polypeptides to N-terminal amino acid sequence analysis. Contrary to previous reports, we were unable to demonstrate the activation of FVIII by FIXa. Incubation of these two proteins at equimolar or close to equimolar concentrations resulted in the inactivation of FVIII, coincident with cleavage of the FVIII heavy chain adjacent to Arg 336 and the light chain adjacent to Arg 1719. These cleavages were detected in the presence or absence of thrombin, indicating that FIXa does not stabilize thrombin-activated FVIIIa. APC cleaved FVIII at the same position in the heavy chain, and simultaneous incubation of FVIII, APC, and FIXa did not result in stabilization of the cofactor. We conclude that FIXa does not play a role in the stabilization or activation of FVIII.  相似文献   

17.
The murine monoclonal antibodies ESH2, ESH4, ESH5, and ESH8 specifically bind and inhibit the procoagulant activity of human coagulation factor VIII (FVIII). They are frequently used as a model of inhibitors which are raised against injected FVIII in about 25% of hemophiliacs as a serious side effect of substitution therapy. However, binding kinetics of the interaction of these antibodies with FVIII and their influence on FVIII activity (inhibition) have not yet been examined systematically. For this, we examined association and dissociation of protein:antibody interaction using surface plasmon resonance (SPR) and determined their ability to inhibit the FVIII activity in a one‐stage and a two‐stage assay. SPR‐analysis revealed that the equilibrium dissociation constants (KD) of ESH8 and ESH4 are low and in a similar range (ESH8: KD(ESH8) = 0.542 nM; ESH4: KD(ESH4) = 0.761 nM). A 5.7 times higher KD than for ESH4 was observed for ESH2 (4.33 nM), whereas ESH5 showed the highest KD of 28.8 nM. In accordance with the lowest KD, ESH8, and ESH4 reduced FVIII activity of normal human plasma almost completely in a one‐stage clot inhibition assay (ESH8: 91.9%; ESH4: 90.1%). However, ESH8 inhibited FVIII activity more efficiently as only 1.0 µg/ml ESH8 was sufficient to obtain maximum inhibition compared to up to 600 µg/ml of ESH4. Despite its attenuated KD, ESH2 inhibits FVIII:C still efficiently, reducing 61.3% of FVIII activity at a concentration of 9 µg/ml in the one‐stage clotting assay. However, a discrepancy of inhibitory efficiency was found depending on the method used to measure FVIII activity. These effects seem to be mainly caused by differences of activation time of FVIII during both FVIII activity assays. The systematic assessment of these results should support FVIII interaction studies, and can provide data to rationally test peptides/mimotopes to remove or neutralize inhibitors of FVIII activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Human blood coagulation Factor XIa was reduced and alkylated under mild conditions. The mixture containing alkylated heavy and light chains was subjected to affinity chromatography on high Mr kininogen-Sepharose. Alkylation experiments using [14C]iodoacetamide showed that a single disulfide bridge between the light and heavy chains was broken to release the light chain. The alkylated light chain (Mr = 35,000) did not bind to high Mr kininogen-Sepharose while the heavy chain (Mr = 48,000), like Factors XI and XIa, bound with high affinity. The isolated light chain retained the specific amidolytic activity of native Factor XIa against the oligopeptide substrate, pyroGlu-Pro-Arg-p-nitroanilide. Km and kcat values for this substrate were 0.56 mM and 350 s-1 for both Factor XIa and its light chain, and the amidolytic assay was not affected by CaCl2. However, in clotting assays using Factor XI-deficient plasma in the presence of kaolin, the light chain was only 1% as active as native Factor XIa. Human coagulation Factor IX was purified and labeled with sodium [3H]borohydride on its carbohydrate moieties. When this radiolabeled Factor IX was mixed with Factor XIa, an excellent correlation was observed between the appearance of Factor IXa clotting activity and tritiated activation peptide that was soluble in cold trichloroacetic acid. Factor XIa in the presence of 5 mM CaCl2 activated 3H-Factor IX 600 times faster than Factor XIa in the presence of EDTA. In the absence of calcium, Factor XIa and its light chain were equally active in activating 3H-Factor IX. In contrast to Factor XIa, the light chain in this reaction was inhibited by calcium ions such that, in the presence of 5 mM CaCl2, Factor XIa was 2000 times more effective than its light chain. Neither phospholipid nor high Mr kininogen and kaolin affected the activity of Factor XIa or its light chain in the activation of 3H-Factor IX. These observations show that the light chain region of Factor XIa contains the entire enzymatic active site. The heavy chain region contains the high affinity binding site for high Mr kininogen. Furthermore the heavy chain region of Factor XIa plays a major role in the calcium-dependent mechanisms that contribute to the activation of Factor IX.  相似文献   

19.
In addition to the 7-, 5- and 2-carboxyglutamyl varieties of dicoumarol-induced prothrombins (Malhotra, O.P. (1979) Thromb. Res. 15, 427-463), we have isolated two more atypical prothrombins, one containing 1.1 +/- 0.1 gamma-carboxyglutamic acid, '1-carboxyglutamyl prothrombin,' and the other less than 0.2, '0-carboxyglutamyl prothrombin.' Both variants showed a single component by analytical polyacrylamide-gel electrophoresis in the absence and in the presence of sodium dodecyl sulfate and contained antigenic activity indistinguishable from that of normal prothrombin. The pI of both proteins as assessed by electrofocusing was 4.835 +/- 0.015, compared with 4.58 for 10- and 7-, 4.75 for 5- and 4.81 for 2-carboxyglutamyl materials. By the two-stage prothrombin assay procedure, the 1- and 0-carboxyglutamyl variants generated thrombin, respectively 19 and 13% of normal prothrombin, and their activation times ranged from 4 to 7 h, compared with 7 min for normal. Kinetic studies, utilizing the one-stage coagulation assay, showed that both Km and tmin (minimal clotting time) increase proportionally with the decrease of gamma-carboxyglutamyl residues (from 10 to 7, 5, 2, 1 and 0 gamma-carboxyglutamic acids). Each of the five (partially) acarboxy prothrombins owe their clotting activity to gamma-carboxyglutamyl residues and not to the presence of some normal prothrombin molecules.  相似文献   

20.
Atrial natriuretic peptide (ANP) may be a useful molecule for the treatment of cardiovascular diseases due to its potent natriuretic effects. In an effort to prolong the short in vivo half-life of ANP, fusions of the peptide to the Fc domain of IgG were generated using a semisynthetic methodology. Synthetic ANP peptides were synthesized with thioesters at either the N- or C-termini of the peptide and subsequently linked to the N-terminus of recombinantly expressed Fc using native chemical ligation. The linker length between the ANP and Fc moieties was varied among 2, 11, or 16 amino acids. In addition, either one ("monomeric") or two ("dimeric") ANP peptides were linked to Fc to study whether this modification had an effect on in vitro activity and/or in vivo half-life. The various constructs were studied for in vitro activity using a cell-based cGMP assay. The ANP-Fc fusion constructs were between 16- and ~375-fold weaker than unconjugated ANP in this assay, and a trend was observed where the most potent conjugates were those with longer linkers and in the dimeric configuration. The pharmacokinetics of several constructs were assessed in rats, and the half-life of the ANP-Fc's were found to be approximately 2 orders of magnitude longer than that of the unconjugated peptide. There was no significant difference in terminal half-life between the monomeric and dimeric constructs (2.8-5.5 h), but a trend was observed where the C(max) of the monomeric constructs was approximately 3-fold higher than that of the dimeric constructs, although the origin of this effect is not understood. These novel ANP-Fc fusion constructs hold promise for future therapeutic application in the treatment of cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号