首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The size and size distribution of unilamellar phospholipid vesicles present in unsonicated phosphatidic acid and mixed phosphatidic acid/phosphatidylcholine dispersions were determined by gel filtration, quasi-elastic light scattering and freeze-fracture electron microscopy. The vesiculation in these dispersions was induced by a transient increase in pH as described previously (Hauser, H. and Gains, N. (1982) Proc. Natl. Acad. Sci. USA 79, 1683–1687). The resulting phospholipid dispersions are heterogeneous consisting of small unilamellar vesicles (average radius r < 50 nm) and large unilamellar vesicles (average r ranging from about 50 to 500 nm). The smallest vesicles with r = 11 ± 2 nm are observed with dispersions of pure phosphatidic acid, the population of these vesicles amounting to about 80% of the total lipid. With increasing phosphatidylcholine content the radius of the small unilamellar vesicles increases and at the same time the population of small unilamellar vesicles decreases. The average radius of small unilamellar vesicles present in phosphatidic acid/phosphatidylcholine dispersions (mole ratio, 1:1) is 17.5 ± 2 nm, the population of these vesicles amounting to about 70% of the total lipid. By a combination of gel filtration, quasi-elastic light scattering and freeze-fracture electron microscopy it was possible to characterize the large unilamellar vesicles. This population is heterogeneous with its mean radius also increasing with increasing phosphatidylcholine content. After separating the large unilamellar vesicles from small unilamellar vesicles on Sepharose 4B it can be shown by quasi-elastic light scattering that in pure phosphatidic acid dispersions 80–90% of the large unilamellar vesicle population consist of vesicles with a mean radius of 170 nm. In mixed phosphatidic acid/phosphatidylcholine dispersions this radius increases to about 265 nm as the phosphatidylcholine content is raised to 90 mol%.  相似文献   

2.
 It has been reported that repetitive freeze-thaw cycles of aqueous suspensions of dioleoylphosphatidylcholine form vesicles with a diameter smaller than 200 nm. We have applied the same treatment to a series of phospholipid suspensions with particular emphasis on dioleoylphosphatidylcholine/dioleoylphosphatidic acid (DOPC/DOPA) mixtures. Freeze-fracture electron microscopy revealed that these unsaturated lipids form unilamellar vesicles after 10 cycles of freeze-thawing. Both electron microscopy and broad-band 31P NMR spectra indicated a disparity of the vesicle sizes with a highest frequency for small unilamellar vesicles (diameters ≤30 nm) and a population of larger vesicles with a frequency decreasing exponentially as the diameter increases. From 31P NMR investigations we inferred that the average diameter of DOPC/DOPA vesicles calculated on the basis of an exponential size distribution was of the order of 100 nm after 10 freeze-thaw cycles and only 60 nm after 50 cycles. Fragmentation by repeated freeze-thawing does not have the same efficiency for all lipid mixtures. As found already by others, fragmentation into small vesicles requires the presence of salt and does not take place in pure water. Repetitive freeze-thawing is also efficient to fragment large unilamellar vesicles obtained by filtration. If applied to sonicated DOPC vesicles, freeze-thawing treatment causes fusion of sonicated unilamellar vesicles into larger vesicles only in pure water. These experiments show the usefulness of NMR as a complementary technique to electron microscopy for size determination of lipid vesicles. The applicability of the freeze-thaw technique to different lipid mixtures confirms that this procedure is a simple way to obtain unilamellar vesicles. Received: 2 September 1999 / Revised version: 27 February 2000 / Accepted: 27 February 2000  相似文献   

3.
Summary As determined by electron microscopy, lipid sonicated in buffer initially forms large vesicles which may be multilamellar. Prolonged sonication results in a population of vesicles of smaller, but not uniform diameters. These vesicles are bounded by only one bilayer. The lipid suspension can be partially fractionated according to size by column chromatography. A fraction of the eluate has been selected for further study. The weight-average vesicle weight and average radius of gyration are obtained by lightscattering measurements. The volume of buffer enclosed by the vesicles is determined using14C- or3H-labelled sugars as a marker. These values are in reasonable agreement with the corresponding values calculated from the size distribution of the vesicle fraction obtained by electron microscopy.  相似文献   

4.
Giant unilamellar vesicles are a widely utilized model membrane system, providing free-standing bilayers unaffected by support-induced artifacts. To measure the lamellarity of such vesicles, fluorescence microscopy is one commonly utilized technique, but it has the inherent disadvantages of requiring lipid staining, thereby affecting the intrinsic physical and chemical properties of the vesicles, and it requires a calibration by statistical analysis of a vesicle ensemble. Herein we present what we believe to be a novel label-free optical method to determine the lamellarity of giant vesicles based on quantitative differential interference contrast (qDIC) microscopy. The method is validated by comparison with fluorescence microscopy on a statistically significant number of vesicles, showing correlated quantization of the lamellarity. Importantly, qDIC requires neither sample-dependent calibration nor sample staining, and thus can measure the lamellarity of any giant vesicle without additional preparation or interference with subsequent investigations. Furthermore, qDIC requires only a microscope equipped with differential interference contrast and a digital camera.  相似文献   

5.
Giant unilamellar vesicles are a widely utilized model membrane system, providing free-standing bilayers unaffected by support-induced artifacts. To measure the lamellarity of such vesicles, fluorescence microscopy is one commonly utilized technique, but it has the inherent disadvantages of requiring lipid staining, thereby affecting the intrinsic physical and chemical properties of the vesicles, and it requires a calibration by statistical analysis of a vesicle ensemble. Herein we present what we believe to be a novel label-free optical method to determine the lamellarity of giant vesicles based on quantitative differential interference contrast (qDIC) microscopy. The method is validated by comparison with fluorescence microscopy on a statistically significant number of vesicles, showing correlated quantization of the lamellarity. Importantly, qDIC requires neither sample-dependent calibration nor sample staining, and thus can measure the lamellarity of any giant vesicle without additional preparation or interference with subsequent investigations. Furthermore, qDIC requires only a microscope equipped with differential interference contrast and a digital camera.  相似文献   

6.
The dependence of phospholipid vesicle size on lipid composition is investigated by photon correlation spectroscopy. For each lipid composition prolonged ultracentrifugation was used to isolate a nearly uniform population of minimum-sized vesicles. The residual size variations in the samples were sufficient to cause polydispersity that made comparisons between samples difficult. Analyses of the data by the method of cumulants and by a method for approximating the particle size distributions directly are presented. The latter method made possible unambiguous comparisons that revealed small but systematic dependences of vesicle size on composition in vesicles containing mixtures of egg phosphatidylcholine and phosphatidylethanolamine, egg phosphatidylcholine and beef brain sphingomyelin, and in single lipid vesicles of egg phosphatidylcholine, dioleylphosphatidylcholine, and beef brain sphingomyelin. These size dependences are quantified within the resolution limits of the technique and their implications are discussed.  相似文献   

7.
Diacylglycerol (DAG)-induced activation of phosphatidylinositol-phospholipase C (PI-PLC) was studied with vesicles containing PI, either pure or in mixtures with dimyristoyl phosphatidylcholine, distearoyl phosphatidylcholine, sphingomyelin, or galactosylceramide, used as substrates. At 22°C, DAG at 33 mol % increased PI-PLC activity in all of the mixtures, but not in pure PI bilayers. DAG also caused an overall decrease in diphenylhexatriene fluorescence polarization (decreased molecular order) in all samples, and increased overall enzyme binding. Confocal fluorescence microscopy of giant unilamellar vesicles of all of the compositions under study, with or without DAG, and quantitative evaluation of the phase behavior using Laurdan generalized polarization, and of enzyme binding to the various domains, indicated that DAG activates PI-PLC whenever it can generate fluid domains to which the enzyme can bind with high affinity. In the specific case of PI/dimyristoyl phosphatidylcholine bilayers at 22°C, DAG induced/increased enzyme binding and activation, but no microscopic domain separation was observed. The presence of DAG-generated nanodomains, or of DAG-induced lipid packing defects, is proposed instead for this system. In PI/galactosylceramide mixtures, DAG may exert its activation role through the generation of small vesicles, which PI-PLC is known to degrade at higher rates. In general, our results indicate that global measurements obtained using fluorescent probes in vesicle suspensions in a cuvette are not sufficient to elucidate DAG effects that take place at the domain level. The above data reinforce the idea that DAG functions as an important physical agent in regulating membrane and cell properties.  相似文献   

8.
A method has been developed for making large unilamellar vesicles (LUV) with low polydispersity. The LUV, constituted of dioleoylphosphatidic acid (DOPA), 300 nm in diameter are made by a modification of the pH adjustment technique (Hauser, H. and Gains, N. (1982) Proc. Natl. Acad. Sci. USA 79, 1683–1687). This size is 10 times that (30 nm) of vesicles prepared by prolonged sonication. Vesicle size is increased stepwise by adding cholesterol (to a maximum of 40 mol% cholesterol) to form vesicles in 0.15 M KCl with up to 600 nm diameter. The vesicle size is measured by photon correlation spectroscopy, electron microscopy, and by measurement of the internal volume with cyanocobalamin while calculating the number of DOPA molecules per vesicle. Vesicles are stable for at least three weeks. Sepharose 4B column chromatography of the preparation yields a peak of fractions with the same polydispersity as the original sample and shows that 30 to 40% of the original lipid in a sample is recovered as LUV. Less than 2% of the sample forms small unilamellar vesicles (SUV) (diameter = 30 nm), which emerge from the column in a separate peak. Since the remaining lipid is not suspended in the buffer during vesicle formation, for most purposes the vesicles may be used immediately after titration so that they can be prepared in less than 40 min.  相似文献   

9.
Cocoa butter (CB) is produced in the seeds of Theobroma cacao representing 50% of its dry weight. The lipid composition plays an important role in the physicochemical, rheological, and sensory properties of the CB, making this fat a valuable resource for the production of chocolates, cosmetics, and pharmaceuticals. In this paper, are described experimental strategies used for a rational improvement of biomass production and fatty acids in cacao cell suspension cultures. First, the lipid profile in four cacao varieties is characterized, and then, one variety is selected to induce cell suspensions using a direct method without previous establishment of a callus phase. To improve growth and total fat production in cell suspension cultures, modified DKW media and newly designed media culture, based on the mineral concentrations of cacao seeds (cacao biomass production, “CBP”), are analyzed and compared. In addition, the effect of acetate in the lipid profile of cell suspensions is evaluated. Ultrastructural histological analysis of lipid vesicles in cacao seeds and cell suspensions is also performed. The results will show that it is feasible to establish cacao suspensions without the calli step and increase the biomass production by selecting a suitable cacao variety and tissue and also applying a new culture media formulation. In addition, it is possible to synthesize fatty acids in cell cultures and modify the lipid profile adding a precursor of the novo biosynthesis of fatty acids such as the acetate. Transmission electronic microscopy examinations and differential interference contrast microscopy analysis will demonstrate that lipid vesicles are the main reserve substance in both cacao seeds and cell suspensions.  相似文献   

10.

Background

Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown.

Methodology/Principal Findings

We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100–300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells.

Conclusions/Significance

Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.  相似文献   

11.
Substrate-supported planar lipid bilayers are generated most commonly by the adsorption and transformation of phospholipid vesicles (vesicle fusion). We have recently demonstrated that simultaneous measurements of surface plasmon resonance (SPR) and surface plasmon fluorescence spectroscopy (SPFS) are highly informative for monitoring lipid membranes on solid substrates. SPR and SPFS provide information on the amount and topography of adsorbed lipid membranes, respectively. In this study, the vesicle fusion process was studied in detail by measuring SPR-SPFS at a higher rate and plotting the obtained fluorescence intensity versus film thickness. We could track the initial adsorption of vesicles, the onset of vesicle rupture occurring at certain vesicle coverage of the surface, and the autocatalytic transformation into planar bilayers. We also monitored vesicle fusion of the same vesicle suspensions by quartz crystal microbalance with dissipation monitoring (QCM-D). We compared the results obtained from SPR-SPFS and QCM-D to highlight the unique information provided by SPR-SPFS.  相似文献   

12.
We assessed the utility of liver-targeted vesicles as a drug delivery system for the treatment of liver diseases. Small, unilamellar vesicles (mean diameter, 60–80 nm) composed of dipalmitoylphosphatidylcholine, cholesterol, dipalmitoylphosphatidylglycerol and digalactosyldiacylglycerol (mol ratios, 40:40:5:15) are rapidly cleared from the blood in rats after intravenous injection. In vivo organ distribution shows that the liver is the major site of vesicles accumulation, with roughly 60–80% of the vesicles contents delivered to the liver. Isolated, perfused rat liver experiments show that the uptake is due to the hepatic asialoglycoprotein receptor, and the uptake process occurs with minimal vesicle leakage. At low doses of the vesicles, the single pass extraction by the liver is around 50%, which means that this vesicle formulation operates close to optimal efficiency as a drug delivery system to the liver. Binding of vesicles to the liver was determined to saturate at 6.5 mg total lipid/kg body weight, with a maximum steady-state turnover rate of vesicles at 37° C of 79 μg lipid/min per kg body weight. This gives a receptor recycling time of around 80 min. We have incorporated this information into a pharmacokinetic model of vesicle distribution which quantitatively predicts the kinetics and dose dependence of vesicle uptake by the liver in vivo. This information can be used to optimize vesicle-mediated drug delivery to the liver.  相似文献   

13.
Electrostatic interaction is an important secondary force affecting the structure, stability, and function of lipid vesicles (liposomes). For this study, a negatively charged lipid with carboxylic acid was mixed with phospholipid to produce anionic vesicles. The electrostatics of the carboxylated anionic vesicle (ca. 200 nm diameter) was determined and correlated with entrapment capacity of the vesicles. Correlative analysis revealed the zeta potential of the vesicles as a factor quantitatively affecting the entrapment capacity for a water-soluble marker, in which the entrapment capacity reached its maximum level in less than −30 mV of zeta potential. Transmission electron microscopy (TEM) revealed that the vesicles with high entrapment capacity are composed of a unilamellar membrane. This finding is expected to be useful for efficient encapsulation of water-soluble pharmaceuticals within vesicles.  相似文献   

14.
Frankia vesicles are differentiated during nitrogen starvation; they contain nitrogenase whether produced by free-living frankiae or by frankiae in actinorhizal root nodules. Vesicles are surrounded by envelopes of several monolayers of uncharacterized lipid. It has been suggested that the envelope limits diffusion of O2 into the vesicle cytoplasm, thereby preventing inactivation of nitrogenase. Whole vesicles were prepared on sucrose gradients and sonicated, and vesicle envelopes were isolated on top of a cushion of 40% sucrose. Transmission electron microscopy of potassium permanganate-fixed envelopes confirmed the purity of these preparations. Only the outer and inner envelope layers were visible in permanganate-fixed intact vesicles; the laminae were not visible in aldehyde-osmium-fixed, lead citrate-uranyl acetate-stained whole vesicles. However, the laminated nature of the envelope was clearly evident in sonicated vesicles and in envelope fragments fixed with KMnO4. The observations indicate that partial disruption of the vesicle envelope enables its visualization with permanganate fixation, and these observations open the way for further studies on the relationship of the vesicle surface to environmental conditions.  相似文献   

15.
Supported lipid bilayers (SLB) are important for the study of membrane-based phenomena and as coatings for biosensors. Nevertheless, there is a fundamental lack of understanding of the process by which they form from vesicles in solution. We report insights into the mechanism of SLB formation by vesicle adsorption using temperature-controlled time-resolved fluorescence microscopy at low vesicle concentrations. First, lipid accumulates on the surface at a constant rate up to ∼0.8 of SLB coverage. Then, as patches of SLB nucleate and spread, the rate of accumulation increases. At a coverage of ∼1.5 × SLB, excess vesicles desorb as SLB patches rapidly coalesce into a continuous SLB. Variable surface fluorescence immediately before SLB patch formation argues against the existence of a critical vesicle density necessary for rupture. The accelerating rate of accumulation and the widespread, abrupt loss of vesicles coincide with the emergence and disappearance of patch edges. We conclude that SLB edges enhance vesicle adhesion to the surface and induce vesicle rupture, thus playing a key role in the formation of continuous SLB.  相似文献   

16.
Cryoelectron microscopy has been used to study the reorganization of unilamellar cationic lipid vesicles upon the addition of DNA. Unilamellar DNA-coated vesicles, as well as multilamellar DNA lipid complexes, could be observed. Also, DNA induced fusion of unilamellar vesicles was found. DNA appears to adsorb to the oppositely charged lipid bilayer in a monolayer of parallel helices and can act as a molecular "glue" enforcing close apposition of neighboring vesicle membranes. In samples with relatively high DNA content, there is evidence for DNA-induced aggregation and flattening of unilamellar vesicles. In these samples, multilamellar complexes are rare and contain only a small number of lamellae. At lower DNA contents, large multilamellar CL-DNA complexes, often with >10 bilayers, are formed. The multilamellar complexes in both types of sample frequently exhibit partially open bilayer segments on their outside surfaces. DNA seems to accumulate or coil near the edges of such unusually terminated membranes. Multilamellar lipid-DNA complexes appear to form by a mechanism that involves the rupture of an approaching vesicle and subsequent adsorption of its membrane to a "template" vesicle or a lipid-DNA complex.  相似文献   

17.
Lipid extraction using a monophasic chloroform/methanol/water mixture, coupled with functional group selective derivatization and direct infusion nano-ESI-high-resolution/accurate MS, is shown to facilitate the simultaneous analysis of both highly polar and nonpolar lipids from a single retina lipid extract, including low abundance highly polar ganglioside lipids, nonpolar sphingolipids, and abundant glycerophospholipids. Quantitative comparison showed that the monophasic lipid extraction method yielded similar lipid distributions to those obtained from established “gold standard” biphasic lipid extraction methods known to enrich for either highly polar gangliosides or nonpolar lipids, respectively, with only modest relative ion suppression effects. This improved lipid extraction and analysis strategy therefore enables detailed lipidome analyses of lipid species across a broad range of polarities and abundances, from minimal amounts of biological samples and without need for multiple lipid class-specific extractions or chromatographic separation prior to analysis.  相似文献   

18.
We developed “fractionation profiling,” a method for rapid proteomic analysis of membrane vesicles and protein particles. The approach combines quantitative proteomics with subcellular fractionation to generate signature protein abundance distribution profiles. Functionally associated groups of proteins are revealed through cluster analysis. To validate the method, we first profiled >3500 proteins from HeLa cells and identified known clathrin-coated vesicle proteins with >90% accuracy. We then profiled >2400 proteins from Drosophila S2 cells, and we report the first comprehensive insect clathrin-coated vesicle proteome. Of importance, the cluster analysis extends to all profiled proteins and thus identifies a diverse range of known and novel cytosolic and membrane-associated protein complexes. We show that it also allows the detailed compositional characterization of complexes, including the delineation of subcomplexes and subunit stoichiometry. Our predictions are presented in an interactive database. Fractionation profiling is a universal method for defining the clathrin-coated vesicle proteome and may be adapted for the analysis of other types of vesicles and particles. In addition, it provides a versatile tool for the rapid generation of large-scale protein interaction maps.  相似文献   

19.
The technique of flow microfluorometry has been extended to the study of small lipid complexes to assess either the lipid (hydrophobic) or aqueous (hydrophilic) compartments of selected natural or model membrane systems. sn-1-Palmitoyl-sn-2-oleoyl-phosphatidylcholine/cholesterol unilamellar vesicles, averaging 268 nm in diameter and containing varying concentrations of the synthetic lipophile probe, sn-1-palmitoyl-sn-2-12-[N-4-nitrobenzo-2-oxa-1,3-diazole]-aminocaproyl-phosphatidylcholine (NBD-PC), were analyzed using an Ortho Series 50-H Cytofluorograf and an Ortho 2150 computer system. NBD-labeled vesicles were analyzed for green fluorescence and the intensity of scattered light, the later being analyzed both at low angle (2–5°) and at 90° to the incident beam. At the high amplification required for vesicle detection, background signals from the sheath buffer, nonspecific laser light, and electronic noise were observed. However, this background noise signal was removed by appropriately setting a discriminator window. Profiles of signals falling within this region were then constructed. For the settings selected, more than 98% of data recorded could be attributed to observations on vesicles. Size information from the intensity of scattered light was obtained by comparison of the sample with fluorescent microspheres after correcting for the particle-scattering function difference between hollow and solid spheres and for refractive index differences. Additionally, cytograms and profiles were constructed for vesicles containing 5 m 6-carboxyfluorescein, 3′,6′-dihydroxy-3-oxospiro(isobenzofuran-1 (3H),9′-(9H)xanthen)-6-carboxylic acid, trapped in the aqueous core. Thus, the utility of flow microfluorometry has been extended to much smaller particle populations than studied previously by this technique. It has significant potential for studying several important properties of selected populations of vesicles and lipoproteins including (i) the size and fluorescence distribution of particles, (ii) the equilibrium distribution of probes among different size populations and among different domains within populations, (iii) the time dependence of probe transfer from a specific labeled population to a specific unlabeled population, (iv) the time dependence of vesicle fusion (combining aqueous compartments), and (v) sorting particles which are labeled differently.  相似文献   

20.
The morphology and size of hydrated lipid dispersions of bis(monoacylglycero)phosphate (BMP) mixed with varying mole percentages of the ganglioside GM1 were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Electron paramagnetic resonance (EPR) spectroscopy of these same mixtures, doped at 0.5 mol% with doxyl labeled lipids, was used to investigate acyl-chain packing. Results show that for 20-30% GM1, hydrated BMP:GM1 mixtures spontaneously form small spherical vesicles with diameters ∼100 nm and a narrow size distribution profile. For other concentrations of GM1, hydrated dispersions with BMP have non-spherical shapes and heterogeneous size profiles, with average vesicle diameters >400 nm. All samples were prepared at pH 5.5 to mimic the lumen acidity of the late endosome where BMP is an essential component of intraendosomal vesicle budding, lipid sorting and trafficking. These findings indicate that GM1 and BMP under a limited concentration range spontaneously form small vesicles of homogeneous size in an energy independent manner without the need of protein templating. Because BMP is essential for intraendosomal vesicle formation, these results imply that lipid-lipid interactions may play a critical role in the endosomal process of lipid sorting and trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号