共查询到20条相似文献,搜索用时 11 毫秒
1.
《Animal : an international journal of animal bioscience》2018,12(4):741-749
Feeding dairy cows diets rich in grain often leads to subacute rumen acidosis (SARA), which might affect their responsiveness to immunogenic stimuli such as exogenous lipopolysaccharide (LPS), and can lead to metabolic alterations. The main objective of this study was to investigate if SARA affects the stress and metabolic health responses resulting from an intramammary LPS challenge. Before the intramammary LPS challenge, the SARA cows showed higher blood glucose and a tendency for higher lactate and aspartate aminotransferase as well as a trend toward lower β-hydroxybutyrate (BHBA) and γ-glutamyltransferase compared with control cows. After the LPS challenge, the serum cortisol concentration markedly increased and the calcium concentration decreased both in SARA and control cows. In SARA-LPS cows, however, the lactate concentration increased due to the LPS infusion, whereas it remained unchanged in the control cows. A lower serum BHBA concentration was found in SARA-LPS compared with control-LPS cows. Higher non-esterified fatty acid concentrations were found in control-LPS cows shortly before the LPS challenge compared with SARA cows, challenged or not with LPS, whereas it did not differ from SARA-LPS cows thereafter. In conclusion, the results suggest that intramammary LPS challenge induced stress and lowered calcium concentration in all dairy cows, whereby this challenge showed lower BHBA and higher lactate levels in cows with SARA conditions. 相似文献
2.
Telezhenko E 《Animal : an international journal of animal bioscience》2009,3(12):1746-1753
The variability in dairy cow gait characteristics, determined by measurements of footprints (trackway measurements), was analysed. Seven gait parameters were determined from 32 non-lame dairy cows during free-speed walking on a slatted concrete walkway. The footprints were revealed by application of a thin lime powder-slurry layer to the walkway surface. The cows were observed on two test occasions with a 3-week interval, with measurements from four consecutive strides used within each test session. The variance components for cow, test and cow-test interaction were estimated by a residual (restricted) maximum likelihood method. The percentage of each variance component was calculated to assess the relative impact of each factor on total variance. Between-test variation was generally low, suggesting that cows maintain the same average gait pattern, at least over a 3-week period. The proportion of within-test variation was considerable for most trackway measurements. Stride length, step angle, step width and tracking (overlap) showed low to moderate within-test variation (12% to 27%), whereas for mediolateral displacement of rear feet and step length it was rather high (54% and 62%, respectively). Within-test variation in step asymmetry was very high (77%), suggesting the occurrence of natural, non-systematic changes in inter-limb coordination in non-lame cows. For better understanding the gait pattern in non-lame cows, linear associations between the trackway measurements and with body size were assessed. It was concluded that trackway measurements were able to describe the gait pattern in walking cows under dairy farm conditions. However, considering the relatively high within-test variation in gait, several strides should be used to obtain a representative gait pattern. 相似文献
3.
《Animal : an international journal of animal bioscience》2019,13(5):1000-1008
Trace minerals have important roles in immune function and oxidative metabolism; however, little is known about the relationships between supplementation level and source with outcomes in dairy cattle. Multiparous Holstein cows (n=48) beginning at 60 to 140 days in milk were utilized to determine the effects of trace mineral amount and source on aspects of oxidative metabolism and responses to intramammary lipopolysaccharide (LPS) challenge. Cows were fed a basal diet meeting National Research Council (NRC) requirements except for no added zinc (Zn), copper (Cu) or manganese (Mn). After a 4-week preliminary period, cows were assigned to one of four topdress treatments in a randomized complete block design with a 2×2 factorial arrangement of treatments: (1) NRC inorganic (NRC levels using inorganic (sulfate-based) trace mineral supplements only); (2) NRC organic (NRC levels using organic trace mineral supplements (metals chelated to 2-hydroxy-4-(methythio)-butanoic acid); (3) commercial inorganic (approximately 2×NRC levels using inorganic trace mineral supplements only; and (4) commercial organic (commercial levels using organic trace mineral supplements only). Cows were fed the respective mineral treatments for 6 weeks. Treatment effects were level, source and their interaction. Activities of super oxide dismutase and glutathione peroxidase in erythrocyte lysate and concentrations of thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) in plasma were measured as indices of oxidative metabolism. Effects of treatment on those indices were not significant when evaluated across the entire experimental period. Plasma immunoglobulin G level was higher in cows supplemented with organic trace minerals over the entire treatment period; responses assessed as differences of before and after Escherichia coli J5 bacterin vaccination at the end of week 2 of treatment period were not significant. Cows were administered an intramammary LPS challenge during week 5; during week 6 cows fed commercial levels of Zn, Cu and Mn tended to have higher plasma TAC and cows fed organic sources had decreased plasma TBARS. After the LPS challenge, the extent and pattern of response of plasma cortisol concentrations and clinical indices (rectal temperature and heart rate) were not affected by trace mineral level and source. Productive performance including dry matter intake and milk yield and composition were not affected by treatment. Overall, results suggest that the varying level and source of dietary trace minerals do not have significant short-term effects on oxidative metabolism indices and clinical responses to intramammary LPS challenge in midlactation cows. 相似文献
4.
《Animal : an international journal of animal bioscience》2017,11(2):261-273
There is increasing interest in the use of continuous housing systems for dairy cows, with various reasons put forward to advocate such systems. However, the welfare of dairy cows is typically perceived to be better within pasture-based systems, although such judgements are often not scientifically based. The aim of this review was to interrogate the existing scientific literature to compare the welfare, including health, of dairy cows in continuously housed and pasture-based systems. Although summarising existing work, knowledge gaps and directions for future research are also identified. The scope of the review is broad, examining relevant topics under three main headings; health, behaviour and physiology. Regarding health, cows on pasture-based systems had lower levels of lameness, hoof pathologies, hock lesions, mastitis, uterine disease and mortality compared with cows on continuously housed systems. Pasture access also had benefits for dairy cow behaviour, in terms of grazing, improved lying/resting times and lower levels of aggression. Moreover, when given the choice between pasture and indoor housing, cows showed an overall preference for pasture, particularly at night. However, the review highlighted the need for a deeper understanding of cow preference and behaviour. Potential areas for concern within pasture-based systems included physiological indicators of more severe negative energy balance, and in some situations, the potential for compromised welfare with exposure to unpredictable weather conditions. In summary, the results from this review highlight that there remain considerable animal welfare benefits from incorporating pasture access into dairy production systems. 相似文献
5.
《Animal : an international journal of animal bioscience》2020,14(8):1745-1756
The design of self-locking barriers can affect cows’ skin injuries and impair welfare. This study aimed to propose and refine recommendations, expressed relatively to the cows’ dimensions, for self-locking barrier design to reduce risks for skin injuries on the neck/shoulder/back and on carpus of dairy cows. We recorded individual body dimensions and the dimensions of self-locking barriers (e.g. top rail height) and assessed skin injuries on 3801 cows from 131 loose-housing dairy farms. We explored the significant associations between presence/absence of skin injuries and self-locking barrier dimensions using weighted multivariable logistic regression, taking into account the diversity of feeding barriers within each farm. The robustness of the models was assessed by cross-validation. Cows had skin injuries mainly on the neck/shoulder/back (29.0%) and, to a lesser extent, on the carpus (14.0%). The final multivariable logistic regression models comprised 13 factors for skin injuries on the neck/shoulder/back, and 11 factors for skin injuries on the carpus. Skin injuries were significantly reduced when the self-locking barriers were inclined (neck/shoulder/back) and when the cows used a feeding table (i.e. flat) instead of a feeding manger or cribs (i.e. hollow) (carpus). A top rail height >1.05 × cow height (measured at withers) was significantly associated with fewer skin injuries on the neck/shoulder/back and on carpus. Skin injuries on the neck/shoulder/back and carpus were significantly reduced when the bottom rail was on the food side relative to the wall, and at a height <0.39 of cow height. Skin injuries were significantly less frequent when the separation wall had no sharp edges on the food side (neck/shoulder/back), was >0.4 of cow height (carpus), was thinner than 15 cm (neck/shoulder/back and carpus) and when the height of the feeding step was 0.04 to 0.1 of cow height (neck/shoulder/back) and the length of the feeding step was <0.2 of cow length (carpus). A headlock articulation nut positioned between 0.62 and 0.78 of cow height significantly reduced skin injuries on the neck/shoulder/back. Here, by combining the diversity of on-farm self-locking barriers and their respective dimensions, we were able to refine the International Commission of Agricultural and Biosystems Engineering recommendations for self-locking barrier design and to propose new ones. This information now needs to be confirmed on other datasets, but can already help farmers and dairy industry stakeholders improve the design of self-locking barriers to improve dairy cow welfare. 相似文献
6.
Two experiments were carried out to assess the effects of electric and magnetic fields (EMF) on blood thyroxine (T4) in dairy cattle. In experiment 1, 16 lactating pregnant Holstein cows were exposed to 10 kV/m, 30 microTesla (microT) EMF. The animals were divided into two groups of eight animals each. Each group was exposed to EMF according to one of two treatment sequences of three periods of 28 days each. Sequence 1 was EMF OFF-ON-OFF and sequence 2 was EMF ON-OFF-ON. During the last day of each treatment period, blood samples were collected every 4 h for 24 h to estimate T4 plasma concentrations. In experiment 2, 16 nonlactating, nonpregnant, multiparous Holsteins were exposed to 10 kV/m, 30 microT EMF. The animals were divided into two groups of eight animals each. Each group was exposed to EMF according to one of the two treatment sequences described above, except that each period amounted to the number of days corresponding to one estrous cycle. During treatment, blood samples were collected every other day for T4 analysis. In both experiments, the light cycle emulated a short photoperiod (8 h light/16 h dark). During the ON periods, the animals were exposed to EMF for 16 h, 8 h of the light period plus the first 8 h of during the dark period. In experiment 1, exposed animals did not have any change in T4 plasma concentrations due to treatment (P = .0968), but, the time of sample collection revealed a significant difference (P = .0012). In experiment 2, the effect of period (P = .0009) and the treatment by days interaction (P = .0003) were statistically significant. We conclude that a worst case scenario exposure of dairy cattle to 10 kV/m, 30 microT EMF influences, in a moderate fashion, the blood levels of thyroxine. 相似文献
7.
Heather D. Ingle Christa A. Rice Randi A. Black Sarah Z. Childers Nicole L. Eberhart Maria E. Prado 《Journal of applied animal welfare science : JAAWS》2018,21(3):239-243
The study objective was to determine the effects of trimming the switch of dairy cows on teat-end bacterial counts and udder hygiene scores. Cows (n = 102) were blocked by days in milk, milk production, and parity and then assigned to (a) treatment (trimming of their tail switch using a commercially available trimmer), or (b) control (unaltered tails). Udder hygiene was recorded for cows on Days 0 (initiation of treatment), 32, and 64. A subset of cows (n = 21) was used to assess Streptococci and coliform bacterial populations on teat ends. Samples were collected by swabbing the left front teat end before milking on Days 0, 32, and 64 and were cultured within 24 hr of sampling. The GLIMMIX and PROC Frequency (SAS Version 9.3) were used to analyze data. There were no treatment effects of switch trimming on hygiene scores or bacterial counts. These findings suggest that udder hygiene may not be driven by tail status. Environmental and management factors, such as cleanliness, stall bedding, and stall design, may be more important contributing factors in maintaining udder health. 相似文献
8.
《Animal : an international journal of animal bioscience》2021,15(7):100259
A considerable amount of trimethylamine (TMA) is likely generated in the rumen; however, its metabolism is still unclear. This study aimed to investigate the role of Methanomassiliicoccales (Mmc) in TMA metabolism in the rumen of dairy cows. Three experiments, two rumen in vitro fermentation trials and one dairy cow in vivo trial, were conducted. Four groups were set in Experiment 1: control, nitroglycerin (NG, a methanogen inhibitor), TMA (7.2 mmol/L), and TMA + NG. The methanogenic activity was completely inhibited in the NG group, and no methane production was observed in the NG and TMA + NG groups. The TMA content hardly reduced in the TMA + NG group (6.9 mmol/L) following a 2 d-incubation; in contrast, it demonstrated a significant reduction by 47.2% in the TMA group. Methanogen 16S rRNA gene sequencing and real-time PCR showed that the relative abundance of Mmc increased in the TMA group (P = 0.005). The increase was mainly attributed to two species-level taxa, Group 9 sp. ISO4-G1 and Group 10 sp. Four groups were set in Experiment 2: control, NG, choline (choline chloride, 7.2 mmol/L), and choline + NG. Choline was completely degraded in 24 h, and the TMA content reached the peak point (7.3 mmol/L) in the fermentation culture. The TMA content remained relatively stable in the choline + NG group following the peak point. However, it started to decrease after 24 h in the choline group, corresponding to the rapid increase in methane production and the abundance of Mmc. Eight mid-lactating, rumen-fistulated Holstein cows were randomly assigned to the control (n = 4) or choline (n = 4) group in Experiment 3: In the choline group, cows were gradually supplemented with 100–250 g/(cow·d) of choline chloride over 4 weeks. Compared to the control group, TMA accumulated in the rumen fluid, and the abundance of Mmc 16S rRNA gene and choline-degrading bacterial cutC gene increased in the rumen content in the choline group (P < 0.050). The trimethylamine N-oxide content in the plasma and milk of the dairy cows was approximately 10 times higher in the choline group than that in the control at the end of the experiment. These findings revealed that Mmc played an important role in the elimination of TMA in the rumen. The accumulation of TMA in the rumen would lead to a large amount of TMA absorbed into the blood stream of the dairy cows. 相似文献
9.
Schennink A Stoop WM Visker MH Heck JM Bovenhuis H van der Poel JJ van Valenberg HJ van Arendonk JA 《Animal genetics》2007,38(5):467-473
Dietary fat may play a role in the aetiology of many chronic diseases. Milk and milk-derived foods contribute substantially to dietary fat, but have a fat composition that is not optimal for human health. We measured the fat composition of milk samples in 1918 Dutch Holstein Friesian cows in their first lactation and estimated genetic parameters for fatty acids. Substantial genetic variation in milk-fat composition was found: heritabilities were high for short- and medium-chain fatty acids (C4:0-C16:0) and moderate for long-chain fatty acids (saturated and unsaturated C18). We genotyped 1762 cows for the DGAT1 K232A polymorphism, which is known to affect milk-fat percentage, to study the effect of the polymorphism on milk-fat composition. We found that the DGAT1 K232A polymorphism has a clear influence on milk-fat composition. The DGAT1 allele that encodes lysine (K) at position 232 (232K) is associated with more saturated fat; a larger fraction of C16:0; and smaller fractions of C14:0, unsaturated C18 and conjugated linoleic acid (P < 0.001). We conclude that selective breeding can make a significant contribution to change the fat composition of cow's milk. 相似文献
10.
《Animal : an international journal of animal bioscience》2019,13(1):198-208
Dairy production systems are often criticized as being major emitters of greenhouse gases (GHG). In this context, the extension of the length of the productive life of dairy cows is gaining interest as a potential GHG mitigation option. In the present study, we investigated cow and system GHG emission intensity and profitability based on data from 30 dairy cows of different productive lifetime fed either no or limited amounts of concentrate. Detailed information concerning productivity, feeding and individual enteric methane emissions of the individuals was available from a controlled experiment and herd book databases. A simplified GHG balance was calculated for each animal based on the milk produced at the time of the experiment and for their entire lifetime milk production. For the lifetime production, we also included the emissions arising from potential beef produced by fattening the offspring of the dairy cows. This accounted for the effect that changes in the length of productive life will affect the replacement rate and thus the number of calves that can be used for beef production. Profitability was assessed by calculating revenues and full economic costs for the cows in the data set. Both emission intensity and profitability were most favourable in cows with long productive life, whereas cows that had not finished their first lactation performed particularly unfavourably with regard to their emissions per unit of product and rearing costs were mostly not repaid. Including the potential beef production, GHG emissions in relation to total production of animal protein also decreased with age, but the overall variability was greater, as the individual cow history (lifetime milk yield, twin births, stillbirths, etc.) added further sources of variation. The present results show that increasing the length of productive life of dairy cows is a viable way to reduce the climate impact and to improve profitability of dairy production. 相似文献
11.
《Animal : an international journal of animal bioscience》2015,9(10):1617-1623
Death of calves around parturition is a matter of concern for dairy farmers. Relatively high stillbirth rates and unfavourable trends have been reported for Holstein heifers in the Netherlands and several other countries. In our study, we investigated herd differences, genetic parameters and genotype by environment interaction for heifer calf livability. A large dataset with data from calvings between 1993 and 2012 of Dutch dairy farms was used. There were considerable differences between herds in livability of calves from heifers, with averages ranging from 74% to 95%. Both herds with relatively high and low averages showed the same negative trend between 1993 and 2012, with largest declines in herds with the lowest averages. We found that heritability and genetic variation of first parity livability were substantially larger in herd environments where the likelihood of stillbirth was high v. environments where stillbirth was at a low level. The genetic correlations between herd environment levels were all very close to unity, indicating that ranking of sires was similar for all environments. However, for herds with a relatively high stillbirth incidence selecting sires with favourable breeding values is expected to be twice as profitable as in herds with a relatively low stillbirth incidence. 相似文献
12.
《Animal : an international journal of animal bioscience》2016,10(2):212-220
Generally, <30% of dairy cattle’s nitrogen intake is retained in milk. Large amounts of nitrogen are excreted in manure, especially in urine, with damaging impacts on the environment. This study explores the effect of lowering dietary degradable nitrogen supplies – while maintaining metabolisable protein – on dairy cows’ performance, nitrogen use efficiency and gas emissions (NH3, N2O, CH4) at barn level with tied animals. Two dietary N concentrations (CP: 12% DM for LowN; 18% DM for HighN) were offered to two groups of three lactating dairy cows in a split-plot design over four periods of 2 weeks. Diets were formulated to provide similar metabolisable protein supply, with degradable N either in deficit or in excess (PDIN of 84 and 114 g/kg DM for LowN and HighN, respectively). Cows ingested 0.8 kg DM/day less on the LowN diet, which was also 2.5% less digestible. Milk yield and composition were not significantly affected. N exported in milk was 5% lower (LowN: 129 g N/day; HighN: 136 g N/day; P<0.001) but milk protein yield was not significantly affected (LowN: 801 g/day; HighN: 823 g/day; P=0.10). Cows logically ingested less nitrogen on the LowN diet (LowN: 415 g N/day; HighN: 626 g N/day; P<0.001) resulting in a higher N use efficiency (N milk/N intake; LowN: 0.31; HighN: 0.22; P<0.001). N excreted in urine was almost four times lower on the LowN diet (LowN: 65 g N/day; HighN: 243 g N/day; P<0.001) while urinary urea N concentration was eightfold lower (LowN: 4.6 g/l; HighN: 22.9 g/l; P<0.001). Ammonia emission (expressed in g/h in order to remove periods of the day with potential interferences with volatile molecules from feed) was also lower on the LowN diet (LowN: 1.03 g/h per cow; HighN: 1.25 g/h per cow; P<0.05). Greenhouse gas emissions (N2O and CH4) at barn level were not significantly affected by the amount of dietary N. Offering low amounts of degradable protein with suitable metabolisable protein amounts to cattle improved nitrogen use efficiency and lowered ammonia emissions at barn level. This strategy would, however, need to be validated for longer periods, other housing systems (free stall barns) and at farm level including all stages of manure management. 相似文献
13.
《Animal : an international journal of animal bioscience》2019,13(9):2044-2051
Nutritional strategies to mitigate the negative effects of heat stress on animal welfare and productivity often involve changes in ration formulation. However, cattle commonly sort their ration in favour of certain components, and it is not clear how feed sorting responds to heat stress. This study investigated the association between heat stress and feed sorting behaviour. Lactating Holstein dairy cows (n = 32; parity = 2.8±1.2; mean±SD) were housed in a free stall barn and milked 3×/day. Cows were fed individually using the Calan Broadbent Feeding System and offered ad libitum access to a total mixed ration (containing on a dry matter basis: 3.3% ryegrass hay, 16.5% ryegrass baleage, 24.7% corn silage, 11.1% brewers grains, 19.7% ground corn, 19.8% concentrate and 4.9% protein/mineral supplement), provided 1×/day. Beginning at 186±60 days in milk, cows were exposed to either: heat stress conditions (HT; n = 15) (average temperature–humidity index: 77.6), or evaporative cooling (CL; n = 17), consisting of misters and fans over the freestall and feed bunks. Data were collected during a 4-day baseline period, and two 4-day experimental periods: starting at 10 days after implementing treatments (defined as acute heat stress for HT cows), and at 62 days after implementing treatments (defined as chronic heat stress for HT cows). Daily feed intake and physiological responses to heat stress (body temperature, respiration rate) were recorded. Samples of fresh and refused feed were collected daily from individual cows for particle size analysis. The particle size separator had three screens (19, 8 and 1.18 mm) and a bottom pan, resulting in 4 fractions (long, medium, short and fine particles). Feed sorting was calculated as the actual intake of each particle size fraction expressed as a percentage of the predicted intake of that fraction. During both heat stress periods, HT cows sorted for long particles more than CL cows (105.0% v. 100.6%; SE = 1.1). During acute heat stress, HT cows sorted to a greater extent than CL cows against medium and short particles, whereas sorting of these fractions did not differ during chronic heat stress. Body temperature and respiration rate were associated across treatments with the extent of sorting for long particles and against short particles during acute heat stress. These results suggest that feed sorting is particularly influenced during acute heat stress, and that sorting for longer particles may increase in heat stress. 相似文献
14.
《Animal : an international journal of animal bioscience》2019,13(3):487-494
Excessive abdominal fat might be associated with more severe metabolic disorders in Holstein cows. Our hypothesis was that there are genetic differences between cows with low and high abdominal fat deposition and a normal cover of subcutaneous adipose tissue. The objective of this study was to assess the genetic basis for variation in visceral adiposity in US Holstein cows. The study included adult Holstein cows sampled from a slaughterhouse (Green Bay, WI, USA) during September 2016. Only animals with a body condition score between 2.75 and 3.25 were considered. The extent of omental fat at the level of the insertion of the lesser omentum over the pylorus area was assessed. A group of 100 Holstein cows with an omental fold <5 mm in thickness and minimum fat deposition throughout the entire omentum, and the second group of 100 cows with an omental fold ⩾20 mm in thickness and with a marked fat deposition observed throughout the entire omentum were sampled. A small piece of muscle from the neck was collected from each cow into a sterile container for DNA extraction. Samples were submitted to a commercial laboratory for interrogation of genome-wide genomic variation using the Illumina BovineHD Beadchip. Genome-Wide association analysis was performed to test potential associations between fat deposition and genomic variation. A univariate mixed linear model analysis was performed using genome-wide efficient mixed model association to identify single nucleotide polymorphisms (SNPs) significantly associated with variation in a visceral fat deposition. The chip heritability was 0.686 and the estimated additive genetic and residual variance components were 0.427 and 0.074, respectively. In total, 11 SNPs defining four quantitative trait locus (QTL) regions were found to be significantly associated with visceral fat deposition (P<0.00001). Among them, two of the QTL were detected with four and five significantly associated SNPs, respectively; whereas, the QTLs detected on BTA12 and BTA19 were each detected with only one significantly associated SNP. No enriched gene ontology terms were found within the gene networks harboring these genes when supplied to DAVID using either theBos taurus or human gene ontology databases. We conclude that excessive omental fat in Holstein cows with similar body condition scores is not caused by a single Mendelian locus and that the trait appears to be at least moderately heritable; consequently, selection to reduce excessive omental fat is potentially possible, but would require the generation of predicted transmitting abilities from larger and random samples of Holstein cattle. 相似文献
15.
An exposure chamber was designed to study the effects of electric and magnetic fields (EMF) on oestrous cycles, hormonal profile during gestation, pineal function, quantity and quality of milk production, feed intake, and central nervous system of dairy cattle. The chamber was 15 x 10 x 3 m; and the control system was fully computerized so that the field intensities can be varied and monitored continuously, on site or remotely. During exposure to EMF, milk production, feed consumption, and health were monitored closely and blood and cerebral spinal fluid were continuously sampled. The chamber characteristics allow use of a wide range of exposure such as electric fields (0-30 kV/m) and magnetic fields (0-100 microT) at frequencies ranging from 45 to 3000 Hz. 相似文献
16.
《Animal : an international journal of animal bioscience》2021,15(7):100253
Most dairy cows experience negative energy balance (NEB) in early lactation because energy demand for milk synthesis is not met by energy intake. Excessive NEB may lead to metabolic disorders and impaired fertility. To optimize herd management, it is useful to detect cows in NEB in early lactation, but direct calculation of NEB is not feasible in commercial herds. Alternative methods rely on fat-to-protein ratio in milk or on concentrations of non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) in blood. Here, we considered methods to assess energy balance (EB) of dairy cows based on the fatty acid (FA) composition in milk. Short- and medium-chain FAs (primarily, C14:0) are typically synthesized de novo in the mammary gland and their proportions in milk fat decrease during NEB. Long-chain FAs C18:0 and C18:1 cis-9 are typically released from body fat depots during NEB, and their proportions increase. In this study, these FAs were routinely determined by Fourier-transform infrared spectroscopy (FTIR) of individual milk samples. We performed an experiment on 85 dairy cows in early lactation, fed the same concentrate ration of up to 5 kg per day and forage ad libitum. Daily milk yield and feed intake were automatically recorded. During lactation weeks 2, 4, and 6 after calving, two milk samples were collected for FTIR spectroscopy, Tuesday evening and Wednesday morning, blood plasma samples were collected Thursday morning. Net energy content in feed and net energy required for maintenance and lactation were estimated to derive EB, which was used to compare alternative indicators of severe NEB. Linear univariate models for EB based on NEFA concentration (deviance explained = 0.13) and other metabolites in blood plasma were outperformed by models based on concentrations of metabolites in milk: fat (0.27), fat-to-protein ratio (0.18), BHB (0.20), and especially C18:0 (0.28) and C18:1 cis-9 (0.39). Analysis of generalized additive models (GAM) revealed that models based on milk variables performed better than those based on blood plasma (deviance explained 0.46 vs. 0.21). C18:0 and C18:1 cis-9 also performed better in severe NEB prediction for EB cut-off values ranging from −50 to 0 MJ NEL/d. Overall, concentrations of C18:0 and C18:1 cis-9 in milk, milk fat, and milk BHB were the best variables for early detection of cows in severe NEB. Thus, milk FA concentrations in whole milk can be useful to identify NEB in early-lactation cows. 相似文献
17.
《Animal : an international journal of animal bioscience》2020,14(4):771-779
The objective of this study was to evaluate the effects of oak tannin extract (OTE) added in forage before ensiling on dairy cows fed at 92% of their digestible protein requirements. Six multiparous lactating Holstein cows were used in a crossover design (two treatments × two periods). The control treatment (CON) was based on a diet including 50% of grass silage, whereas the experimental treatment (TAN) included grass silage sprayed with OTE (26 g/kg DM) just before baling. Milk yield (on average 24 kg fat protein corrected milk per day) was not affected, but both milk and rumen fatty acids profiles were impacted by OTE. Nitrogen intake (415 g N per cow per day) and nitrogen use efficiency (NUE; 0.25 on average) were not affected, but a shift from urine (−8% of N intake relatively to control, P = 0.06) to faecal N (+5%; P = 0.004) was observed with the TAN diet (P ≤ 0.05). Nitrogen apparent digestibility was thus reduced for TAN (−3%; P ≤ 0.05). The effect of OTE on ruminal and milk FA profiles suggests an impact on rumen microbiota. Nitrogen isotopic discrimination between animal proteins and diet (Δ15N) was evaluated as a proxy for NUE. While no differences in NUE were observed across diets, a lower Δ15N of plasma proteins was found when comparing TAN v. CON diets. This finding supports the concept that Δ15N would mainly sign the N partitioning at the metabolic level rather than the overall NUE, with the latter also being impacted by digestive processes. Our results agree with a N shift from urine to faeces, and this strategy can thus be adopted to decrease the environmental impact of ruminant protein feeding. 相似文献
18.
《Animal : an international journal of animal bioscience》2015,9(9):1547-1558
For dairy cattle on pasture in temperate regions, it is largely unknown to what degree hot summer conditions impact energy metabolism, milk yield and milk composition and how effective shade is in reducing these negative effects. During the summer of 2012, a herd of Holstein cows was kept on pasture without access to shade (treatment NS). During the summers of 2011 and 2013, the herd was divided into a group with (treatment S) and a group without (treatment NS) access to shade. Shade was provided by young trees combined with shade cloths (80% reduction in solar radiation). A weather station registered the local climatic conditions on open pasture, from which we calculated daily average Heat Load Index (HLI) values. The effects of HLI and shade on rectal temperature (RT), blood plasma indicators of hyperventilation and metabolic changes due to heat stress, milk yield and milk composition were investigated. RT increased with increasing HLI, but was less for S cows than for NS cows (by 0.02°C and 0.03°C increase per unit increase of HLI, respectively). Hyperchloraemia (an increased blood plasma concentration of Cl−), a sign of hyperventilation, increased for NS cows but not for S cows. The plasma concentration of alkaline phosphatase, a regulator of energy metabolism in the liver, decreased with increasing HLI for NS cows only. Access to shade, thus, reduced the effect of HLI on RT, hyperchloraemia and the regulation of metabolism by the liver. As HLI increased, the plasma concentration of cholesterol decreased (indicating increased lipolysis) and the plasma concentration of creatinine increased (indicating increased protein catabolism). These effects did not differ between S and NS cows. For NS cows, after a lag-time of 2 days, the milk yield decreased with increasing HLI. For S cows, the milk yield was unaffected by HLI and its quadratic factor. The milk concentrations of lactose, protein and fat decreased as HLI increased, but only the effect on milk protein content was remediated by shade. In conclusion, access to shade tempered the negative effects of high HLI on RT, hyperchloraemia and a blood plasma indicator of changing energy metabolism (generally) as well as prevented the decrease in milk yield observed in cows without access to shade. 相似文献
19.
Alejandra Velsquez Edwin Mellisho Fidel Ovidio Castro Lleretny Rodríguez‐lvarez 《Molecular reproduction and development》2019,86(2):209-223
The high metabolic activity to which the dairy cattle are exposed to maintain milk production altered steroid metabolism that affects reproductive physiology and reduce oocyte competence. Our aims were (a) to characterize the competence of immature oocytes collected from dairy cattle based on the expression of genes in cumulus cells (CCs) and (b) to improve oocyte competence to support preimplantation embryo development by the supplementation of maturation medium with bone morphogenetic protein 15 (BMP15) and/or anti‐mullerian hormone (AMH). Oocyte donors were identified at the moment of ovary collection and grouped by involuntarily culled dairy cows (Holstein breed) or beef cattle. The embryo development speed to blastocyst of the cull dairy cattle versus beef cattle (control group) was lower. Besides, <10% of oocytes (with CC biopsies) derived from dairy cattle were able to develop to the blastocyst stage. In addition, a higher level of expression and a positive correlation were observed in the expression of most of the genes evaluated (LUM, KRT18, KRT8, CLIC3, BMPR1B, and SLC38A3) in the cumulus–oocyte complexes that produced blastocysts versus those which did not develop correctly (arrested development). Further, use of BMP15 in the maturation of oocytes from dairy cattle seems to increase competence, modulating the expression of OCT4, SOX2, CDX2, GATA6, and TP1 in resulting blastocysts. 相似文献
20.
《Animal : an international journal of animal bioscience》2019,13(11):2527-2535
Heat stress is a major problem for dairy cows in hot climates, thus coping strategies are essential. This study evaluated the effects of increasing diet fermentability on intake, total tract digestibility, ruminal pH and volatile fatty acids (VFA) profile, blood metabolite profile and milk production and composition of lactating dairy cows managed under conditions of ambient heat stress. Nine multiparous cows (650 ± 56 kg BW; mean ± SD) averaging 102 ± 13 days in milk and producing 54 ± 6 kg/day were randomly assigned to a triplicate 3 × 3 Latin square. During each 21-day period, cows were offered one of three total mixed rations that varied in diet fermentability. The three levels of diet fermentability were achieved by increasing the proportion of pellets containing ground wheat and barley in the dietary DM from 11.7% (low), to 23.3% (moderate), and 35.0% (high) by replacing ground corn grain. Each period had 14 day of adaptation and 7 day of sampling. The ambient temperature–humidity index ( ≥ 72) indicated that the cows were in heat stress almost the entire duration of the study. Also, rectal temperature of cows was elevated at 39.2°C, another indication of heat stress. Increasing diet fermentability linearly decreased dry matter intake (22.8, 22.5, 21.8 kg/day for low, moderate and high, respectively; P ≤ 0.05) but increased non-fibre carbohydrate digestibility (P ≤ 0.05) and tended to increase digestibility of DM (P = 0.10) and crude protein (P = 0.06). As a result, the intake of digestible DM was not affected by the treatments. The production of 3.5% fat corrected milk (32.6, 33.7, and 31.5 kg/day) was quadratically (P ≤ 0.05) affected by diet fermentability with lower production for the high diet compared with the other two, which were similar. Rumen pH (ruminocentesis) and proportions of butyrate and isovalerate linearly decreased whereas propionate proportion linearly increased with increasing diet fermentability (P ≤ 0.05). The rumen concentration of NH3-N (11.0, 9.0, and 8.7 mg/dL) and blood concentration of urea linearly decreased with increasing diet fermentability (P ≤ 0.05). The activity of alkaline phosphatase increased (65.1, 83.2, and 84.9 U/l) and concentration of malondialdehyde decreased (2.39, 1.90 and 1.87 µmol/l) linearly with increasing diet fermentability (P ≤ 0.05), which indicated possible attenuation of the effects of oxidative stress with increasing diet fermentability. Overall, a modest increase of diet fermentability improved nitrogen metabolism, milk protein production and oxidative stress of heat-stressed dairy cows, but a further increase in diet fermentability decreased milk yield. 相似文献