首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Pseudomonas aeruginosa three type VI secretion systems (T6SSs) coexist, called H1‐ to H3‐T6SSs. Several T6SS components are proposed to be part of a macromolecular complex resembling the bacteriophage tail. The T6SS protein HsiE1 (TagJ) is unique to the H1‐T6SS and absent from the H2‐ and H3‐T6SSs. We demonstrate that HsiE1 interacts with a predicted N‐terminal α‐helix in HsiB1 (TssB) thus forming a novel subcomplex of the T6SS. HsiB1 is homologous to the Vibrio cholerae VipA component, which contributes to the formation of a bacteriophage tail sheath‐like structure. We show that the interaction between HsiE1 and HsiB1 is specific and does not occur between HsiE1 and HsiB2. Proteins of the TssB family encoded in T6SS clusters lacking a gene encoding a TagJ‐like component are often devoid of the predicted N‐terminal helical region, which suggests co‐evolution. We observe that a synthetic peptide corresponding to the N‐terminal 20 amino acids of HsiB1 interacts with purified HsiE1 protein. This interaction is a common feature to other bacterial T6SSs that display a TagJ homologue as shown here with Serratia marcescens. We further show that hsiE1 is a non‐essential gene for the T6SS and suggest that HsiE1 may modulate incorporation of HsiB1 into the T6SS.  相似文献   

2.
The Type VI secretion system (T6SS) is a versatile machine that delivers toxins into either eukaryotic or bacterial cells. At a molecular level, the T6SS is composed of a membrane complex that anchors a long cytoplasmic tubular structure to the cell envelope. This structure is thought to resemble the tail of contractile bacteriophages. It is composed of the Hcp protein that assembles into hexameric rings stacked onto each other to form a tube similar to the phage tail tube. This tube is proposed to be wrapped by a structure called the sheath, composed of two proteins, TssB and TssC. It has been shown using fluorescence microscopy that the TssB and TssC proteins assemble into a tubular structure that cycles between long and short conformations suggesting that, similarly to the bacteriophage sheath, the T6SS sheath undergoes elongation and contraction events. The TssB and TssC proteins have been shown to interact and a specific α-helix of TssB is required for this interaction. Here, we confirm that the TssB and TssC proteins interact in enteroaggregative E. coli. We further show that this interaction requires the N-terminal region of TssC and the conserved α-helix of TssB. Using site-directed mutagenesis coupled to phenotypic analyses, we demonstrate that an hydrophobic motif located in the N-terminal region of this helix is required for interaction with TssC, sheath assembly and T6SS function.  相似文献   

3.
The type VI secretion system (T6SS) is widely distributed in pathogenic Proteobacteria. Sequence and structural analysis of T6SS reveals a resemblance to the T4 bacteriophage tail, in which an outer sheath structure contracts an internal tube for injecting nucleic acid into bacterial cells. However, the molecular details of how this phage tail-like T6SS structure is assembled in vivo and executed for exoprotein or effector secretion remain largely unknown. Here, we used a systematic approach to identify T6SS machinery and secreted components and investigate the interaction among the putative sheath and tube components of Agrobacterium tumefaciens. We showed that 14 T6SS components play essential roles in the secretion of the T6SS hallmark exoprotein Hcp. In addition, we discovered a novel T6SS exoprotein, Atu4347, that is dispensable for Hcp secretion. Interestingly, Atu4347 and the putative tube components, Hcp and VgrG, are mainly localized in the cytoplasm but also detected on the bacterial surface. Atu4342 (TssB) and Atu4341 (TssC41) interact with and stabilize each other, which suggests that they are functional orthologs of the sheath components TssB (VipA) and TssC (VipB), respectively. Importantly, TssB interacts directly with the three exoproteins (Hcp, VgrG, and Atu4347), in which Hcp also interacts directly with VgrG-1 on co-purification from Escherichia coli. Further co-immunoprecipitation and pulldown assays revealed these subcomplex(es) in A. tumefaciens and thereby support T6SS functioning as a contractile phage tail-like structure.  相似文献   

4.
The type VI secretion system (T6SS) is a specialized macromolecular complex dedicated to the delivery of protein effectors into both eukaryotic and bacterial cells. The general mechanism of action of the T6SS is similar to the injection of DNA by contractile bacteriophages. The cytoplasmic portion of the T6SS is evolutionarily, structurally and functionally related to the phage tail complex. It is composed of an inner tube made of stacked Hcp hexameric rings, engulfed within a sheath and built on a baseplate. This sheath undergoes cycles of extension and contraction, and the current model proposes that the sheath contraction propels the inner tube toward the target cell for effector delivery. The sheath comprises two subunits: TssB and TssC that polymerize under an extended conformation. Here, we show that isolated TssB forms trimers, and we report the crystal structure of a C-terminal fragment of TssB. This fragment comprises a long helix followed by a helical hairpin that presents surface-exposed charged residues. Site-directed mutagenesis coupled to functional assay further showed that these charges are required for proper assembly of the sheath. Positioning of these residues in the extended T6SS sheath structure suggests that they may mediate contacts with the baseplate.  相似文献   

5.
The Type VI secretion system (T6SS) is a macromolecular machine that mediates bacteria-host or bacteria-bacteria interactions. The T6SS core apparatus assembles from 13 proteins that form two sub-assemblies: a phage-like complex and a trans-envelope complex. The Hcp, VgrG, TssE, and TssB/C subunits are structurally and functionally related to components of the tail of contractile bacteriophages. This phage-like structure is thought to be anchored to the membrane by a trans-envelope complex composed of the TssJ, TssL, and TssM proteins. However, how the two sub-complexes are connected remains unknown. Here we identify TssK, a protein that establishes contacts with the two T6SS sub-complexes through direct interactions with TssL, Hcp, and TssC. TssK is a cytoplasmic protein assembling trimers that display a three-armed shape, as revealed by TEM and SAXS analyses. Fluorescence microscopy experiments further demonstrate the requirement of TssK for sheath assembly. Our results suggest a central role for TssK by linking both complexes during T6SS assembly.  相似文献   

6.
Pseudomonas aeruginosa is a Gram-negative bacterium causing chronic infections in cystic fibrosis patients. Such infections are associated with an active type VI secretion system (T6SS), which consists of about 15 conserved components, including the AAA+ ATPase, ClpV. The T6SS secretes two categories of proteins, VgrG and Hcp. Hcp is structurally similar to a phage tail tube component, whereas VgrG proteins show similarity to the puncturing device at the tip of the phage tube. In P. aeruginosa, three T6SSs are known. The expression of H1-T6SS genes is controlled by the RetS sensor. Here, 10 vgrG genes were identified in the PAO1 genome, among which three are co-regulated with H1-T6SS, namely vgrG1a/b/c. Whereas VgrG1a and VgrG1c were secreted in a ClpV1-dependent manner, secretion of VgrG1b was ClpV1-independent. We show that VgrG1a and VgrG1c form multimers, which confirmed the VgrG model predicting trimers similar to the tail spike. We demonstrate that Hcp1 secretion requires either VgrG1a or VgrG1c, which may act independently to puncture the bacterial envelope and give Hcp1 access to the surface. VgrG1b is not required for Hcp1 secretion. Thus, VgrG1b does not require H1-T6SS for secretion nor does H1-T6SS require VgrG1b for its function. Finally, we show that VgrG proteins are required for secretion of a genuine H1-T6SS substrate, Tse3. Our results demonstrate that VgrG proteins are not only secreted components but are essential for secretion of other T6SS substrates. Overall, we emphasize variability in behavior of three P. aeruginosa VgrGs, suggesting that, although very similar, distinct VgrGs achieve specific functions.  相似文献   

7.
Protein secretion systems in Gram-negative bacteria evolved into a variety of molecular nanomachines. They are related to cell envelope complexes, which are involved in assembly of surface appendages or transport of solutes. They are classified as types, the most recent addition being the type VI secretion system (T6SS). The T6SS displays similarities to bacteriophage tail, which drives DNA injection into bacteria. The Hcp protein is related to the T4 bacteriophage tail tube protein gp19, whereas VgrG proteins structurally resemble the gp27/gp5 puncturing device of the phage. The tube and spike of the phage are pushed through the bacterial envelope upon contraction of a tail sheath composed of gp18. In Vibrio cholerae it was proposed that VipA and VipB assemble into a tail sheathlike structure. Here we confirm these previous data by showing that HsiB1 and HsiC1 of the Pseudomonas aeruginosa H1-T6SS assemble into tubules resulting from stacking of cogwheel-like structures showing predominantly 12-fold symmetry. The internal diameter of the cogwheels is ∼100 Å, which is large enough to accommodate an Hcp tube whose external diameter has been reported to be 85 Å. The N-terminal 212 residues of HsiC1 are sufficient to form a stable complex with HsiB1, but the C terminus of HsiC1 is essential for the formation of the tubelike structure. Bioinformatics analysis suggests that HsiC1 displays similarities to gp18-like proteins in its C-terminal region. In conclusion, we provide further structural and mechanistic insights into the T6SS and show that a phage sheathlike structure is likely to be a conserved element across all T6SSs.  相似文献   

8.
The bacterial type VI secretion system (T6SS) is a supra-molecular complex akin to bacteriophage tails, with VgrG proteins acting as a puncturing device. The Pseudomonas aeruginosa H1-T6SS has been extensively characterized. It is involved in bacterial killing and in the delivery of three toxins, Tse1–3. Here, we demonstrate the independent contribution of the three H1-T6SS co-regulated vgrG genes, vgrG1abc, to bacterial killing. A putative toxin is encoded in the vicinity of each vgrG gene, supporting the concept of specific VgrG/toxin couples. In this respect, VgrG1c is involved in the delivery of an Rhs protein, RhsP1. The RhsP1 C terminus carries a toxic activity, from which the producing bacterium is protected by a cognate immunity. Similarly, VgrG1a-dependent toxicity is associated with the PA0093 gene encoding a two-domain protein with a putative toxin domain (Toxin_61) at the C terminus. Finally, VgrG1b-dependent killing is detectable upon complementation of a triple vgrG1abc mutant. The VgrG1b-dependent killing is mediated by PA0099, which presents the characteristics of the superfamily nuclease 2 toxin members. Overall, these data develop the concept that VgrGs are indispensable components for the specific delivery of effectors. Several additional vgrG genes are encoded on the P. aeruginosa genome and are not linked genetically to other T6SS genes. A closer inspection of these clusters reveals that they also encode putative toxins. Overall, these associations further support the notion of an original form of secretion system, in which VgrG acts as the carrier.  相似文献   

9.
The multicomponent type VI secretion system (T6SS) mediates the transport of effector proteins by puncturing target membranes. T6SSs are suggested to form a contractile nanomachine, functioning similar to the cell‐puncturing device of tailed bacteriophages. The T6SS members VipA/VipB form tubular complexes and are predicted to function in analogy to viral tail sheath proteins by providing the energy for secretion via contraction. The ATPase ClpV disassembles VipA/VipB tubules in vitro, but the physiological relevance of tubule disintegration remained unclear. Here, we show that VipA/VipB tubules localize near‐perpendicular to the inner membrane of Vibrio cholerae cells and exhibit repetitive cycles of elongation, contraction and disassembly. VipA/VipB tubules are decorated by ClpV in vivo and become static in ΔclpV cells, indicating that ClpV is required for tubule removal. VipA/VipB tubules mislocalize in ΔclpV cells and exhibit a reduced frequency of tubule elongation, indicating that ClpV also suppresses the spontaneous formation of contracted, non‐productive VipA/VipB tubules. ClpV activity is restricted to the contracted state of VipA/VipB, allowing formation of functional elongated tubules at a T6SS assembly. Targeting of an unrelated ATPase to VipA/VipB is sufficient to replace ClpV function in vivo, suggesting that ClpV activity is autonomously regulated by VipA/VipB conformation.  相似文献   

10.
The Type VI secretion system (T6SS) is a widespread macromolecular structure that delivers protein effectors to both eukaryotic and prokaryotic recipient cells. The current model describes the T6SS as an inverted phage tail composed of a sheath‐like structure wrapped around a tube assembled by stacked Hcp hexamers. Although recent progress has been made to understand T6SS sheath assembly and dynamics, there is no evidence that Hcp forms tubes in vivo. Here we show that Hcp interacts with TssB, a component of the T6SS sheath. Using a cysteine substitution approach, we demonstrate that Hcp hexamers assemble tubes in an ordered manner with a head‐to‐tail stacking that are used as a scaffold for polymerization of the TssB/C sheath‐like structure. Finally, we show that VgrG but not TssB/C controls the proper assembly of the Hcp tubular structure. These results highlight the conservation in the assembly mechanisms between the T6SS and the bacteriophage tail tube/sheath.  相似文献   

11.
The recently identified type VI secretion systems (T6SS) have a crucial function in the virulence of various proteobacteria, including the human pathogen Vibrio cholerae. T6SS are encoded by a conserved gene cluster comprising approximately 15 open reading frames, mediating the appearance of Hcp and VgrG proteins in cell culture supernatants. Here, we analysed the function of the V. cholerae T6SS member ClpV, a specialized AAA+ protein. ClpV is crucial for a functional T6SS and interacts through its N‐terminal domain with the VipA/VipB complex that is composed of two conserved and essential members of T6SS. Transferring ClpV substrate specificity to a distinct AAA+ protein involved in proteolysis caused degradation of VipA but not Hcp or VgrG2, suggesting that VipA rather than Hcp/VgrG2 functions as a primary ClpV substrate. Strikingly, VipA/VipB form tubular, cogwheel‐like structures that are converted by a threading activity of ClpV into small complexes. ClpV‐mediated remodelling of VipA/VipB tubules represents a crucial step in T6S, illuminating an unexpected role of an ATPase component in protein secretion.  相似文献   

12.
A number of Gram-negative pathogens utilize type III secretion systems (T3SSs) to inject bacterial effector proteins into the host. An important component of T3SSs is a conserved ATPase that captures chaperone-effector complexes and energizes their dissociation to facilitate effector translocation. To date, there has been limited work characterizing the chaperone-T3SS ATPase interaction despite it being a fundamental aspect of T3SS function. In this study, we present the 2.1 Å resolution crystal structure of the Salmonella enterica SPI-2-encoded ATPase, SsaN. Our structure revealed a local and functionally important novel feature in helix 10 that we used to define the interaction domain relevant to chaperone binding. We modeled the interaction between the multicargo chaperone, SrcA, and SsaN and validated this model using mutagenesis to identify the residues on both the chaperone and ATPase that mediate the interaction. Finally, we quantified the benefit of this molecular interaction on bacterial fitness in vivo using chromosomal exchange of wild-type ssaN with mutants that retain ATPase activity but no longer capture the chaperone. Our findings provide insight into chaperone recognition by T3SS ATPases and demonstrate the importance of the chaperone-T3SS ATPase interaction for the pathogenesis of Salmonella.  相似文献   

13.
Ring-forming AAA(+) ATPases act in a plethora of cellular processes by remodeling macromolecules. The specificity of individual AAA(+) proteins is achieved by direct or adaptor-mediated association with substrates via distinct recognition domains. We investigated the molecular basis of substrate interaction for Vibrio cholerae ClpV, which disassembles tubular VipA/VipB complexes, an essential step of type VI protein secretion and bacterial virulence. We identified the ClpV recognition site within VipB, showed that productive ClpV-VipB interaction requires the oligomeric state of both proteins, solved the crystal structure of a ClpV N-domain-VipB peptide complex, and verified the interaction surface by mutant analysis. Our results show that the substrate is bound to a hydrophobic groove, which is formed by the addition of a single α-helix to the core N-domain. This helix is absent from homologous N-domains, explaining the unique substrate specificity of ClpV. A limited interaction surface between both proteins accounts for the dramatic increase in binding affinity upon ATP-driven ClpV hexamerization and VipA/VipB tubule assembly by coupling multiple weak interactions. This principle ensures ClpV selectivity toward the VipA/VipB macromolecular complex.  相似文献   

14.
Type VI Secretion Systems (T6SSs) have been identified in numerous Gram-negative pathogens, but the lack of a natural host infection model has limited analysis of T6SS contributions to infection and pathogenesis. Here, we describe disruption of a gene within locus encoding a putative T6SS in Bordetella bronchiseptica strain RB50, a respiratory pathogen that circulates in a broad range of mammals, including humans, domestic animals, and mice. The 26 gene locus encoding the B. bronchiseptica T6SS contains apparent orthologs to all known core genes and possesses thirteen novel genes. By generating an in frame deletion of clpV, which encodes a putative ATPase required for some T6SS-dependent protein secretion, we observe that ClpV contributes to in vitro macrophage cytotoxicity while inducing several eukaryotic proteins associated with apoptosis. Additionally, ClpV is required for induction of IL-1β, IL-6, IL-17, and IL-10 production in J774 macrophages infected with RB50. During infections in wild type mice, we determined that ClpV contributes to altered cytokine production, increased pathology, delayed lower respiratory tract clearance, and long term nasal cavity persistence. Together, these results reveal a natural host infection system in which to interrogate T6SS contributions to immunomodulation and pathogenesis.  相似文献   

15.
The type 3 secretion system (T3SS) and the bacterial flagellum are related pathogenicity-associated appendages found at the surface of many disease-causing bacteria. These appendages consist of long tubular structures that protrude away from the bacterial surface to interact with the host cell and/or promote motility. A proposed “ruler” protein tightly regulates the length of both the T3SS and the flagellum, but the molecular basis for this length control has remained poorly characterized and controversial. Using the Pseudomonas aeruginosa T3SS as a model system, we report the first structure of a T3SS ruler protein, revealing a “ball-and-chain” architecture, with a globular C-terminal domain (the ball) preceded by a long intrinsically disordered N-terminal polypeptide chain. The dimensions and stability of the globular domain do not support its potential passage through the inner lumen of the T3SS needle. We further demonstrate that a conserved motif at the N terminus of the ruler protein interacts with the T3SS autoprotease in the cytosolic side. Collectively, these data suggest a potential mechanism for needle length sensing by ruler proteins, whereby upon T3SS needle assembly, the ruler protein''s N-terminal end is anchored on the cytosolic side, with the globular domain located on the extracellular end of the growing needle. Sequence analysis of T3SS and flagellar ruler proteins shows that this mechanism is probably conserved across systems.  相似文献   

16.
The Type VI secretion system (T6SS) is a macromolecular system distributed in Gram-negative bacteria, responsible for the secretion of effector proteins into target cells. The T6SS has a broad versatility as it can target both eukaryotic and prokaryotic cells. It is therefore involved in host pathogenesis or killing neighboring bacterial cells to colonize a new niche. At the architecture level, the T6SS core apparatus is composed of 13 proteins, which assemble in two subcomplexes. One of these subcomplexes, composed of subunits that share structural similarities with bacteriophage tail and baseplate components, is anchored to the cell envelope by the membrane subcomplex. This latter is constituted of at least three proteins, TssL, TssM, and TssJ. The crystal structure of the TssJ outer membrane lipoprotein and its interaction with the inner membrane TssM protein have been recently reported. TssL and TssM share sequence homology and characteristics with two components of the Type IVb secretion system (T4bSS), IcmH/DotU and IcmF, respectively. In this study, we report the crystal structure of the cytoplasmic domain of the TssL inner membrane protein from the enteroaggregative Escherichia coli Sci-1 T6SS. It folds as a hook-like structure composed of two three-helix bundles. Two TssL molecules associate to form a functional complex. Although the TssL trans-membrane segment is the main determinant of self-interaction, contacts between the cytoplasmic domains are required for TssL function. Based on sequence homology and secondary structure prediction, we propose that the TssL structure is the prototype for the members of the TssL and IcmH/DotU families.  相似文献   

17.
Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity.  相似文献   

18.
It has recently become apparent that the Type VI secretion system (T6SS) is a complex macromolecular machine used by many bacterial species to inject effector proteins into eukaryotic or bacterial cells, with significant implications for virulence and interbacterial competition. “Antibacterial” T6SSs, such as the one elaborated by the opportunistic human pathogen, Serratia marcescens, confer on the secreting bacterium the ability to rapidly and efficiently kill rival bacteria. Identification of secreted substrates of the T6SS is critical to understanding its role and ability to kill other cells, but only a limited number of effectors have been reported so far. Here we report the successful use of label-free quantitative mass spectrometry to identify at least eleven substrates of the S. marcescens T6SS, including four novel effector proteins which are distinct from other T6SS-secreted proteins reported to date. These new effectors were confirmed as antibacterial toxins and self-protecting immunity proteins able to neutralize their cognate toxins were identified. The global secretomic study also unexpectedly revealed that protein phosphorylation-based post-translational regulation of the S. marcescens T6SS differs from that of the paradigm, H1-T6SS of Pseudomonas aeruginosa. Combined phosphoproteomic and genetic analyses demonstrated that conserved PpkA-dependent threonine phosphorylation of the T6SS structural component Fha is required for T6SS activation in S. marcescens and that the phosphatase PppA can reverse this modification. However, the signal and mechanism of PpkA activation is distinct from that observed previously and does not appear to require cell–cell contact. Hence this study has not only demonstrated that new and species-specific portfolios of antibacterial effectors are secreted by the T6SS, but also shown for the first time that PpkA-dependent post-translational regulation of the T6SS is tailored to fit the needs of different bacterial species.Gram-negative bacteria have evolved several specialized protein secretion systems to secrete a wide variety of substrate proteins into the extracellular milieu or to inject them into other, often eukaryotic, cells (1). Secreted proteins and their associated secretion systems are very important in bacterial virulence and interactions with other organisms (2). One of the most recent discoveries in this field is the Type VI secretion system (T6SS),1 which occurs widely across bacterial species (3, 4) and can target proteins to both bacterial and eukaryotic cells (5). The significance of the T6SS is becoming increasingly apparent. It has been implicated in virulence, commensalism, and symbiosis with eukaryotes (5, 6). Additionally, in many bacteria, the T6SS is now implicated in antibacterial activity. T6SS-mediated antibacterial killing appears to be important for competition between bacterial species, for example within the resident microflora of a eukaryotic host (5, 7).Secretion by the T6SS relies on 13 conserved core components which are predicted to form a large machinery associated with the cell envelope, including membrane-bound and bacteriophage tail-like subassemblies (8, 9). The membrane bound subassembly consists of inner membrane proteins (TssLM) and an outer membrane lipoprotein (TssJ) and is anchored to the cell wall. The phage tail-like assembly consists of several proteins that show structural homology with T4 phage tail proteins or are organized in similar structures (10). Hcp (TssD) proteins form hexameric rings and are thought to stack into tube-like structures (11, 12). This Hcp tube is believed to be capped by a trimer of VgrG (TssI) proteins, which share structural homology with the needle of the T4 phage tail (10, 13). In addition, VipA (TssB) and VipB (TssC) form a large tubular structure highly reminiscent of the T4 phage tail sheath (14, 15). Such similarities have led to the idea that the T6SS resembles an inverted contractile bacteriophage infection machinery and injects substrates via an Hcp/VgrG needle into other cells. Recent models propose that the VipA/B sheath surrounds the Hcp/VgrG needle and contraction of the VipA/B tube pushes the Hcp/VgrG needle out of the cell (1618). It has been postulated that this mechanism can be triggered by close contact with other neighboring cells (1921).Assembly, localization, and remodelling of VipA/B tubules in vivo depend on the AAA+ ATPase ClpV (TssH), another essential core component of the T6SS (14, 16, 17). ClpV also interacts with the accessory component Fha (TagH) (22, 23), which is found in a subset of T6SSs (4). The Fha protein has an N-terminal domain with a forkhead associated motif, which is predicted to bind phospho-threonine peptides (24). In Pseudomonas aeruginosa, Fha1 is phosphorylated by the Thr/Ser kinase PpkA (TagE) and dephosphorylated by the phosphatase PppA (TagG), and the phosphorylation state of Fha1 regulates the activity of the T6SS (22, 23). Phosphorylation of Fha in P. aeruginosa is also controlled by additional components, which act upstream of PpkA and form a regulatory cascade for T6SS activation (22, 25). Although homologs of PpkA and PppA have been identified in the T6SS gene clusters of certain other bacteria (3), the regulation of the T6SS by post-translational protein phosphorylation has not yet been experimentally investigated outside of Pseudomonas.To understand how the T6SS affects eukaryotic and bacterial cells, it is critical to identify substrate proteins secreted by the T6SS. The VgrG and Hcp proteins were the first identified T6SS substrates and appear to be generally secreted to the external milieu by all T6SSs (26). However, as mentioned above, Hcp and VgrG are core components of the T6SS machinery and therefore represent extracellular components of the secretion apparatus rather than genuine secreted effector proteins. Nonetheless, a limited number of VgrG homologs with extra functional effector domains at the C terminus have been identified or predicted, which account for some of the T6SS dependent effects seen against bacteria and eukaryotes. For example, the C-terminal domain of VgrG-1 from Vibrio cholerae shows actin crosslinking activity in eukaryotic cells (13, 27) and the C-terminal domain of V. cholerae VgrG-3 has bacterial cell wall hydrolase activity (28, 29).Recently, following much effort in the field, a small number of proteins secreted by the T6SS, but not structural components, have been experimentally identified. These proteins are regarded as true secreted substrates of the T6SS, with effector functions in target cells (2935). For example, antibacterial T6SS-secreted effector proteins with peptidoglycan amidase (cell wall hydrolysis) function, the Type VI amidase effector (Tae) proteins, have been identified in Burkholderia thailandensis (32), P. aeruginosa (31), and Serratia marcescens (30). These Tae proteins play a role in T6SS-mediated antibacterial killing activity and genes encoding four families of Tae protein have been widely identified in other bacteria with T6SSs (32). T6SS-secreted effector proteins which are not peptidoglycan hydrolases have also been reported, including Tse2 secreted by P. aeruginosa, which acts in the bacterial cytoplasm (31), and the VasX and TseL proteins secreted by the V. cholerae T6SS, which are suggested to target membrane lipids (29, 34, 35). In the case of antibacterial T6SSs, the secreting bacterial cells are protected from their own T6SS effector proteins by specific immunity proteins (2932, 35). However, given the large number of T6SSs in different bacterial species and their apparent ability to secrete multiple substrates, experimentally identified T6-secreted effector proteins still remain surprisingly scarce.Here we report the identification of multiple T6SS-secreted effector proteins in S. marcescens. S. marcescens is an opportunistic pathogen, for example causing ocular infections, nosocomial septicemia and pneumonia (36). Previously, we have identified a T6SS in S. marcescens Db10, which targets and efficiently kills other bacterial cells and plays a role in antibacterial competition (37). We have recently demonstrated that this T6SS secretes two antibacterial effectors, the Tae4 homologs Ssp1 and Ssp2, with cognate immunity proteins Rap1a and Rap2a (30).In this work, we report the analysis of the T6SS-dependent secretome of S. marcescens by label-free quantitation (LFQ) mass spectrometry and describe the identification and characterization of four novel T6SS-secreted effector proteins. These were confirmed as antibacterial toxins and specific immunity proteins were identified. Additionally, this global secretomic analysis, in combination with genetic and phosphoproteomic analyses, demonstrated that a post-translational phosphorylation system influences the ability of the S. marcescens T6SS to secrete effector proteins. Although this system uses homologs of the P. aeruginosa PpkA, PppA and Fha components, the circumstances and impact of Fha phosphorylation were shown to vary between organisms.  相似文献   

19.
Petr G Leiman 《EMBO reports》2018,19(2):191-193
The bacterial type VI secretion system (T6SS) is a multicomponent complex responsible for the translocation of effector proteins into the external milieu. The T6SS consists of an external sheath, an internal rigid tube, a baseplate, and a T6SS‐specific membrane complex. Secretion is accomplished by the contraction of the sheath, which expels the effector‐loaded tube. In this issue of EMBO reports, Brackmann et al 1 show how modifications of the sheath subunits can lock the T6SS assembly in the extended state. These findings allowed Wang et al 2 and Nazarov et al 3 to purify the T6SS sheath–tube–baseplate complex in the extended pre‐secretion state and to analyze its structure using cryo‐electron microscopy (cryoEM).  相似文献   

20.
Type VI secretion systems (T6SS) are a class of macromolecular secretion machines that are utilized by a number of bacteria for inter-bacterial competition or to elicit responses in eukaryotic cells. Acinetobacter baumannii is an opportunistic pathogen that causes severe infections in humans. These infections, including pneumonia and bacteremia, are important, as they are often associated with hospitals and medical-settings where they disproportionally affect critically ill patients like those residing in intensive care units. While it is known that A. baumannii genomes carry genes whose predicted products have homology with T6SS-associated gene products from other bacteria, and secretion of a major T6SS structural protein Hcp has been demonstrated, no additional work on an A. baumannii T6SS has been reported. Herein, we demonstrated that A. baumannii strain M2 secretes Hcp and this secretion was dependent upon TssB, an ortholog of a bacteriophage contractile sheath protein, confirming that strain M2 produces a functional T6SS. Additionally, we demonstrated that the ability of strain M2 to out-compete Escherichia coli was reliant upon the products of tssB and hcp. Collectively, our data have provided the first evidence demonstrating function in inter-bacterial competition, for a T6SS produced by A. baumannii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号