共查询到20条相似文献,搜索用时 15 毫秒
1.
A.J. Lopez-Davila Fatiha Elhamine D.F. Ruess Simon Papadopoulos Bogdan Iorga F.P. Kulozik Stefan Zittrich Johannes Solzin Gabriele Pfitzer Robert Stehle 《Biophysical journal》2012,103(6):1254-1264
Conformational changes in the skeletal troponin complex (sTn) induced by rapidly increasing or decreasing the [Ca2+] were probed by 5-iodoacetamidofluorescein covalently bound to Cys-133 of skeletal troponin I (sTnI). Kinetics of conformational changes was determined for the isolated complex and after incorporating the complex into rabbit psoas myofibrils. Isolated and incorporated sTn exhibited biphasic Ca2+-activation kinetics. Whereas the fast phase (kobs∼1000 s−1) is only observed in this study, where kinetics were induced by Ca2+, the slower phase resembles the monophasic kinetics of sTnI switching observed in another study (Brenner and Chalovich. 1999. Biophys. J. 77:2692–2708) that investigated the sTnI switching induced by releasing the feedback of force-generating cross-bridges on thin filament activation. Therefore, the slower conformational change likely reflects the sTnI switch that regulates force development. Modeling reveals that the fast conformational change can occur after the first Ca2+ ion binds to skeletal troponin C (sTnC), whereas the slower change requires Ca2+ binding to both regulatory sites of sTnC. Incorporating sTn into myofibrils increased the off-rate and lowered the Ca2+ sensitivity of sTnI switching. Comparison of switch-off kinetics with myofibril force relaxation kinetics measured in a mechanical setup indicates that sTnI switching might limit the rate of fast skeletal muscle relaxation. 相似文献
2.
Little SC Biesiadecki BJ Kilic A Higgins RS Janssen PM Davis JP 《The Journal of biological chemistry》2012,287(33):27930-27940
The rate-limiting step of cardiac muscle relaxation has been proposed to reside in the myofilament. Both the rates of cross-bridge detachment and Ca(2+) dissociation from troponin C (TnC) have been hypothesized to rate-limit myofilament inactivation. In this study we used a fluorescent TnC to measure both the rate of Ca(2+) dissociation from TnC and the rate of cross-bridge detachment from several different species of ventricular myofibrils. The fluorescently labeled TnC was sensitive to both Ca(2+) dissociation and cross-bridge detachment at low Ca(2+) (presence of EGTA), allowing for a direct comparison between the two proposed rates of myofilament inactivation. Unlike Ca(2+) dissociation from TnC, cross-bridge detachment varied in myofibrils from different species and was rate-limited by ADP release. At subphysiological temperatures (<20 °C), the rate of Ca(2+) dissociation from TnC was faster than the rate of cross-bridge detachment in the presence of ADP. These results support the hypothesis that cross-bridge detachment rate-limits relaxation. However, Ca(2+) dissociation from TnC was not as temperature-sensitive as cross-bridge detachment. At a near physiological temperature (35 °C) and ADP, the rate of cross-bridge detachment may actually be faster than the rate of Ca(2+) dissociation. This provides evidence that there may not be a simple, single rate-limiting step of myofilament inactivation. 相似文献
3.
Kalyan?C. Vinnakota Abhishek Singhal Fran?oise Van?den?Bergh Masoumeh Bagher-Oskouei Robert?W. Wiseman Daniel?A. Beard 《Biophysical journal》2016,110(4):954-961
In cardiac muscle, mitochondrial ATP synthesis is driven by demand for ATP through feedback from the products of ATP hydrolysis. However, in skeletal muscle at higher workloads there is an apparent contribution of open-loop stimulation of ATP synthesis. Open-loop control is defined as modulation of flux through a biochemical pathway by a moiety, which is not a reactant or a product of the biochemical reactions in the pathway. The role of calcium, which is known to stimulate the activity of mitochondrial dehydrogenases, as an open-loop controller, was investigated in isolated cardiac and skeletal muscle mitochondria. The kinetics of NADH synthesis and respiration, feedback from ATP hydrolysis products, and stimulation by calcium were characterized in isolated mitochondria to test the hypothesis that calcium has a stimulatory role in skeletal muscle mitochondria not apparent in cardiac mitochondria. A range of respiratory states were obtained in cardiac and skeletal muscle mitochondria utilizing physiologically relevant concentrations of pyruvate and malate, and flux of respiration, NAD(P)H fluorescence, and rhodamine 123 fluorescence were measured over a range of extra mitochondrial calcium concentrations. We found that under these conditions calcium stimulates NADH synthesis in skeletal muscle mitochondria but not in cardiac mitochondria. 相似文献
4.
Michelle S. Parvatiyar Jose Renato Pinto Jingsheng Liang James D. Potter 《The Journal of biological chemistry》2010,285(36):27785-27797
Cardiac diseases associated with mutations in troponin subunits include hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM). Altered calcium handling in these diseases is evidenced by changes in the Ca2+ sensitivity of contraction. Mutations in the Ca2+ sensor, troponin C (TnC), were generated to increase/decrease the Ca2+ sensitivity of cardiac skinned fibers to create the characteristic effects of DCM, HCM, and RCM. We also used a reconstituted assay to determine the mutation effects on ATPase activation and inhibition. One mutant (A23Q) was found with HCM-like properties (increased Ca2+ sensitivity of force and normal levels of ATPase inhibition). Three mutants (S37G, V44Q, and L48Q) were identified with RCM-like properties (a large increase in Ca2+ sensitivity, partial loss of ATPase inhibition, and increased basal force). Two mutations were identified (E40A and I61Q) with DCM properties (decreased Ca2+ sensitivity, maximal force recovery, and activation of the ATPase at high [Ca2+]). Steady-state fluorescence was utilized to assess Ca2+ affinity in isolated cardiac (c)TnCs containing F27W and did not necessarily mirror the fiber Ca2+ sensitivity. Circular dichroism of mutant cTnCs revealed a trend where increased α-helical content correlated with increased Ca2+ sensitivity in skinned fibers and vice versa. The main findings from this study were as follows: 1) cTnC mutants demonstrated distinct functional phenotypes reminiscent of bona fide HCM, RCM, and DCM mutations; 2) a region in cTnC associated with increased Ca2+ sensitivity in skinned fibers was identified; and 3) the F27W reporter mutation affected Ca2+ sensitivity, maximal force, and ATPase activation of some mutants. 相似文献
5.
Steffen Lindert Yuanhua Cheng Peter Kekenes-Huskey Michael Regnier J.?Andrew McCammon 《Biophysical journal》2015,108(2):395-407
Cardiac troponin (cTn) is a key molecule in the regulation of human cardiac muscle contraction. The N-terminal cardiac-specific peptide of the inhibitory subunit of troponin, cTnI (cTnI1-39), is a target for phosphorylation by protein kinase A (PKA) during β-adrenergic stimulation. We recently presented evidence indicating that this peptide interacts with the inhibitory peptide (cTnl137–147) when S23 and S24 are phosphorylated. The inhibitory peptide is also the target of the point mutation cTnI-R145G, which is associated with hypertrophic cardiomyopathy (HCM), a disease associated with sudden death in apparently healthy young adults. It has been shown that both phosphorylation and this mutation alter the cTnC-cTnI (C-I) interaction, which plays a crucial role in modulating contractile activation. However, little is known about the molecular-level events underlying this modulation. Here, we computationally investigated the effects of the cTnI-R145G mutation on the dynamics of cTn, cTnC Ca2+ handling, and the C-I interaction. Comparisons were made with the cTnI-R145G/S23D/S24D phosphomimic mutation, which has been used both experimentally and computationally to study the cTnI N-terminal specific effects of PKA phosphorylation. Additional comparisons between the phosphomimic mutations and the real phosphorylations were made. For this purpose, we ran triplicate 150 ns molecular dynamics simulations of cTnI-R145G Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, cTnI-R145G/S23D/S24D Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, and cTnI-R145G/PS23/PS24 Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, respectively. We found that the cTnI-R145G mutation did not impact the overall dynamics of cTn, but stabilized crucial Ca2+-coordinating interactions. However, the phosphomimic mutations increased overall cTn fluctuations and destabilized Ca2+ coordination. Interestingly, cTnI-R145G blunted the intrasubunit interactions between the cTnI N-terminal extension and the cTnI inhibitory peptide, which have been suggested to play a crucial role in modulating troponin function during β-adrenergic stimulation. These findings offer a molecular-level explanation for how the HCM mutation cTnI-R145G reduces the modulation of cTn by phosphorylation of S23/S24 during β-adrenergic stimulation. 相似文献
6.
Yuanhua Cheng Vijay Rao An-yue Tu Steffen Lindert Dan Wang Lucas Oxenford Andrew D. McCulloch J. Andrew McCammon Michael Regnier 《The Journal of biological chemistry》2015,290(46):27749-27766
Two hypertrophic cardiomyopathy-associated cardiac troponin I (cTnI) mutations, R146G and R21C, are located in different regions of cTnI, the inhibitory peptide and the cardiac-specific N terminus. We recently reported that these regions may interact when Ser-23/Ser-24 are phosphorylated, weakening the interaction of cTnI with cardiac TnC. Little is known about how these mutations influence the affinity of cardiac TnC for cTnI (KC-I) or contractile kinetics during β-adrenergic stimulation. Here, we tested how cTnIR146G or cTnIR21C influences contractile activation and relaxation and their response to protein kinase A (PKA). Both mutations significantly increased Ca2+ binding affinity to cTn (KCa) and KC-I. PKA phosphorylation resulted in a similar reduction of KCa for all complexes, but KC-I was reduced only with cTnIWT. cTnIWT, cTnIR146G, and cTnIR21C were complexed into cardiac troponin and exchanged into rat ventricular myofibrils, and contraction/relaxation kinetics were measured ± PKA phosphorylation. Maximal tension (Tmax) was maintained for cTnIR146G- and cTnIR21C-exchanged myofibrils, and Ca2+ sensitivity of tension (pCa50) was increased. PKA phosphorylation decreased pCa50 for cTnIWT-exchanged myofibrils but not for either mutation. PKA phosphorylation accelerated the early slow phase relaxation for cTnIWT myofibrils, especially at Ca2+ levels that the heart operates in vivo. Importantly, this effect was blunted for cTnIR146G- and cTnIR21C-exchanged myofibrils. Molecular dynamics simulations suggest both mutations inhibit formation of intra-subunit contacts between the N terminus and the inhibitory peptide of cTnI that is normally seen with WT-cTn upon PKA phosphorylation. Together, our results suggest that cTnIR146G and cTnIR21C blunt PKA modulation of activation and relaxation kinetics by prohibiting cardiac-specific N-terminal interaction with the cTnI inhibitory peptide. 相似文献
7.
Jose Renato Pinto Aldrin V. Gomes Michelle A. Jones Jingsheng Liang Susan Nguyen Todd Miller Michelle S. Parvatiyar James D. Potter 《The Journal of biological chemistry》2012,287(44):37362-37370
Human slow skeletal troponin T (HSSTnT) shares a high degree of homology with cardiac TnT (CTnT). Although the presence of HSSTnT has not been confirmed in the heart at the protein level, detectable levels of HSSTnT mRNA have been found. Whether HSSTnT isoforms are expressed transiently remains unknown. Because transient re-expression of HSSTnT may be a potential mechanism of regulating function, we explored the effect of HSSTnT on the regulation of cardiac muscle. At least three HSSTnT isoforms have been found to exist in slow skeletal muscle: HSSTnT1 (+exons 5 and 12), HSSTnT2 (+exon 5, −exon 12), and HSSTnT3 (−exons 5 and 12). Another isoform, HSSTnT hypothetical (Hyp) (−exon 5, +exon 12), has only been found at the mRNA level. Compared with HCTnT3 (adult isoform), Tn complexes containing HSSTnT1, -2, and -3 did not alter the actomyosin ATPase activation and inhibition in the presence and absence of Ca2+, respectively. HSSTnTHyp was not evaluated as it did not form a Tn complex under a variety of conditions. Porcine papillary skinned fibers displaced with HSSTnT1, -2, or -3 and reconstituted with human cardiac troponin I and troponin C (HCTnI·TnC) complex showed a decrease in the Ca2+ sensitivity of force development and an increase in maximal recovered force (HSSTnT1 and -3) compared with HCTnT3. In contrast, HSSTnTHyp showed an increase in the Ca2+ sensitivity of force development. This suggests that re- or overexpression of specific SSTnT isoforms might have therapeutic potential in the failing heart because they increase the maximal force of contraction. In addition, circular dichroism and proteolytic digestion experiments revealed structural differences between HSSTnT isoforms and HCTnT3 and that HSSTnT1 is more susceptible to calpain and trypsin proteolysis than the other HSSTnTs. Overall, HSSTnT isoforms despite being homologues of CTnT may display distinct functional properties in muscle regulation. 相似文献
8.
Insect indirect flight muscle is activated by sinusoidal length change, which enables the muscle to work at high frequencies, and contracts isometrically in response to Ca2+. Indirect flight muscle has two TnC isoforms: F1 binding a single Ca2+ in the C-domain, and F2 binding Ca2+ in the N- and C-domains. Fibres substituted with F1 produce delayed force in response to a single rapid stretch, and those with F2 produce isometric force in response to Ca2+. We have studied the effect of TnC isoforms on oscillatory work. In native Lethocerus indicus fibres, oscillatory work was superimposed on a level of isometric force that depended on Ca2+ concentration. Maximum work was produced at pCa 6.1; at higher concentrations, work decreased as isometric force increased. In fibres substituted with F1 alone, work continued to rise as Ca2+ was increased up to pCa 4.7. Fibres substituted with various F1:F2 ratios produced maximal work at a ratio of 100:1 or 50:1; a higher proportion of F2 increased isometric force at the expense of oscillatory work. The F1:F2 ratio was 9.8:1 in native fibres, as measured by immunofluorescence, using isoform-specific antibodies. The small amount of F2 needed to restore work to levels obtained for the native fibre is likely to be due to the relative affinity of F1 and F2 for TnH, the Lethocerus homologue of TnI. Affinity of TnC isoforms for a TnI fragment of TnH was measured by isothermal titration calorimetry. The Kd was 1.01 μM for F1 binding and 22.7 nM for F2. The higher affinity of F2 can be attributed to two TnH binding sites on F2 and a single site on F1. Stretch may be sensed by an extended C-terminal domain of TnH, resulting in reversible dissociation of the inhibitory sequence from actin during the oscillatory cycle. 相似文献
9.
Wang D Robertson IM Li MX McCully ME Crane ML Luo Z Tu AY Daggett V Sykes BD Regnier M 《Biochemistry》2012,51(22):4473-4487
Calcium binding to the regulatory domain of cardiac troponin C (cNTnC) causes a conformational change that exposes a hydrophobic surface to which troponin I (cTnI) binds, prompting a series of protein-protein interactions that culminate in muscle contraction. A number of cTnC variants that alter the Ca(2+) sensitivity of the thin filament have been linked to disease. Tikunova and Davis engineered a series of cNTnC mutations that altered Ca(2+) binding properties and studied the effects on the Ca(2+) sensitivity of the thin filament and contraction [Tikunova, S. B., and Davis, J. P. (2004) J. Biol. Chem. 279, 35341-35352]. One of the mutations they engineered, the L48Q variant, resulted in a pronounced increase in the cNTnC Ca(2+) binding affinity and Ca(2+) sensitivity of cardiac muscle force development. In this work, we sought structural and mechanistic explanations for the increased Ca(2+) sensitivity of contraction for the L48Q cNTnC variant, using an array of biophysical techniques. We found that the L48Q mutation enhanced binding of both Ca(2+) and cTnI to cTnC. Nuclear magnetic resonance chemical shift and relaxation data provided evidence that the cNTnC hydrophobic core is more exposed with the L48Q variant. Molecular dynamics simulations suggest that the mutation disrupts a network of crucial hydrophobic interactions so that the closed form of cNTnC is destabilized. The findings emphasize the importance of cNTnC's conformation in the regulation of contraction and suggest that mutations in cNTnC that alter myofilament Ca(2+) sensitivity can do so by modulating Ca(2+) and cTnI binding. 相似文献
10.
The Ca2+-activated maxi K+ channel is predominant in the basolateral membrane of the surface cells in the distal colon. It may play a role in the regulation
of the aldosterone-stimulated Na+ reabsorption from the intestinal lumen. Previous measurements of these basolateral K+ channels in planar lipid bilayers and in plasma membrane vesicles have shown a very high sensitivity to Ca2+ with a K
0.5 ranging from 20 nm to 300 nm, whereas other studies have a much lower sensitivity to Ca2+. To investigate whether this difference could be due to modulation by second messenger systems, the effect of phosphorylation
and dephosphorylation was examined. After addition of phosphatase, the K+ channels lost their high sensitivity to Ca2+, yet they could still be activated by high concentrations of Ca2+ (10 μm). Furthermore, the high sensitivity to Ca2+ could be restored after phosphorylation catalyzed by a cAMP dependent protein kinase. There was no effect of addition of
protein kinase C. In agreement with the involvement of enzymatic processes, lag periods of 30–120 sec for dephosphorylation
and of 10–280 sec for phosphorylation were observed. The phosphorylation state of the channel did not influence the single
channel conductance. The results demonstrate that the high sensitivity to Ca2+ of the maxi K+ channel from rabbit distal colon is a property of the phosphorylated form of the channel protein, and that the difference
in Ca2+ sensitivity between the dephosphorylated and phosphorylated forms of the channel protein is more than one order of magnitude.
The variety in Ca2+ sensitivities for maxi K+ channels from tissue to tissue and from different studies on the same tissue could be due to modification by second messenger
systems.
Received: 28 February 1995/Revised: 22 December 1995 相似文献
11.
12.
Shin Seok Kyo Li Hai Ying Cho Kun Cho Young Wuk Lee Jung-Ha Park Kang-Sik 《Cellular and molecular neurobiology》2022,42(7):2427-2431
Cellular and Molecular Neurobiology - Cav1.2 channel phosphorylation plays an important role in regulating neuronal plasticity by action potential-dependent Ca2+ entry. Most studies of Cav1.2... 相似文献
13.
Yael Yaniv Michael?D. Stern Edward?G. Lakatta Victor?A. Maltsev 《Biophysical journal》2013,105(7):1551-1561
Whether intracellular Ca2+ cycling dynamics regulate cardiac pacemaker cell function on a beat-to-beat basis remains unknown. Here we show that under physiological conditions, application of low concentrations of caffeine (2–4 mM) to isolated single rabbit sinoatrial node cells acutely reduces their spontaneous action potential cycle length (CL) and increases Ca2+ transient amplitude for several cycles. Numerical simulations, using a modified Maltsev-Lakatta coupled-clock model, faithfully reproduced these effects, and also the effects of CL prolongation and dysrhythmic spontaneous beating (produced by cytosolic Ca2+ buffering) and an acute CL reduction (produced by flash-induced Ca2+ release from a caged Ca2+ buffer), which we had reported previously. Three contemporary numerical models (including the original Maltsev-Lakatta model) failed to reproduce the experimental results. In our proposed new model, Ca2+ releases acutely change the CL via activation of the Na+/Ca2+ exchanger current. Time-dependent CL reductions after flash-induced Ca2+ releases (the memory effect) are linked to changes in Ca2+ available for pumping into sarcoplasmic reticulum which, in turn, changes the sarcoplasmic reticulum Ca2+ load, diastolic Ca2+ releases, and Na+/Ca2+ exchanger current. These results support the idea that Ca2+ regulates CL in cardiac pacemaker cells on a beat-to-beat basis, and suggest a more realistic numerical mechanism of this regulation. 相似文献
14.
We present a model of Ca-regulated thin filaments in cardiac muscle where tropomyosin is treated as a continuous elastic chain confined in the closed position on the actin helix by electrostatic forces. The main distinction from previous works is that the intrinsic stress-free helical shape of the tropomyosin chain was taken into account explicitly. This results in the appearance of a new, to our knowledge, tension-like term in the energy functional and the equilibrium equation. The competitive binding of calcium and the mobile segment of troponin-I to troponin-C were described by a simple kinetic scheme. The values of dimensionless model parameters were estimated from published data. A stochastic Monte Carlo simulation of calcium curves has been performed and its results were compared to published data. The model explains the high cooperativity of calcium response of the regulated thin filaments even in the absence of myosin heads. The binding of myosin heads to actin increases the calcium sensitivity while not affecting its cooperativity significantly. When the presence of calcium-insensitive troponin-C was simulated in the model, both calcium sensitivity and cooperativity decreased. All these features were previously observed experimentally. 相似文献
15.
We present a model of Ca-regulated thin filaments in cardiac muscle where tropomyosin is treated as a continuous elastic chain confined in the closed position on the actin helix by electrostatic forces. The main distinction from previous works is that the intrinsic stress-free helical shape of the tropomyosin chain was taken into account explicitly. This results in the appearance of a new, to our knowledge, tension-like term in the energy functional and the equilibrium equation. The competitive binding of calcium and the mobile segment of troponin-I to troponin-C were described by a simple kinetic scheme. The values of dimensionless model parameters were estimated from published data. A stochastic Monte Carlo simulation of calcium curves has been performed and its results were compared to published data. The model explains the high cooperativity of calcium response of the regulated thin filaments even in the absence of myosin heads. The binding of myosin heads to actin increases the calcium sensitivity while not affecting its cooperativity significantly. When the presence of calcium-insensitive troponin-C was simulated in the model, both calcium sensitivity and cooperativity decreased. All these features were previously observed experimentally. 相似文献
16.
Cardiac muscle excitation-contraction coupling is controlled by the Ca(2+)-induced Ca2+ release mechanism. The present study examines the effects of a calmodulin antagonist W-7 on Ca2+ current (ICa)-induced Ca2+ release in whole cell-clamped rat ventricular myocytes. Exposure of cells to W-7 suppressed ICa, but the intracellular Ca(2+)-transients showed a lesser degree of reduction, suggesting possible enhancement of Ca(2+)-induced Ca2+ release. The effects of W-7 on the efficacy of Ca2+ release were most prominent at negative potentials. At test potentials of -30 mV, 20 microM W-7 almost completely blocked ICa, but significant Ca(2+)-transients remained, thus causing a four to six-fold increase in the efficacy of Ca(2+)-induced Ca2+ release. The depolarization-dependent Ca(2+)-transients were eliminated in absence of extracellular Ca2+, blocked by Cd2+, and were absent when the sarcoplasmic reticulum was depleted of Ca2+, implicating dependency on Ca(2+)-signaling between the L-type channel and the ryanodine receptor. W-7 mediated increase in the efficacy of Ca(2+)-induced Ca2+ release was eliminated when myocytes were dialyzed with the internal solution containing gluathione (5 mM), suggesting the possible role of cellular redox state in the regulation of Ca2+ release by the calmodulin antagonist. 相似文献
17.
Isaev D Solt K Gurtovaya O Reeves JP Shirokov R 《The Journal of general physiology》2004,123(5):555-571
Both intracellular calcium and transmembrane voltage cause inactivation, or spontaneous closure, of L-type (CaV1.2) calcium channels. Here we show that long-lasting elevations of intracellular calcium to the concentrations that are expected to be near an open channel (>/=100 microM) completely and reversibly blocked calcium current through L-type channels. Although charge movements associated with the opening (ON) motion of the channel's voltage sensor were not altered by high calcium, the closing (OFF) transition was impeded. In two-pulse experiments, the blockade of calcium current and the reduction of gating charge movements available for the second pulse developed in parallel during calcium load. The effect depended steeply on voltage and occurred only after a third of the total gating charge had moved. Based on that, we conclude that the calcium binding site is located either in the channel's central cavity behind the voltage-dependent gate, or it is formed de novo during depolarization through voltage-dependent rearrangements just preceding the opening of the gate. The reduction of the OFF charge was due to the negative shift in the voltage dependence of charge movement, as previously observed for voltage-dependent inactivation. Elevation of intracellular calcium concentration from approximately 0.1 to 100-300 microM sped up the conversion of the gating charge into the negatively distributed mode 10-100-fold. Since the "IQ-AA" mutant with disabled calcium/calmodulin regulation of inactivation was affected by intracellular calcium similarly to the wild-type, calcium/calmodulin binding to the "IQ" motif apparently is not involved in the observed changes of voltage-dependent gating. Although calcium influx through the wild-type open channels does not cause a detectable negative shift in the voltage dependence of their charge movement, the shift was readily observable in the Delta1733 carboxyl terminus deletion mutant, which produces fewer nonconducting channels. We propose that the opening movement of the voltage sensor exposes a novel calcium binding site that mediates inactivation. 相似文献
18.
Maxfield FR 《Trends in cell biology》1993,3(11):386-391
Neutrophils migrate towards sites of inflammation and infection by chemotaxis. Their motility is dependent on the actin cytoskeleton and on adhesion to extracellular substrates, but how these are regulated in response to stimuli is not clear. This review focuses on the potential role of Ca(2+) as a second messenger in neutrophil motility. Several effects of Ca(2+) and Ca(2+)-binding proteins on the stability and crosslinking of actin polymers have been demonstrated in vitro. Nevertheless, the complex mechanism by which Ca(2+) regulates actin in neutrophils is not fully understood. In addition, intracellular Ca(2+) regulates the intergin-mediated adhesion of neutrophils to extracellular matrix. 相似文献
19.
Knowledge of the structural basis of protein-protein interactions (PPI) is of fundamental importance for understanding the organization and functioning of biological networks and advancing the design of therapeutics which target PPI. Allosteric modulators play an important role in regulating such interactions by binding at site(s) orthogonal to the complex interface and altering the protein''s propensity for complex formation. In this work, we apply an approach recently developed by us for analyzing protein surfaces based on steered molecular dynamics simulation (SMD) to the study of the dynamic properties of functionally distinct conformations of a model protein, calmodulin (CaM), whose ability to interact with target proteins is regulated by the presence of the allosteric modulator Ca2+. Calmodulin is a regulatory protein that acts as an intracellular Ca2+ sensor to control a wide variety of cellular processes. We demonstrate that SMD analysis is capable of pinpointing CaM surfaces implicated in the recognition of both the allosteric modulator Ca2+ and target proteins. Our analysis of changes in the dynamic properties of the CaM backbone elicited by Ca2+ binding yielded new insights into the molecular mechanism of allosteric regulation of CaM-target interactions. 相似文献
20.
J R Glenney 《FEBS letters》1985,192(1):79-82
P36 is a major substrate of the tyrosine protein kinases. P36 isolated from bovine intestine was used in phosphorylation reactions with pp60src. Phosphorylation was stimulated 3-5-fold by Ca2+, however the Km was the same (2.5 microM) at high or low Ca2+. Although the level of free Ca2+ needed for this enhanced phosphorylation was 10(-4)-10(-3) M, phosphatidylserine shifted the Ca2+ sensitivity to the 10(-6)-10(-5) M range. Independent evidence suggested that p36 interacts directly with liposomes containing phosphatidylserine. This raises the possibility that p36, like c-kinase, is a Ca2+-activated, phospholipid-dependent protein. 相似文献