首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This review summarizes the results from the INRA (Institut National de la Recherche Agronomique) divergent selection experiment on residual feed intake (RFI) in growing Large White pigs during nine generations of selection. It discusses the remaining challenges and perspectives for the improvement of feed efficiency in growing pigs. The impacts on growing pigs raised under standard conditions and in alternative situations such as heat stress, inflammatory challenges or lactation have been studied. After nine generations of selection, the divergent selection for RFI led to highly significant (P<0.001) line differences for RFI (−165 g/day in the low RFI (LRFI) line compared with high RFI line) and daily feed intake (−270 g/day). Low responses were observed on growth rate (−12.8 g/day, P<0.05) and body composition (+0.9 mm backfat thickness, P=0.57; −2.64% lean meat content, P<0.001) with a marked response on feed conversion ratio (−0.32 kg feed/kg gain, P<0.001). Reduced ultimate pH and increased lightness of the meat (P<0.001) were observed in LRFI pigs with minor impact on the sensory quality of the meat. These changes in meat quality were associated with changes of the muscular energy metabolism. Reduced maintenance energy requirements (−10% after five generations of selection) and activity (−21% of time standing after six generations of selection) of LRFI pigs greatly contributed to the gain in energy efficiency. However, the impact of selection for RFI on the protein metabolism of the pig remains unclear. Digestibility of energy and nutrients was not affected by selection, neither for pigs fed conventional diets nor for pigs fed high-fibre diets. A significant improvement of digestive efficiency could likely be achieved by selecting pigs on fibre diets. No convincing genetic or blood biomarker has been identified for explaining the differences in RFI, suggesting that pigs have various ways to achieve an efficient use of feed. No deleterious impact of the selection on the sow reproduction performance was observed. The resource allocation theory states that low RFI may reduce the ability to cope with stressors, via the reduction of a buffer compartment dedicated to responses to stress. None of the experiments focussed on the response of pigs to stress or challenges could confirm this theory. Understanding the relationships between RFI and responses to stress and energy demanding processes, as such immunity and lactation, remains a major challenge for a better understanding of the underlying biological mechanisms of the trait and to reconcile the experimental results with the resource allocation theory.  相似文献   

2.
Mixed crop–livestock systems, combining livestock and cash crops at farm level, are considered to be suitable for sustainable intensification of agriculture. Ensuring the survival of mixed crop–livestock systems is a challenge for European agriculture: the number of European mixed crop–livestock farms has been decreasing since 1970. Analysis of farming system dynamics may elucidate past changes and the forces driving this decline. The objectives of this study were (i) to identify the diversity of paths that allowed the survival of mixed crop–livestock farming and (ii) to elucidate the driving forces behind such survival. We analysed the variety of farm trajectories from 1950 to 2005. We studied the entire farm population of a case study site, located in the ‘Coteaux de Gascogne’ region. In this less favoured area of south-western France, farmers have limited specialisation. Currently, half of the farms use mixed crop–livestock systems. The data set of 20 variables for 50 farms on the basis of six 10-year time steps was collected through retrospective surveys. We used a two-step analysis including (i) a visual assessment of the whole population of individual farm trajectories and (ii) a computer-based typology of farm trajectories on the basis of a series of multivariate analyses followed by automatic clustering. The European Common Agricultural Policy, market globalisation and decreasing workforce availability were identified as drivers of change that favoured the specialisation process. Nevertheless, farmers’ choices and values have opposed against these driving forces, ensuring the survival of some mixed crop–livestock farming systems. The trajectories were clustered into five types, four of which were compatible with mixed crop–livestock systems. The first type was the maximisation of autonomy by combining crops and livestock. The second type was diversification of production to exploit economies of scope and protect the farm against market fluctuations. The other two types involved enlargement and progressive adaptation of the farm to the familial workforce. The survival of mixed crop–livestock systems in these two types is largely dependent on workforce availability. Only one type of trajectory, on the basis of enlargement and economies of scale, did not lead to mixed crop–livestock systems. In view of the current evolution of the driving forces, maximising autonomy and diversification appear to be suitable paths to deal with current challenges and maintain mixed crop–livestock systems in Europe.  相似文献   

3.
    
Improvement of feed efficiency in pigs has been achieved essentially by increasing lean growth rate, which resulted in lower feed intake (FI). The objective was to evaluate the impact of strategies for improving feed efficiency on the dynamics of FI and growth in growing pigs to revisit nutrient recommendations and strategies for feed efficiency improvement. In 2010, three BWs, at 35±2, 63±9 and 107±7 kg, and daily FI during this period were recorded in three French test stations on 379 Large White and 327 French Landrace from maternal pig populations and 215 Large White from a sire population. Individual growth and FI model parameters were obtained with the InraPorcR software and individual nutrient requirements were computed. The model parameters were explored according to feed efficiency as measured by residual feed intake (RFI) or feed conversion ratio (FCR). Animals were separated in groups of better feed efficiency (RFI or FCR), medium feed efficiency and poor feed efficiency. Second, genetic relationships between feed efficiency and model parameters were estimated. Despite similar average daily gains (ADG) during the test for all RFI groups, RFI pigs had a lower initial growth rate and a higher final growth rate compared with other pigs. The same initial growth rate was found for all FCR groups, but FCR pigs had significantly higher final growth rates than other pigs, resulting in significantly different ADG. Dynamic of FI also differed between RFI or FCR groups. The calculated digestible lysine requirements, expressed in g/MJ net energy (NE), showed the same trends for RFI or FCR groups: the average requirements for the 25% most efficient animals were 13% higher than that of the 25% least efficient animals during the whole test, reaching 0.90 to 0.95 g/MJ NE at the beginning of the test, which is slightly greater than usual feed recommendations for growing pigs. Model parameters were moderately heritable (0.30±0.13 to 0.56±0.13), except for the precocity of growth (0.06±0.08). The parameter representing the quantity of feed at 50 kg BW showed a relatively high genetic correlation with RFI (0.49±0.14), and average protein deposition between 35 and 110 kg had the highest correlation with FCR (−0.76±0.08). Thus, growth and FI dynamics may be envisaged as breeding tools to improve feed efficiency. Furthermore, improvement of feed efficiency should be envisaged jointly with new feeding strategies.  相似文献   

4.
    
As a result of the genetic selection for prolificacy and the improvements in the environment and farms management, litter size has increased in the last few years so that energy requirements of the lactating sow are greater. In addition, selection for feed efficiency of growing pigs is also conducted in maternal lines, and this has led to a decrease in appetite and feed intake that is extended to the lactation period, so the females are not able to obtain the necessary energy and nutrients for milk production and they mobilize their energetic reserves. When this mobilization is excessive, reproductive and health problems occur which ends up in an early sow culling. In this context, it has been suggested to improve feed efficiency at lactation through genetic selection. The aim of this study is to know, in a Duroc population, the genetic determinism of sow feed efficiency during lactation and traits involved in its definition, as well as genetic and environmental associations between them. The studied traits are daily lactation feed intake (dLFI), daily sow weight balance (dSWB), backfat thickness balance (BFTB), daily litter weight gain (dLWG), sow residual feed intake (RFI) and sow restricted residual feed intake (RRFI) during lactation. Data corresponded to 851 parities from 581 Duroc sows. A Bayesian analysis was performed using Gibbs sampling. A four-trait repeatability animal model was implemented including the systematic factors of batch and parity order, the standardized covariates of sow weight (SWf) and litter weight (LWs) at farrowing for all traits and lactation length for BFTB. The posterior mean (posterior SD) of heritabilities were: 0.09 (0.03) for dLFI, 0.37 (0.07) for dSWB, 0.09 (0.03) for BFTB, 0.22 (0.05) for dLWG, 0.04 (0.02) for RFI and null for RRFI. The genetic correlation between dLFI and dSWB was high and positive (0.74 (0.11)) and null between dLFI and BFTB. Genetic correlation was favourable between RFI and dLFI and BFTB (0.71 (0.16) and −0.69 (0.18)), respectively. The other genetic correlations were not statistically different from zero. The phenotypic correlations were low and positive between dLFI and dSWB (0.27 (0.03), dSWB and BFTB (0.25 (0.04)), and between dLFI and dLWG (0.16 (0.03)). Therefore, in the population under study, the improvement of the lactation feed efficiency would be possible either using RFI, which would not have unfavourable correlated effects, or through an index including its component traits.  相似文献   

5.
    
Current trends in the beef industry focus on selecting production traits with the purpose of maximizing calf weaning weight; however, such traits may ultimately decrease overall post-weaning productivity. Therefore, the objective of this study was to evaluate the effects of actual milk yield in mature beef cows on their offspring’s dry matter intake (DMI), BW, average daily gain, feed conversion ratio (FCR) and residual feed intake (RFI) during a ~75-day backgrounding feeding trial. A period of 24-h milk production was measured with a modified weigh-suckle-weigh technique using a milking machine. After milking, cows were retrospectively classified as one of three milk yield groups: Lower (6.57±1.21 kg), Moderate (9.02±0.60 kg) or Higher (11.97±1.46 kg). Calves from Moderate and Higher milk yielding dams had greater (P<0.01) BW from day 0 until day 75 at the end of the backgrounding feeding phase; however, day 75 BW were not different (P=0.36) between Lower and Moderate calves. Body weight gain was greater (P=0.05) for Lower and Moderate calves from the day 0 BW to day 35 BW compared with Higher calves. Overall DMI was lower (P=0.03) in offspring from Lower and Moderate cows compared with their Higher milking counterparts. With the decreased DMI, FCR was lower (P=0.03) from day 0 to day 35 in calves from Lower and Moderate milk yielding dams. In addition, overall FCR was lower (P=0.02) in calves from Lower and Moderate milk yielding dams compared with calves from Higher milk yielding dams. However, calving of Lower milk yielding dams had an increased (P=0.04) efficiency from a negative RFI value compared with calves from Moderate and Higher milking dams. Results from this study suggest that increased milk production in beef cows decreases feed efficiency during a 75-day post-weaning, backgrounding period of progeny.  相似文献   

6.
Knowing the large difference in daily feed intake (DFI) between Large White (LW) and Piétrain (PI) growing pigs, a backcross (BC) population has been set up to map QTL that could be used in marker assisted selection strategies. LW × PI boars were mated with sows from two LW lines to produce 16 sire families. A total of 717 BC progeny were fed ad libitum from 30 to 108 kg BW using single-place electronic feeders. A genome scan was conducted using genotypes for the halothane gene and 118 microsatellite markers spread on the 18 porcine autosomes. Interval mapping analyses were carried out, assuming different QTL alleles between sire families to account for within breed variability using the QTLMap software. The effects of the halothane genotype and of the dam line on the QTL effect estimates were tested. One QTL for DFI (P < 0.05 at the chromosome-wide (CW) level) and one QTL for feed conversion ratio (P < 0.01 at the CW level) were mapped to chromosomes SSC6 - probably due to the halothane alleles - and SSC7, respectively. Three putative QTL for feed intake traits were detected (P < 0.06 at the CW level) on SSC2, SSC7 and SSC9. QTL on feeding traits had effects in the range of 0.20 phenotypic s.d. The relatively low number of QTL detected for these traits suggests a large QTL allele variability within breeds and/or low effects of individual loci. Significant QTL were detected for traits related to carcass composition on chromosomes SSC6, SSC15 and SSC17, and to meat quality on chromosome SSC6 (P < 0.01 at the genome-wide level). QTL effects for body composition on SSC13 and SSC17 differed according to the LW dam line, which confirmed that QTL alleles were segregating in the LW breed. An epistatic effect involving the halothane locus and a QTL for loin weight on SSC7 was identified, the estimated substitution effects for the QTL differing by 200 g between Nn and NN individuals. The interactions between QTL alleles and genetic background or particular genes suggest further work to validate QTL segregations in the populations where marker assisted selection for the QTL would be applied.  相似文献   

7.
纤维素酶对生长育肥猪饲养效果的影响   总被引:2,自引:0,他引:2  
本试验选用32头67日龄皮大长白杂交生长育肥猪,随机分为两组,试验组日粮在对照组日粮基础上添加0.1%纤维素酶制剂,通过40天的实验结果表明对照组日增重为351.05克,试验组为405.94克,日增重提高15.64%,差异显著(P〈0.01),饲料报酬提高7.21%,经济效益明显增加。说明该纤维素酶制剂应用于饲喂生长猪是可行的。  相似文献   

8.
    
A total of 50 mixed parity sows of a high-prolificacy genetic line were used to evaluate the impact of feed restriction during lactation on their production and reproductive performance and their performance in the subsequent lactation. From day 7 of lactation, sows were distributed according to a completely randomized experimental design into two treatments. In treatment 1, sows were fed 8.0 kg feed/day (control) and in treatment 2, sows were fed 4.0 kg/day. The same suckling pressure was maintained until weaning on day 28 of lactation. Average minimum and maximum temperatures measured during the experimental period were 32.1°C and 16.5°C, respectively. Control sows presented significantly higher feed intake (P<0.001) compared with the restricted sows (6.43 v. 4.14 kg/day, respectively). Treatments influenced BW and backfat thickness losses (P<0.001). Control sows lost less BW than the restricted-fed sows (7.8 v. 28.2 kg). Restricted-fed sows lost more backfat thickness than those in the control group (3.97 v. 2.07 mm; P<0.01). Restricted-fed sows tended (P<0.10) to be lighter at weaning compared with the control sows (211 v. 227 kg). The composition of BW loss was influenced by the treatments (P<0.001), as the restricted-fed sows lost more body protein, lipids and energy compared with the control sows (3.90 v. 0.98 kg, 11.78 v. 4.83 kg and 584 v. 224 MJ, respectively). Litter weight gain was greater (P<0.05) in control sows than in restricted-fed sows (2.70 v. 2.43 kg/day). Daily milk production was 19% higher (P<0.01) in the control sows compared with the restricted-fed sows (8.33 v. 6.99 kg/day). However, restricted-fed sows presented a higher (P<0.05) lactation efficiency than the sows of the control group (82.30% v. 72.93%). No differences were detected (P>0.10) in weaning-to-estrus interval and averaged 4.3 days. No effect of the treatment (P>0.10) was observed on any of the studied performance traits in the subsequent lactation, except for litter size at birth that tended (15.2 v. 14.1; P<0.10) to be lower for the restricted sows. In conclusion, the present study demonstrated that feed restriction during lactation leads to intense catabolism of the body tissues of sows, negatively affecting their milk production, and the litter weight gain and possibly number of piglets born in the next litter. On the other hand, restricted-fed sows are more efficient, producing more milk per amount of feed intake.  相似文献   

9.
Fat affects meat quality, value and production efficiency as well as providing energy reserves for pregnancy and lactation in farm livestock. Leptin, the adipocyte product of the obese (ob) gene, was quickly seen as a predictor of body fat content in animals approaching slaughter and an aid to assessing reproductive readiness in females. Its participation in inflammation and immune responses that help animals survive infection and trauma has clear additional relevance to meat and milk production. Furthermore, almost a decade of discoveries of nucleotide polymorphisms in the leptin and leptin receptor genes has suggested useful applications relating to feed intake regulation, the efficiency of feed use, the composition of growth, the timing of puberty, mammogenesis and mammary gland function and fertility in cattle, pigs and poultry. The current review attempts to summarise where research has taken us in each of these aspects and speculates on where future research might lead.  相似文献   

10.
    
The objective of this study was to evaluate the relationship between muscle mitochondrial function and residual feed intake (RFI) in growing beef cattle. A 56-day feeding trial was conducted with 81 Angus × Hereford steers (initial BW = 378 ± 43 kg) from the University of California Sierra Foothills Research Station (Browns Valley, CA, USA). All steers were individually fed the same finishing ration (metabolizable energy = 3.28 Mcal/kg DM). Average daily gain (ADG), DM intake (DMI) and RFI were 1.82 ± 0.27, 8.89 ± 1.06 and 0.00 ± 0.55 kg/day, respectively. After the feeding trial, the steers were categorized into high, medium and low RFI groups. Low RFI steers consumed 13.6% less DM (P < 0.05) and had a 14.1% higher G : F ratio (P < 0.05) than the high RFI group. No differences between RFI groups were found in age, ADG or BW (P > 0.10). The most extreme individuals from the low and high RFI groups were selected to assess mitochondrial function (n = 5 low RFI and n = 6 high RFI). Mitochondrial respiration was measured using an oxygraph (Hansatech Instruments Ltd., Norfolk, UK). State 3 and State 4 respiration rates were similar between both groups (P > 0.10). Respiratory control ratios (RCRs, i.e., State 3 : State 4 oxygen uptakes) declined with animal age and were greater in low RFI steers (4.90) as compared to high RFI steers (4.26) when adjusted for age by analysis of covariance (P = 0.003). Mitochondrial complex II activity levels per gram of muscle were 42% greater in low RFI steers than in high RFI steers (P = 0.004). These data suggest that skeletal muscle mitochondria have greater reserve respiratory capacity and show greater coupling between respiration and phosphorylation in low RFI than in high RFI steers.  相似文献   

11.
    
Improving feed efficiency in dairy cattle could result in more profitable and environmentally sustainable dairy production through lowering feed costs and emissions from dairy farming. In addition, beef production based on dairy herds generates fewer greenhouse gas emissions per unit of meat output than beef production from suckler cow systems. Different scenarios were used to assess the profitability of adding traits, excluded from the current selection index for Finnish Ayrshire, to the breeding goal for combined dairy and beef production systems. The additional breeding goal traits were growth traits (average daily gain of animals in the fattening and rearing periods), carcass traits (fat covering, fleshiness and dressing percentage), mature live weight (LW) of cows and residual feed intake (RFI) traits. A breeding scheme was modeled for Finnish Ayrshire under the current market situation in Finland using the deterministic simulation software ZPLAN+. With the economic values derived for the current production system, the inclusion of growth and carcass traits, while preventing LW increase generated the highest improvement in the discounted profit of the breeding program (3.7%), followed by the scenario where all additional traits were included simultaneously (5.1%). The use of a selection index that included growth and carcass traits excluding LW, increased the profit (0.8%), but reduced the benefits resulted from breeding for beef traits together with LW. A moderate decrease in the profit of the breeding program was obtained when adding only LW to the breeding goal (−3.1%), whereas, adding only RFI traits to the breeding goal resulted in a minor increase in the profit (1.4%). Including beef traits with LW in the breeding goal showed to be the most potential option to improve the profitability of the combined dairy and beef production systems and would also enable a higher rate of self-sufficiency in beef. When considering feed efficiency related traits, the inclusion of LW traits in the breeding goal that includes growth and carcass traits could be more profitable than the inclusion of RFI, because the marginal costs of measuring LW can be expected to be lower than for RFI and it is readily available for selection. In addition, before RFI can be implemented as a breeding objective, the genetic correlations between RFI and other breeding goal traits estimated for the studied population as well as information on the most suitable indicator traits for RFI are needed to assess more carefully the consequences of selecting for RFI.  相似文献   

12.
    
This study was initiated to understand whether feeding behaviour and physiology may contribute to the rate of fatigued pigs at processing plants. Specifically, this study sought to determine: (1) how often pigs eat during the day, (2) the times of the day they eat and (3) a first approximation of the time from feed consumption to excretion (rate of passage) when housed in a group in conventional finishing facilities. Finally, models were constructed to try to predict the percentage of pigs with empty/diminished gastrointestinal (GI) tracts depending on the time of day of truck loading and transport durations. Pigs were randomly selected, weighed and selected for behavioural observations. From video records and live observations, the number of meals (feeding bouts) per day and the time of the day meals took place were recorded. Feed containing chromic oxide was fed to determine when a given meal was excreted. With the feeding times of day determined, models were constructed of the percentage of pigs that would have empty stomachs depending on the time of day pigs were removed from the barn and the length of transport/lairage. Finishing pigs housed in groups ate 5.6 ± 0.6 meals per day with an average feeding bout (meal) length of 11.3 ± 1.1 min. Many pigs fed ad libitum ate most of their meals during the afternoon and evening. The rate of passage of feed was 20.5 h (range = 18 to 24 h). Because fewer pigs ate in the late evening through morning, if pigs were shipped at these times they would have an increased risk of arriving at the stun at a plant with an empty GI tract. Some of the variation in rates of fatigued pigs and pork quality may be explained by times of day taken off feed and transport duration. Shipping in the afternoon or early evening may result in fewer pigs with empty/diminished GI tracts at processing which may influence the rate of fatigued pigs and pork quality.  相似文献   

13.
Goal, Scope and Method The purpose of this environmental system analysis was to investigate the impact of feed choice in three pig production scenarios using substance flow models complemented by life cycle assessment methodology. The function of the system studied was to grow piglets of 29 kg to finished pigs of 115 kg. Three alternative scenarios of protein supply were designed, one based on imported soybean meal (scenario SOY); one based on locally grown peas and rapeseed cake (scenario PEA) and one based on Swedish peas and rapeseed meal complemented by synthetic amino acids (scenario SAA). The environmental impact of both feed production as such and the subsequent environmental impact of the feed in the pig production sub-system were analysed. The analysed feed ingredients were barley, wheat, peas, rapeseed meal, rapeseed cake, soybean meal and synthetic amino acids. The crude protein level of the feed affected the nitrogen content in the manure, which in turn affected nitrogen emissions throughout the system and the fertilising value of the manure, ultimately affecting the need for mineral fertiliser application for feed production. Results and Discussion The results showed that feed production contributed more than animal husbandry to the environmental burden of the system for the impact categories energy use, global warming potential and eutrophication, whereas the opposite situation was the case for acidification. The environmental impacts of scenarios SOY, PEA and SAA were 6.8, 5.3 and 6.3 MJ/kg pig growth; 1.5, 1.3 and 1.4 kg CO2-eq/kg pig growth; 0.55, 0.55 and 0.45 kg O2-eq/kg pig growth; and 24, 25 and 20 g SO2-eq/kg pig growth, respectively. The results suggested that scenario SAA was environmentally preferable, and that the reason for this was a low crude protein level of the feed and exclusion of soybean meal from the feed. Conclusions Feed choice had an impact on the environmental performance of pig meat production, not only via the features of the feed as fed to the pigs, such as the crude protein content, but also via the raw materials used, since the environmental impact from the production of these differs and since feed production had a large impact on the system as a whole.  相似文献   

14.
    
To understand the production factors that affect conclusive parameters of sow herd performance can improve the use of the resources and profitability of farm. The objective of this study was to identify associations and quantify the effects of a set of factors related to piglet weight at weaning (PWW), kilograms of piglets weaned per sow per year (kgPWSY) and sow feed conversion (SFC). Data from 150 farms were collected, for a total study population of 135 168 sows, including gilt replacement, breeding (mating), gestation and farrowing/lactation phases. A questionnaire focusing on reproductive performance, management, facilities, feeding, health and biosafety was administered. Multiple linear regression models were used to assess associations among factors with each of the three dependent variables. Increased duration of lactation was positively associated with PWW, kgPWSY and SFC. The increase in the number of live born pigs per litter was positively associated with kgPWSY and with SFC. Farms with higher PWW had farrowing room humidifiers, did not surgically castrate male piglets and used quaternary ammonia compounds for farrowing room disinfection. Farms with higher kgPWSY used lined ceilings in farrowing rooms and winter feeds with higher CP percentages in gestation; they also had more farrowings per sow per year. Sow feed conversion was worse in farms with partly slatted floors during gestation, in farms feeding lactating sows six times a day or ad libitum and farms with a higher sow-handler ratio. This study indicates that farms can increase PWW and kgPWSY and improve the SFC by changing one or more management, biosafety and feeding practices or facilities as well as by focusing on improving several performance parameters, particularly increasing the duration of lactation and the number of live born pigs per litter.  相似文献   

15.
In the last two decades, there has been enormous effort dedicated to better understanding how to restore and manage temperate native woodland vegetation in Australia's eastern wheat–sheep belt, and the consequences for fauna. This study presents ten of the most important lessons learned from the work to date by the Lindenmayer group at the Fenner School of Environment and Society at The Australian National University.  相似文献   

16.
禽畜养殖粪便中多重抗生素抗性细菌研究   总被引:3,自引:0,他引:3       下载免费PDF全文
通过对新乡地区8家养猪场和11家养鸡场饲喂抗生素情况的调研,发现头孢氨苄、阿莫西林、卡那霉素、庆大霉素等4种抗生素是该地区被普遍使用的兽药抗生素。通过多点取样法和微生物培养技术对3家养鸡场和3家养猪场不同养殖时期的粪便进行单一抗生素和多重抗生素抗性细菌的检测,结果表明养鸡场堆置1周的粪便中抗头孢氨苄的细菌比例最高,达到65.90%,对所研究的3种和4种抗生素同时抗性的比例高达8.60%—12.51%和9.73%,明显高于饲喂中药的对照养鸡场样本检测结果(0.02%—2.73%和0.12%)。养猪场堆置1周的粪便中检测到抗头孢氨苄的细菌比例也是最高,达到49.12%上,但养猪场粪便中多重抗生素抗性细菌的比例明显低于养鸡场。同时研究发现,在两种养殖场中,幼龄期粪便中检测到的多重抗性细菌比例明显高于成熟期粪便,这可能与养殖过程中鸡、猪在幼龄期由于防病和促生长等因素而同时大剂量使用多种抗生素有关。  相似文献   

17.
    
The provision of straw to pigs kept in conventional pens with concrete floor improves animal welfare, but the effects of straw on pigs’ performance are unclear. In two steps, we investigated the relationship between amount of straw provided to pigs and measures of performance in a set-up maintaining constant space allowance and controlled room temperature. From approximately 30- to 85-kg BW, pigs were housed in groups of 18 in pens (5.48 m × 2.48 m) with concrete floor (1/3 solid, 1/3 drained and 1/3 slatted). The pens were cleaned manually twice a week, and the designated amount of fresh uncut wheat straw was provided daily onto the solid part of the floor. In the first step, 48 pens were assigned to 10-, 500- or 1000-g straw per pig per day, while in the second step, 90 pens were assigned to 10-, 80-, 150-, 220-, 290-, 360-, 430- or 500-g straw per pig per day. Pigs were weighed at the start of the experimental period at approximately 30 kg and again at approximately 85-kg BW. The average daily gain increased 8.1 g (SEM 17) for every extra 100-g straw added daily (P < 0.001) resulting in 40 g higher average daily gain with 500 compared to 10-g straw per pig per day. The feed conversion ratio was not affected by the amount of straw provided, as the feed intake tended to be higher with increasing amounts of straw. Thus, between 10 and 500 g, the more straw provided, the higher the daily weight gain. As the nutritional value of straw is considered minimal, this result is likely due to improved gut health from the increasing amounts of straw ingested and increased feed intake due to increased stimulation of exploratory behaviour with increasing amounts of straw available, or a combination of these. The observed tendency for a higher feed intake supports this suggestion, but studies are needed to establish the impact of these two contributing factors.  相似文献   

18.
The melanocortin 4 receptor (MC4R) is a key factor in the regulation of energy balance and body weight. Hence it is a candidate for feed intake and energy homeostasis-related traits. Studies in humans and swine have revealed several sequence variants in the gene that are associated with some of these traits. In pigs the coding non-synonymous missense variant Asp298Asn in MC4R has been associated with feed intake, fatness and growth. Here we confirm the association of this Piétrain-derived polymorphism with feed intake and daily gain in the F2 generation of a Mangalitsa x Piétrain cross. In one Piétrain founder animal, we detected an additional non-synonymous missense variant Arg236His. Thus, the MC4R gene could be a useful marker for increased growth in the relatively slow-growing Piétrain breed.  相似文献   

19.
    
To identify mitigation options to reduce greenhouse gas (GHG) emissions from milk production (i.e. the carbon footprint (CF) of milk), this study examined the variation in GHG emissions among dairy farms using data from previous CF studies on Swedish milk. Variations between farms in these production data, which were found to have a strong influence on milk CF, were obtained from existing databases of 1051 dairy farms in Sweden in 2005. Monte Carlo (MC) analysis was used to analyse the impact of variations in seven important parameters on milk CF concerning milk yield (energy-corrected milk (ECM) produced and delivered), feed dry matter intake (DMI), enteric CH4 emissions, N content in feed DMI, N-fertiliser rate and diesel used on farm. The largest between-farm variations among the analysed production data were N-fertiliser rate (kg/ha) and diesel used (l/ha) on farm (CV = 31% to 38%). For the parameters concerning milk yield and feed DMI, the CV was approximately 11% and 8%, respectively. The smallest variation in production data was found for N content in feed DMI. According to the MC analysis, these variations in production data led to a variation in milk CF of between 0.94 and 1.33 kg CO2 equivalents (CO2e)/kg ECM, with an average value of 1.13 kg CO2e/kg ECM. We consider that this variation of ±17%, which was found to be based on the used farm data, would be even greater if all Swedish dairy farms were included, as the sample of farms in this study was not totally unbiased. The variation identified in milk CF indicates that a potential exists to reduce GHG emissions from milk production on both the national and farm levels through changes in management. As milk yield and feed DMI are two of the most influential parameters for milk CF, feed conversion efficiency (i.e. units ECM produced/unit DMI) can be used as a rough key performance indicator for predicting CF reductions. However, it must be borne in mind that feeds have different CF due to where and how they are produced.  相似文献   

20.
    
Despite substantial advances in milk production efficiency of dairy cattle over the last 50 years, rising feed costs remain a significant threat to producer profitability. There also is a greater emphasis being placed on reducing the negative impacts of dairy production on the environment; thus means to lower greenhouse gas (GHG) emissions and nutrient losses to the environment associated with cattle production are being sought. Improving feed efficiency among dairy cattle herds offers an opportunity to address both of these issues for the dairy industry. However, the best means to assess feed efficiency and make genetic progress in efficiency-related traits among lactating cows without negatively impacting other economically important traits is not entirely obvious. In this review, multiple measurements of feed efficiency for lactating cows are described, as well as the heritability of the traits and their genetic and phenotypic correlations with other production traits. The measure of feed efficiency, residual feed intake is discussed in detail in terms of the benefits for its selection, how it could be assessed in large commercial populations, as well as biological mechanisms contributing to its variation among cows, as it has become a commonly used method to estimate efficiency in the recent scientific literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号