首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolonged high-fat diet leads to the development of obesity and multiple comorbidities including non-alcoholic steatohepatitis (NASH), but the underlying molecular basis is not fully understood. We combine molecular networks and time course gene expression profiles to reveal the dynamic changes in molecular networks underlying diet-induced obesity and NASH. We also identify hub genes associated with the development of NASH. Core diet-induced obesity networks were constructed using Ingenuity pathway analysis (IPA) based on 332 high-fat diet responsive genes identified in liver by time course microarray analysis (8 time points over 24 weeks) of high-fat diet-fed mice compared to normal diet-fed mice. IPA identified five core diet-induced obesity networks with time-dependent gene expression changes in liver. These networks were associated with cell-to-cell signaling and interaction (Network 1), lipid metabolism (Network 2), hepatic system disease (Network 3 and 5), and inflammatory response (Network 4). When we merged these core diet-induced obesity networks, Tlr2, Cd14, and Ccnd1 emerged as hub genes associated with both liver steatosis and inflammation and were altered in a time-dependent manner. Further, protein–protein interaction network analysis revealed Tlr2, Cd14, and Ccnd1 were interrelated through the ErbB/insulin signaling pathway. Dynamic changes occur in molecular networks underlying diet-induced obesity. Tlr2, Cd14, and Ccnd1 appear to be hub genes integrating molecular interactions associated with the development of NASH. Therapeutics targeting hub genes and core diet-induced obesity networks may help ameliorate diet-induced obesity and NASH.  相似文献   

2.
Nonalcoholic steatohepatitis (NASH) is associated with increased synthesis of triglycerides and cholesterol coupled with increased VLDL synthesis in the liver. In addition, increased cholesterol content in the liver associates with NASH. Here we study the association of lipoprotein subclass metabolism with NASH. To this aim, liver biopsies from 116 morbidly obese individuals [age 47.3 ± 8.7 (mean ± SD) years, BMI 45.1 ± 6.1 kg/m2, 39 men and 77 women] were used for histological assessment. Proton NMR spectroscopy was used to measure lipid concentrations of 14 lipoprotein subclasses in native serum samples at baseline and after obesity surgery. We observed that total lipid concentration of VLDL and LDL subclasses, but not HDL subclasses, associated with NASH [false discovery rate (FDR) < 0.1]. More specifically, total lipid and cholesterol concentration of VLDL and LDL subclasses associated with inflammation, fibrosis, and cell injury (FDR < 0.1), independent of steatosis. Cholesterol concentration of all VLDL subclasses also correlated with total and free cholesterol content in the liver. All NASH-related changes in lipoprotein subclasses were reversed by obesity surgery. High total lipid and cholesterol concentration of serum VLDL and LDL subclasses are linked to cholesterol accumulation in the liver and to liver cell injury in NASH.  相似文献   

3.
Non-alcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation, and fibrosis and is believed to develop via a “two-hit process”; however, its pathophysiology remains unclear. Fibroblast growth factors (FGFs) are heparin-binding polypeptides with diverse biological activities in many developmental and metabolic processes. In particular, FGF5 is associated with high blood pressure. We investigated the function of FGF5 in vivo using spontaneously Fgf5 null mice and explored the role of diet in the development of NASH. Mice fed a high-fat diet gained little weight and had higher serum alanine transaminase, aspartate amino transferase, and non–high-density lipoprotein-cholesterol levels. Liver histology indicated marked inflammation, focal necrosis, fat deposition, and fibrosis, similar to the characteristics of NASH. FGF5 and a high-fat diet play significant roles in the pathophysiology of hepatic fibrosis and Fgf5 null mice may provide a suitable model for liver fibrosis or NASH.  相似文献   

4.

Background

Chronic inflammation and oxidative stress play fundamental roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). Previously, we reported that myeloperoxidase (MPO), an aggressive oxidant-generating neutrophil enzyme, is associated with NASH severity in man. We now investigated the hypothesis that MPO contributes to the development and progression of NASH.

Methodology

Low-density lipoprotein receptor-deficient mice with an MPO-deficient hematopoietic system (LDLR−/−/MPO−/−tp mice) were generated and compared with LDLR−/−/MPO+/+tp mice after induction of NASH by high-fat feeding.

Results

High-fat feeding caused a ∼4-fold induction of liver MPO in LDLR−/−/MPO+/+ mice which was associated with hepatic sequestration of MPO-positive neutrophils and high levels of nitrotyrosine, a marker of MPO activity. Importantly, LDLR−/−/MPO−/−tp mice displayed markedly reduced hepatic neutrophil and T-lymphocyte infiltration (p<0.05), and strong down regulation of pro-inflammatory genes such as TNF-α and IL-6 (p<0.05, p<0.01) in comparison with LDLR−/−/MPO+/+tp mice. Next to the generalized reduction of inflammation, liver cholesterol accumulation was significantly diminished in LDLR−/−/MPO−/−tp mice (p = 0.01). Moreover, MPO deficiency appeared to attenuate the development of hepatic fibrosis as evident from reduced hydroxyproline levels (p<0.01). Interestingly, visceral adipose tissue inflammation was markedly reduced in LDLR−/−/MPO−/−tp mice, with a complete lack of macrophage crown-like structures. In conclusion, MPO deficiency attenuates the development of NASH and diminishes adipose tissue inflammation in response to a high fat diet, supporting an important role for neutrophils in the pathogenesis of metabolic disease.  相似文献   

5.
6.
Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver disease. Mechanisms that underlie this progression remain poorly understood, partly due to lack of good animal models that resemble human NASH. We previously showed that several metabolic syndrome features that develop in LDL receptor-deficient (LDLR-/-) mice fed a diabetogenic diet are worsened by dietary cholesterol. To test whether dietary cholesterol can alter the hepatic phenotype in the metabolic syndrome, we fed LDLR-/- mice a high-fat, high-carbohydrate diabetogenic diet (DD) without or with added cholesterol (DDC). Both groups of mice developed obesity and insulin resistance. Hyperinsulinemia, dyslipidemia, hepatic triglyceride, and alanine aminotransferase (ALT) elevations were greater with DDC. Livers of DD-fed mice showed histological changes resembling NAFLD, including steatosis and modest fibrotic changes; however, DDC-fed animals developed micro- and macrovesicular steatosis, inflammatory cell foci, and fibrosis resembling human NASH. Dietary cholesterol also exacerbated hepatic macrophage infiltration, apoptosis, and oxidative stress. Thus, LDLR-/- mice fed diabetogenic diets may be useful models for studying human NASH. Dietary cholesterol appears to confer a second "hit" that results in a distinct hepatic phenotype characterized by increased inflammation and oxidative stress.  相似文献   

7.
The innate immune system plays a major role in the pathogenesis of nonalcoholic steatohepatitis (NASH). Recently we reported complement activation in human NASH. However, it remained unclear whether the alternative pathway of complement, which amplifies C3 activation and which is frequently associated with pathological complement activation leading to disease, was involved. Here, alternative pathway components were investigated in liver biopsies of obese subjects with healthy livers (n = 10) or with NASH (n = 12) using quantitative PCR, Western blotting, and immunofluorescence staining. Properdin accumulated in areas where neutrophils surrounded steatotic hepatocytes, and colocalized with the C3 activation product C3c. C3 activation status as expressed by the C3c/native C3 ratio was 2.6-fold higher (p<0.01) in subjects with NASH despite reduced native C3 concentrations (0.94±0.12 vs. 0.57±0.09; p<0.01). Hepatic properdin levels positively correlated with levels of C3c (rs = 0.69; p<0.05) and C3c/C3 activation ratio (rs = 0.59; p<0.05). C3c, C3 activation status (C3c/C3 ratio) and properdin levels increased with higher lobular inflammation scores as determined according to the Kleiner classification (C3c: p<0.01, C3c/C3 ratio: p<0.05, properdin: p<0.05). Hepatic mRNA expression of factor B and factor D did not differ between subjects with healthy livers and subjects with NASH (factor B: 1.00±0.19 vs. 0.71±0.07, p = 0.26; factor D: 1.00±0.21 vs. 0.66±0.14, p = 0.29;). Hepatic mRNA and protein levels of Decay Accelerating Factor tended to be increased in subjects with NASH (mRNA: 1.00±0.14 vs. 2.37±0.72; p = 0.22; protein: 0.51±0.11 vs. 1.97±0.67; p = 0.28). In contrast, factor H mRNA was downregulated in patients with NASH (1.00±0.09 vs. 0.71±0.06; p<0.05) and a similar trend was observed with hepatic protein levels (1.12±0.16 vs. 0.78±0.07; p = 0.08). Collectively, these data suggest a role for alternative pathway activation in driving hepatic inflammation in NASH. Therefore, alternative pathway factors may be considered attractive targets for treating NASH by inhibiting complement activation.  相似文献   

8.
Obesity and cigarette smoking independently constitute major preventable causes of morbidity and mortality and obesity is known to worsen lung inflammation in asthma. Paradoxically, higher body mass index (BMI) is associated with reduced mortality in smoking induced COPD whereas low BMI increases mortality risk. To date, no study has investigated the effect of a dietary-induced obesity and cigarette smoke exposure on the lung inflammation and loss of skeletal muscle mass in mice. Male BALB/c mice were exposed to 4 cigarettes/day, 6 days/week for 7 weeks, or sham handled. Mice consumed either standard laboratory chow (3.5 kcal/g, 12% fat) or a high fat diet (HFD, 4.3 kcal/g, 32% fat). Mice exposed to cigarette smoke for 7 weeks had significantly more inflammatory cells in the BALF (P<0.05) and the mRNA expression of pro-inflammatory cytokines and chemokines was significantly increased (P<0.05); HFD had no effect on these parameters. Sham- and smoke-exposed mice consuming the HFD were significantly heavier than chow fed animals (12 and 13%, respectively; P<0.05). Conversely, chow and HFD fed mice exposed to cigarette smoke weighed 16 and 15% less, respectively, compared to sham animals (P<0.05). The skeletal muscles (soleus, tibialis anterior and gastrocnemius) of cigarette smoke-exposed mice weighed significantly less than sham-exposed mice (P<0.05) and the HFD had no protective effect. For the first time we report that cigarette smoke exposure significantly decreased insulin-like growth factor-1 (IGF-1) mRNA expression in the gastrocnemius and tibialis anterior and IGF-1 protein in the gastrocnemius (P<0.05). We have also shown that cigarette smoke exposure reduced circulating IGF-1 levels. IL-6 mRNA expression was significantly elevated in all three skeletal muscles of chow fed smoke-exposed mice (P<0.05). In conclusion, these findings suggest that a down-regulation in local IGF-1 may be responsible for the loss of skeletal muscle mass following cigarette smoke exposure in mice.  相似文献   

9.
Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD) or control diet (CD) for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (P<0.02), and a striking increase in 12 serum pro-inflammatory cytokines (P<0.05), while Fat1-HFD mothers remained similar to WT-CD mothers, despite equal weight gain. E18.5 Fetuses from WT-HFD mothers had larger placentas (P<0.02), as well as increased placenta and fetal liver TG deposition (P<0.01 and P<0.02, respectively) and increased placental LPL TG-hydrolase activity (P<0.02), which correlated with degree of maternal insulin resistance (r = 0.59, P<0.02). The placentas and fetal livers from Fat1-HFD mothers were protected from this excess placental growth and fetal-placental lipid deposition. Importantly, maternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (P<0.05), body and liver fat (P<0.05 and P<0.001, respectively), and whole body insulin resistance (P<0.05), these were prevented in WT offspring from Fat1-HFD mothers. Our results suggest that reducing excess maternal inflammation may be a promising target for preventing adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.  相似文献   

10.
Oxidative stress is a core abnormality responsible for disease progression in nonalcoholic fatty liver disease (NAFLD). However, the pathways that contribute to oxidative damage in vivo are poorly understood. Our aims were to define the circulating profile of lipid oxidation products in NAFLD patients, the source of these products, and assess whether their circulating levels reflect histological changes in the liver. The levels of multiple structurally specific oxidized fatty acids, including individual hydroxy-eicosatetraenoic acids (HETE), hydroxy-octadecadenoic acids (HODE), and oxo-octadecadenoic acids (oxoODE), were measured by mass spectrometry in plasma at time of liver biopsy in an initial cohort of 73 and a validation cohort of 49 consecutive patients. Of the markers monitored, 9- and 13-HODEs and 9- and 13-oxoODEs, products of free radical-mediated oxidation of linoleic acid (LA), were significantly elevated in patients with nonalcoholic steatohepatitis (NASH), compared with patients with steatosis. A strong correlation was revealed between these oxidation products and liver histopathology (inflammation, fibrosis, and steatosis). Further analyses of HODEs showed equivalent R and S chiral distribution. A risk score for NASH (oxNASH) was developed in the initial clinical cohort and shown to have high diagnostic accuracy for NASH versus steatosis in the independent validation cohort. Subjects with elevated oxNASH levels (top tertile) were 9.7-fold (P < 0.0001) more likely to have NASH than those with low levels (bottom tertile). Collectively, these findings support a key role for free radical-mediated linoleic acid oxidation in human NASH and define a risk score, oxNASH, for noninvasive detection of the presence of NASH.  相似文献   

11.
Nonalcoholic fatty liver (NAFL) and steatohepatitis (NASH) may accompany obesity, diabetes, parenteral nutrition, jejeuno-ileal bypass, and chronic inflammatory bowel disease. Currently there is no FDA approved and effective therapy available. We investigated the potential efficacy of those agents that stimulate glutathione (GSH) biosynthesis on the development of experimental steatohepatitis. Rats fed (ad libitum) amino acid based methionine-choline deficient (MCD) diet were further gavaged with (1) vehicle (MCD), (2) S-adenosylmethionine (SAMe), or (3) 2(RS)-n-propylthiazolidine-4(R)-carboxylic acid (PTCA). RESULTS: MCD diet significantly reduced hematocrit, and this abnormality improved in the treated groups (p < 0.01). Serum transaminases were considerably elevated (AST: 5.8-fold; ALT: 3.22-fold) in MCD rats. However, administration of GSH-enhancing agents significantly suppressed these abnormal enzyme activities. MCD rats developed severe liver pathology manifested by fatty degeneration, inflammation, and necrosis, which significantly improved with therapy. Blood levels of GSH were significantly depleted in MCD rats but normalized in the treated groups. Finally, RT-PCR measurements showed a significant upregulation of genes involved in tissue remodeling and fibrosis (matrix metalloproteinases, collagen-alpha1), suppressor of cytokines signaling1, and the inflammatory cytokines (IL-1beta, IL-6, TNF-alpha, and TGF-beta) in the livers of rats fed MCD. GSH-enhancing therapies significantly attenuated the expression of deleterious proinflammatory and fibrogenic genes in this dietary model. This is the first report that oral administration of SAMe and PTCA provide protection against liver injury in this model and suggests therapeutic applications of these compounds in NASH patients.  相似文献   

12.
Recent nutritional epidemiological surveys showed that serum β-cryptoxanthin inversely associates with the risks for insulin resistance and liver dysfunction. Consumption of β-cryptoxanthin possibly prevents nonalcoholic steatohepatitis (NASH), which is suggested to be caused by insulin resistance and oxidative stress from nonalcoholic fatty liver disease. To evaluate the effect of β-cryptoxanthin on diet-induced NASH, we fed a high-cholesterol and high-fat diet (CL diet) with or without 0.003% β-cryptoxanthin to C56BL/6J mice for 12 weeks. After feeding, β-cryptoxanthin attenuated fat accumulation, increases in Kupffer and activated stellate cells, and fibrosis in CL diet-induced NASH in the mice. Comprehensive gene expression analysis showed that although β-cryptoxanthin histochemically reduced steatosis, it was more effective in inhibiting inflammatory gene expression change in NASH. β-Cryptoxanthin reduced the alteration of expression of genes associated with cell death, inflammatory responses, infiltration and activation of macrophages and other leukocytes, quantity of T cells, and free radical scavenging. However, it showed little effect on the expression of genes related to cholesterol and other lipid metabolism. The expression of markers of M1 and M2 macrophages, T helper cells, and cytotoxic T cells was significantly induced in NASH and reduced by β-cryptoxanthin. β-Cryptoxanthin suppressed the expression of lipopolysaccharide (LPS)-inducible and/or TNFα-inducible genes in NASH. Increased levels of the oxidative stress marker thiobarbituric acid reactive substances (TBARS) were reduced by β-cryptoxanthin in NASH. Thus, β-cryptoxanthin suppresses inflammation and the resulting fibrosis probably by primarily suppressing the increase and activation of macrophages and other immune cells. Reducing oxidative stress is likely to be a major mechanism of inflammation and injury suppression in the livers of mice with NASH.  相似文献   

13.
《遗传学报》2022,49(4):269-278
Nonalcoholic steatohepatitis (NASH), an inflammatory subtype of nonalcoholic fatty liver disease, is featured by significantly elevated levels of various proinflammatory cytokines. Among numerous proinflammatory factors that contribute to NASH pathogenesis, the secreted protein, tumor necrosis factor-alpha (TNF-α), plays an essential role in multiple facets of NASH progression and is therefore considered as a potential therapeutic target. In this review, we will first systematically describe the preclinical studies on the biochemical function of TNF-α and its intracellular downstream signaling mechanisms through its receptors. Moreover, we extensively discuss its functions in regulating inflammation, cell death, and fibrosis of liver cells in the pathogenesis of NASH, and the molecular mechanism that TNF-α expression is regulated by NF-κB and other upstream master regulators during NASH progression. As TNF-α is one of the causal factors that remarkably contributes to NASH progression, combination of therapeutic modalities, including TNF-α-based therapies may lead to the resolution of NASH via multiple pathways and thus generate clinical benefits. For translational studies, we summarize recent advances in strategies targeting TNF-α and its signaling pathway, which paves the way for potential therapeutic treatments for NASH in the future.  相似文献   

14.

Objective:

Obesity‐associated nonalcoholic fatty liver disease (NAFLD), covering from simple steatosis to nonalcoholic steatohepatitis (NASH), is a common cause of chronic liver disease. Aberrant production of adipocytokines seems to play a main role in most obesity‐associated disorders. Changes in adipocytokines in obesity could be mediated by alterations in cyclic GMP (cGMP) homeostasis. The aims of this work were: (1) to study the role of altered cGMP homeostasis in altered adipocytokines in morbid obesity, (2) to assess whether these alterations are different in simple steatosis or NASH, and (3) to assess whether these changes reverse in obese patients after bariatric surgery.

Design and Methods:

In 47 patients with morbid obesity and 45 control subjects, the levels in blood of adipocytokines, cGMP, nitric oxide (NO) metabolites, and atrial natriuretic peptide (ANP) were studied. Whether weight loss after a bariatric surgery reverses the changes in these parameters was evaluated.

Results:

NO metabolites and leptin increase (and adiponectin decreases) similarly in patients with steatosis or NASH, suggesting that these changes are due to morbid obesity and not to liver disease. Inflammation and cGMP homeostasis are affected both by morbid obesity and by liver disease. The increases in interleukin 6 (IL‐6), interleukin 18 (IL‐18), plasma cGMP, ANP, and the decrease in cGMP in lymphocytes are stronger in patients with NASH than with steatosis. All these changes reverse completely after bariatric surgery and weight loss, except IL‐18.

Conclusion:

Altered cGMP homeostasis seems to contribute more than inflammation to changes in leptin and adiponectin in morbid obesity.  相似文献   

15.
Our previous studies showed that recombinant high-density lipoprotein (rHDL) rHDL74 exhibited higher anti-inflammatory capabilities compared to wild-type rHDL (rHDLwt), while rHDL228 showed hyper-proinflammation. In this paper, we further investigated the potential mechanisms involved in their different inflammatory functions using two models: endotoxemic mice and the RAW264.7 inflammation model. Our results showed that 24 h after the injection of lipopolysaccharide (LPS), mice treated with rHDL74 had a significant decrease in plasma CRP (P<0.01 vs. rHDLwt; P<0.01 vs. LPS), MCP-1 (P<0.05 vs. rHDLwt; P<0.01 vs. LPS) and CD14 (P<0.01 vs. LPS) compared with the mice treated with rHDLwt or the controls that received LPS only. Similar to our previous study, rHDL228 increased the plasma level of CRP (P<0.05 vs. LPS) and MCP-1 (P<0.01 vs. LPS). Our immunohistochemistry and western blot analysis showed that rHDL74 inhibited the activation of NF-κB in endotoxemic mice and JNK and p38 in the RAW264.7 inflammation model, while rHDL228 exacerbated the activation of NF-κB and ERK. In summary, our data suggest that rHDL74 exhibits higher anti-inflammatory activity by decreasing inflammatory factors and inhibiting the activation of NF-κB, JNK and p38, while rHDL228 appears to be hyper-proinflammation by increasing these inflammatory factors and aggravating the activation of NF-κB and ERK.  相似文献   

16.
17.
The risks of nonalcoholic steatohepatitis (NASH) and deficiency in vitamin B12 and folate (methyl donor deficiency, MDD) are increased in inflammatory bowel disease (IBD). We investigated the influence of MDD on NASH in rats with DSS-induced colitis. Two-month-old male Wistar rats were subjected to MDD diet and/or ingestion of DSS and compared to control animals. We studied steatosis, inflammation, fibrosis, plasma levels of metabolic markers, cytokines and lipopolysaccharide, and inflammatory pathways in liver. MDD triggered a severe macrovesicular steatosis with inflammation in DSS animals that was not observed in animals subjected to DSS or MDD only. The macrovesicular steatosis was closely correlated to folate, vitamin B12, homocysteine plasma level and liver S-adenosyl methionine/S-adenosyl homocysteine (SAM/SAH) ratio. Liver inflammation was evidenced by activation of nuclear factor kappa B (NFκB) pathway and nuclear translocation of NFκB phospho-p65. MDD worsened the increase of interleukin 1-beta (IL-1β) and abolished the increase of IL10 produced by DSS colitis. It increased monocyte chemoattractant protein 1 (MCP-1). MDD triggers liver macrovesicular steatosis and inflammation through imbalanced expression of IL-1β vs. IL10 and increase of MCP-1 in DSS colitis. Our results suggest evaluating whether IBD patients with MDD and increase of MCP-1 are at higher risk of NASH.  相似文献   

18.
Excessive lipid deposition, oxidative stress and inflammation in liver tissues are regarded as crucial inducers of nonalcoholic steatohepatitis (NASH), which is the most frequent chronic liver disease and closely related to obesity and insulin resistance. In this work, the preventive and therapeutic effects of Citrus reticulata Blanco (Jizigan) peel extract (JZE) on NASH induced by high fat (HF) diet and methionine choline-deficient (MCD) diet in C57BL/6 mice were investigated. We found that daily supplementation of JZE with an HF diet effectively ameliorated glucose tolerance and insulin resistance. In addition, the key indexes of lipid profiles, oxidative stress, hepatic steatosis and inflammatory factors were also ameliorated in both NASH mouse models. Furthermore, JZE treatment activated nuclear factor erythroid-2-related factor 2 (Nrf2) in the livers of diet- induced NASH mice. Our study suggests that JZE might alleviate NASH via the activation of Nrf2 signaling and that citrus Jizigan could be used as a dietary therapy for NASH and related metabolic syndrome.  相似文献   

19.
The endemic occurrence of obesity and the associated risk factors that constitute the metabolic syndrome have been predicted to lead to a dramatic increase in chronic liver disease. Non-alcoholic steatohepatitis (NASH) has become the most frequent liver disease in countries with a high prevalence of obesity. In addition, hepatic steatosis and insulin resistance have been implicated in disease progression of other liver diseases, including chronic viral hepatitis and hepatocellular carcinoma. The molecular mechanisms underlying the link between insulin signaling and hepatocellular injury are only partly understood. We have explored the role of the antiapoptotic caspase-8 homolog cellular FLICE-inhibitory protein (cFLIP) on liver cell survival in a diabetic model with hypoinsulinemic diabetes in order to delineate the role of insulin signaling on hepatocellular survival. cFLIP regulates cellular injury from apoptosis signaling pathways, and loss of cFLIP was previously shown to promote injury from activated TNF and CD95/Apo-1 receptors. In mice lacking cFLIP in hepatocytes (flip−/−), loss of insulin following streptozotocin treatment resulted in caspase- and c-Jun N-terminal kinase (JNK)-dependent liver injury after 21 days. Substitution of insulin, inhibition of JNK using the SP600125 compound in vivo or genetic deletion of the mitogen-activated protein kinase (MAPK)9 (JNK2) in all tissues abolished the injurious effect. Strikingly, the difference in injury between wild-type and cFLIP-deficient mice occurred only in vivo and was accompanied by liver-infiltrating inflammatory cells with a trend toward increased amounts of NK1.1-positive cells and secretion of proinflammatory cytokines. Transfer of bone marrow from rag-1-deficient mice that are depleted from B and T lymphocytes prevented liver injury in flip−/− mice. These findings support a direct role of insulin on cellular survival by alternating the activation of injurious MAPK, caspases and the recruitment of inflammatory cells to the liver. Thus, increasing resistance to insulin signaling pathways in hepatocytes appears to be an important factor in the initiation and progression of chronic liver disease.  相似文献   

20.
Although macrophages are thought to be crucial for the pathogenesis of chronic inflammatory diseases, how they are involved in disease progression from simple steatosis to non-alcoholic steatohepatitis (NASH) is poorly understood. Here we report the unique histological structure termed “hepatic crown-like structures (hCLS)” in the mouse model of human NASH; melanocortin-4 receptor deficient mice fed a Western diet. In hCLS, CD11c-positive macrophages aggregate to surround hepatocytes with large lipid droplets, which is similar to those described in obese adipose tissue. Histological analysis revealed that hCLS is closely associated with activated fibroblasts and collagen deposition. When treatment with clodronate liposomes effectively depletes macrophages scattered in the liver, with those in hCLS intact, hepatic expression of inflammatory and fibrogenic genes is unaffected, suggesting that hCLS is an important source of inflammation and fibrosis during the progression of NASH. Notably, the number of hCLS is positively correlated with the extent of liver fibrosis. We also observed increased number of hCLS in the liver of non-alcoholic fatty liver disease/NASH patients. Collectively, our data provide evidence that hCLS is involved in the development of hepatic inflammation and fibrosis, thereby suggesting its pathophysiologic role in disease progression from simple steatosis to NASH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号