首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures.  相似文献   

2.
Here we provide definitive evidence that chloroquine (CQ) uptake in Plasmodium falciparum is determined by binding to ferriprotoporphyrin IX (FPIX). Specific proteinase inhibitors that block the degradation of hemoglobin and stop the generation of FPIX also inhibit CQ uptake. Food vacuole enzymes can generate cell-free binding, using human hemoglobin as a substrate. This binding accounts for CQ uptake into intact cells and is subject to identical inhibitor specificity. Inhibition of CQ uptake by amiloride derivatives occurs because of inhibition of CQ-FPIX binding rather than inhibition of the Na+/H+ exchanger (NHE). Inhibition of parasite NHE using a sodium-free medium does not inhibit CQ uptake nor does it alter the ability of amilorides to inhibit uptake. CQ resistance is characterized by a reduced affinity of CQ-FPIX binding that is reversible by verapamil. Diverse compounds that are known to disrupt lysosomal pH can mimic the verapamil effect. These effects are seen in sodium-free medium and are not due to stimulation of the NHE. We propose that these compounds increase CQ accumulation and overcome CQ resistance by increasing the pH of lysosomes and endosomes, thereby causing an increased affinity of binding of CQ to FPIX.  相似文献   

3.
A simple device for taking in situ proton NMR measurements in 1H2O is described. This allows aeration of reactions in a 10 mm diameter NMR tube without modifying the magnet or the probe head. With this device, aerobic biotransformations can be monitored in the NMR-tube placed in the spectrometer. It allows in situ analyses of the transformations, separating the aeration period temporally from the measurement time, not unlike traditional Warburg respiratory experiments. Two reactions determining kinetic and stoichieometric parameters: (i) a biotransformation by a growing Pseudomonas putida culture and (ii) l-phenylalanine oxidation catalysed by l-amino acid oxidase [E.C. 1.4.3.2]; both incubations were contained in the magnet.  相似文献   

4.
ABSTRACT. The mitochondrion appears to be essential for the growth of asexual, intraerythrocytic stages of Plasmodium falciparum and may thus be a suitable chemotherapeutic target. The in vitro activity of almitrine, a mitochondrial ATP synthetase inhibitor used for the treatment of hypoxemia, was compared with other mitochondrial inhibitors against chloroquine-susceptible and chloroquine-resistant P. falciparum using an isotopic semimicro drug susceptibility assay. The 50% inhibitory concentration (IC50) values of almitrine (range: 2.6–19.8 μM) were within similar range of values of other mitochondrial ATP synthetase inhibitors and doxycycline, a mitochondrial protein synthesis inhibitor. Almitrine was equally active against chloroquine-susceptible and chloroquine-resistant parasites. Drug combination studies showed no interaction between chloroquine and almitrine. Our results suggest that almitrine, a clinically safe drug, may represent a lead compound with a specific target against the mitochondrial ATP synthetase which may be useful for antimalarial chemotherapy.  相似文献   

5.
The malaria parasite's chloroquine resistance transporter (CRT) is an integral membrane protein localized to the parasite's acidic digestive vacuole. The function of CRT is not known and the protein was originally described as a transporter simply because it possesses 10 transmembrane domains. In wild-type (chloroquine-sensitive) parasites, chloroquine accumulates to high concentrations within the digestive vacuole and it is through interactions in this compartment that it exerts its antimalarial effect. Mutations in CRT can cause a decreased intravacuolar concentration of chloroquine and thereby confer chloroquine resistance. However, the mechanism by which they do so is not understood. In this paper we present the results of a detailed bioinformatic analysis that reveals that CRT is a member of a previously undefined family of proteins, falling within the drug/metabolite transporter superfamily. Comparisons between CRT and other members of the superfamily provide insight into the possible role of the protein and into the significance of the mutations associated with the chloroquine resistance phenotype. The protein is predicted to function as a dimer and to be oriented with its termini in the parasite cytosol. The key chloroquine-resistance-conferring mutation (K76T) is localized in a region of the protein implicated in substrate selectivity. The mutation is predicted to alter the selectivity of the protein such that it is able to transport the cationic (protonated) form of chloroquine down its steep concentration gradient, out of the acidic vacuole, and therefore away from its site of action.  相似文献   

6.
A conserved high activity erythrocyte binding peptide (HAEBP) derived from the 175-erythrocyte binding antigen (EBA-175), coded 1758, was synthesized and analyzed for antigenic and protective activities in Aotus monkeys, together with several of its analogues. Conformational analysis by 1H Nuclear Magnetic Resonance in TFE-solution was done for some of them, as well as the 1758 parent peptide. We show that the conserved 1758 HAEBP (being neither immunogenic nor protective) has an alpha helical structure, whilst its analogues contain beta-turn structures. The 13790 peptide (highly immunogenic and protective for some monkeys) shows a type I beta-turn structure distorted in psi(i + 1) psi(i + 2) angles, whilst immunogenic and non-protective (as well as the non-immunogenic and non-protective peptides) have type III' beta-turns. An understanding of native peptide's correlation with altered peptide three-dimensional structure and resulting immunogenicity and protective activity may lead to a more rational design of multi-antigenic, multi-stage P. falciparum subunit based malaria vaccines.  相似文献   

7.
Psalmopeotoxin I (PcFK1) is a 33-amino-acid residue peptide isolated from the venom of the tarantula Psalmopoeus cambridgei. It has been recently shown to possess strong antiplasmodial activity against the intra-erythrocyte stage of Plasmodium falciparum in vitro. Although the molecular target for PcFK1 is not yet determined, this peptide does not lyse erythrocytes, is not cytotoxic to nucleated mammalian cells, and does not inhibit neuromuscular function. We investigated the structural properties of PcFK1 to help understand the unique mechanism of action of this peptide and to enhance its utility as a lead compound for rational development of new antimalarial drugs. In this paper, we have determined the three-dimensional solution structure by (1)H two-dimensional NMR means of recombinant PcFK1, which is shown to belong to the ICK structural superfamily with structural determinants common to several neurotoxins acting as ion channels effectors.  相似文献   

8.
The present study determined and compared the genetic diversity of Plasmodium falciparum strains infecting children living in 2 areas from Gabon with different malaria endemicity. Blood samples were collected from febrile children from 2008 to 2009 in 2 health centres from rural (Oyem) and urban (Owendo) areas. Genetic diversity was determined in P. falciparum isolates by analyzing the merozoite surface protein-1 (msp1) gene polymorphism using nested-PCR. Overall, 168 children with mild falciparum malaria were included. K1, Ro33, and Mad20 alleles were found in 110 (65.5%), 94 (55.9%), and 35 (20.8%) isolates, respectively, without difference according to the site (P>0.05). Allelic families’ frequencies were comparable between children less than 5 years old from the 2 sites; while among the older children the proportions of Ro33 and Mad20 alleles were 1.7 to 2.0 fold higher at Oyem. Thirty-three different alleles were detected, 16 (48.5%) were common to both sites, and 10 out of the 17 specific alleles were found at Oyem. Furthermore, multiple infection carriers were frequent at Oyem (57.7% vs 42.2% at Owendo; P=0.04) where the complexity of infection was of 1.88 (±0.95) higher compared to that found at Owendo (1.55±0.75). Extended genetic diversity of P. falciparum strains infecting Gabonese symptomatic children and high multiplicity of infections were observed in rural area. Alleles common to the 2 sites were frequent; the site-specific alleles predominated in the rural area. Such distribution of the alleles should be taken into accounts when designing MSP1 or MSP2 malaria vaccine.  相似文献   

9.
Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples obtained from the following: 10 mice inoculated with a highly-metastatic mammary carcinoma cell line, 10 mice inoculated with a “normally” metastatic mammary carcinoma cell line, and 10 healthy controls. Following standard spectral processing and subsequent data reduction, we applied unsupervised Principal Component Analysis (PCA) to determine if unique metabolic fingerprints for different categories of metastatic breast cancer in serum exist. The PCA method correctly separated sera of tumor-bearing mice from that of normal healthy controls, as shown using the scores plot which indicated that sera classes from tumor-bearing mice did not share multivariate space with that from healthy controls. In addition, this technique was capable of distinguishing between classes of varying metastatic ability in this system. Metabolites apparently responsible for separation between diseased and healthy mice include lactate, taurine, choline, and sugar moieties. Results of this study suggest that 1H-NMR spectra of mouse serum analyzed using PCA statistical methods indicate separation of tumor-bearing mice from healthy normal controls, justifying further study of the use of 1H-NMR metabonomics for cancer detection using serum.  相似文献   

10.
Erythrocyte binding ligand 1 (EBL-1) is a member of the ebl multigene family involved in Plasmodium falciparum invasion of erythrocytes. We found that five EBL-1 high-activity binding peptides (HABPs) bound specifically to erythrocytes: 29895 ((41)HKKKSGELNNNKSGILRSTY(60)), 29903 ((201)LYECGK-KIKEMKWICTDNQF(220)), 29923 ((601)CNAILGSYADIGDIVRGLDV(620)), 29924((621)WRDINTNKLSEK-FQKIFMGGY(640)), and 30018 ((2481)LEDIINLSKKKKKSINDTSFY(2500)). We also show that binding was saturable, not sialic acid-dependent, and that all peptides specifically bound to a 36-kDa protein on the erythrocyte membrane. The five HABPs inhibited in vitro merozoite invasion depending on the peptide concentration used, suggesting their possible role in the invasion process.  相似文献   

11.
12.
In this study, high-resolution 600-MHz 1H-NMR (nuclear magnetic resonance) spectroscopies were used to compare the urinary metabolic profiles of healthy humans and humans in a high-selenium area of China. NMR biomarkers for renal and liver lesions were observed by comparing the urine 1H-NMR spectra. In urinary excretion, the concentrations in human urine samples of formate, lactate, acetate, hippurate, and alanine in overexposure to selenium were increased, whereas citrate, creatine, and TMAO excretion were decreased compared with that of the healthy human—some of them even disappeared. An interesting result was the appearance of formate in urine, which has previously been shown to lead to acidosis and chronic renal failure and interfere with the lumen and proximal tubular cells. The level of creatine was associated with the seminal activity. The changes of acetate and citrate may explain the disorder of the cellular energy metabolism caused by selenium, and the changes of other amino acids were a result of the reuptake of these compounds that had been blocked in the glomerulus and proximal tubule. The results elucidate the renal/liver lesion in humans in high-selenium area by 1H-NMR spectroscopy and offer the molecular basic of selenium toxicity.  相似文献   

13.
The digestive vacuole plays an important role in the pathophysiology of the human malaria parasite Plasmodium falciparum. It is a terminal degradation organelle involved in the proteolysis of the host erythrocyte's haemoglobin; it is the site of action of several antimalarial drugs and its membrane harbours transporters implicated in drug resistance. How the digestive vacuole recruits residential proteins is largely unknown. Here, we have investigated the mechanism underpinning trafficking of the chloroquine resistance transporter, PfCRT, to the digestive vacuolar membrane. Nested deletion analysis and site‐directed mutagenesis identified threonine 416 as a functional residue for sorting PfCRT to its site of residence. Mass spectroscopy demonstrated that threonine 416 can be phosphorylated. Further phosphorylation was detected at serine 411. Our data establish PfCRT as a phosphoprotein and suggest that phosphorylation of threonine 416 is a possible deciding signal for the sorting of PfCRT to the digestive vacuolar membrane.  相似文献   

14.
This study was designed to provide a database of the endogenous metabolites in earthworm extracts of the species, Eisenia veneta and Lumbricus terrestris by high resolution 1H-NMR spectroscopy in view of identifying biomarkers of toxicity or stress in environmental metabolomics studies. 1D and 2D NMR spectroscopic techniques enabled the identification and confirmation of the organic components in the tissue extracts of whole and segmented earthworms, dissected organs, and coelomic fluid. The extracts gave rise to characteristic 1H-NMR spectral fingerprints of the low MW metabolites contained, specific to the species of earthworm, and to the specific regions or dissected organs of the earthworms under investigation. Distinct changes in the normal biochemistry were observed upon starvation and cooling, such as markedly decreased glucose and maltose, but increased lactate, acetate, succinate, formate and acetone. Additionally, slightly decreased threonine, arginine, lysine, leucine, citrate, asparagine and glycine were observed. Furthermore, lactate could be identified as a biomarker of acute toxic stress in expressed coelomic fluid following exposure to a model ecotoxin (3-trifluoromethylaniline). This work supports the application of 1H-NMR spectroscopy for the study of changes in the normal invertebrate biochemistry in order to allow for the reliable assessment of biomarker responses following toxicity testing.  相似文献   

15.
The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (ΔΨm) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.  相似文献   

16.
Chloroquine remains the drug of choice for the treatment of vivax malaria in Thailand. Mixed infections of falciparum and vivax malaria are also common in South-East Asia. Laboratory confirmation of malaria species is not generally available. This study aimed to find alternative regimens for treating both malaria species by using falciparum antimalarial drugs. From June 2004 to May 2005, 98 patients with Plasmodium vivax were randomly treated with either artemether-lumefantrine (n = 47) or chloroquine (n = 51). Both treatments were followed by 15 mg of primaquine over 14 days. Adverse events and clinical and parasitological outcomes were recorded and revealed similar in both groups. The cure rate was 97.4% for the artemether-lumefantrine treated group and 100% for the chloroquine treated group. We concluded that the combination of artemether-lumefantrine and primaquine was well tolerated, as effective as chloroquine and primaquine, and can be an alternative regimen for treatment of vivax malaria especially in the event that a mixed infection of falciparum and vivax malaria could not be ruled out.  相似文献   

17.
Several recent discoveries of the hallmark features of programmed cell death (PCD) in Plasmodium falciparum have presented the possibility of revealing novel targets for antimalarial therapy. Using a combination of cell-based assays, flow cytometry and fluorescence microscopy, we detected features including mitochondrial dysregulation, activation of cysteine proteases and in situ DNA fragmentation in parasites induced with chloroquine (CQ) and staurosporine (ST). The use of the pan-caspase inhibitor, z-Val-Ala-Asp-fmk (zVAD), and the mitochondria outer membrane permeabilization (MOMP) inhibitor, 4-hydroxy-tamoxifen, enabled the characterization of a novel CQ-induced pathway linking cysteine protease activation to downstream mitochondrial dysregulation, amplified protease activity and DNA fragmentation. The PCD features were observed only at high (μM) concentrations of CQ. The use of a new synthetic coumarin-labeled chloroquine (CM-CQ) showed that these features may be associated with concentration-dependent differences in drug localization. By further using cysteine protease inhibitors z-Asp-Glu-Val-Asp-fmk (zDEVD), z-Phe-Ala-fmk (zFA), z-Phe-Phe-fmk (zFF), z-Leu-Leu-Leu-fmk (zLLL), E64d and CA-074, we were able to implicate clan CA cysteine proteases in CQ-mediated PCD. Finally, CQ induction of two CQ-resistant parasite strains, 7G8 and K1, reveals the existence of PCD features in these parasites, the extent of which was less than 3D7. The use of the chemoreversal agent verapamil implicates the parasite digestive vacuole in mediating CQ-induced PCD.  相似文献   

18.
Solution conformation of the cyclic hexapeptide sequence, [cyclo-S-Cys-Tyr-Ile-Gln-Asn-Cys-S] (CYIQNC) – a disulfide-linked fragment of a neurohypophyseal peptide hormone oxytocin (OT) – has been investigated by high-field one-dimensional (1D) and two-dimensional (2D) NMR spectroscopic methods and compared with the results obtained from computer simulation studies. 1H-NMR results based on temperature dependence of amide proton chemical shifts and nuclear Overhauser effect indicate that peptide in solution populates different conformations, characterized by two fused β-turns. The segment Ile3-Gln4-Asn5-Cys6 yields a preferred type-III β-turn at residues 4, 5 (HB, 3HN → 6CO), while the segment Cys6, Cys1-Tyr2-Ile3 exhibits inherently weaker, flexible β-turn either of type I/II’/III/half-turn at residues 1, 2 (HB, 6HN → 3CO). The computer simulation studies using a mixed protocol of distance geometry-simulated annealing followed by constrained minimization, restrained molecular dynamics, and energy minimization showed the possibility of existence of additional conformations with the hydrogen bonds, (a) 5HN → 3CO and (b) 2HN → 6CO. These results, therefore, indicate that the additional conformations obtained from both NMR and simulation studies can also be possible to the peptide. These additional conformations might have very small population in the solution and did not show their signatures in these conditions. These findings will be helpful in designing more analogs with modifications in the cyclic moiety of OT.  相似文献   

19.
Involved in a number of diverse metabolic and functional contexts, farnesol is a central component of the mevalonate pathway, post-translationally attaches to proteins, and affects a number of other membrane-associated events. Despite farnesol's biological implications, a detailed analysis of how farnesol affects the physical properties and phase behaviour of lipid membranes is lacking. As 2H-NMR spectra are sensitive to molecular motions and acyl chain orientation, they can be used to measure the degree of molecular order present in the system. Also, since the 2H-NMR spectra of fluid and gel phase lipids are very different, they are sensitive probes of membrane phase equilibrium and can be used to determine fluid-gel phase boundaries. In this study, dimyristoyl phosphatidylcholine-d54 (DMPC-d54) bilayers containing varying concentrations of trans-trans farnesol (2.5-20.0 mol%) are investigated over a range of temperatures (8-30 °C). Analysis of these spectra has led to the construction of a farnesol-DMPC-d54 temperature-composition plot. We show that increasing concentrations of farnesol induce a decrease in the fluid-gel phase transition temperature and promote fluid-gel coexistence. Interestingly, farnesol does not seem to affect the quadrupolar splittings (ΔvQ) in the fluid phase, i.e., the organization of farnesol within the bilayer and its interaction with phospholipids does not appreciably influence acyl chain order in the fluid phase.  相似文献   

20.
Mitochondrial genome sequence of malaria parasites has served as a potential marker for inferring evolutionary history of the Plasmodium genus. In Plasmodium falciparum, the mitochondrial genome sequences from around the globe have provided important evolutionary understanding, but no Indian sequence has yet been utilized. We have sequenced the whole mitochondrial genome of a single P. falciparum field isolate from India using novel primers and compared with the 3D7 reference sequence and 1 previously reported Indian sequence. While the 2 Indian sequences were highly divergent from each other, the presently sequenced isolate was highly similar to the reference 3D7 strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号