首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Folic acid (FA) supplementation before and during pregnancy has been associated with decreased risk of neural tube defects although recent reports suggest it may also increase the risk of other chronic diseases. We evaluated exposure to maternal FA supplementation before and during pregnancy in relation to aberrant DNA methylation at two differentially methylated regions (DMRs) regulating insulin-like growth factor 2 (IGF2) expression in infants. Aberrant methylation at these regions has been associated with IGF2 deregulation and increased susceptibility to several chronic diseases. Using a self-administered questionnaire, we assessed FA intake before and during pregnancy in 438 pregnant women. Pyrosequencing was used to measure methylation at two IGF2 DMRs in umbilical cord blood leukocytes. Mixed models were used to determine relationships between maternal FA supplementation before or during pregnancy and DNA methylation levels at birth. Average methylation at the H19 DMR was 61.2%. Compared to infants born to women reporting no FA intake before or during pregnancy, methylation levels at the H19 DMR decreased with increasing FA intake (2.8%, p = 0.03 and 4.9%, p = 0.04, for intake before and during pregnancy, respectively). This methylation decrease was most pronounced in male infants (p = 0.01). Methylation alterations at the H19 DMR are likely an important mechanism by which FA risks and/or benefits are conferred in utero. Because stable methylation marks at DMRs regulating imprinted genes are acquired before gastrulation, they may serve as archives of early exposures with the potential to improve our understanding of developmental origins of adult disease.Key words: folic acid, epigenetics, IGF2, periconception, prenatal, exposure  相似文献   

3.

Background

Differentially methylated regions (DMRs) are associated with many imprinted genes. In mice methylation at a DMR upstream of the H19 gene known as the Imprint Control region (IC1) is acquired in the male germline and influences the methylation status of DMRs 100 kb away in the adjacent Insulin-like growth factor 2 (Igf2) gene through long-range interactions. In humans, germline-derived or post-zygotically acquired imprinting defects at IC1 are associated with aberrant activation or repression of IGF2, resulting in the congenital growth disorders Beckwith-Wiedemann (BWS) and Silver-Russell (SRS) syndromes, respectively. In Wilms tumour and colorectal cancer, biallelic expression of IGF2 has been observed in association with loss of methylation at a DMR in IGF2. This DMR, known as DMR0, has been shown to be methylated on the silent maternal IGF2 allele presumably with a role in repression. The effect of IGF2 DMR0 methylation changes in the aetiology of BWS or SRS is unknown.

Methodology/Principal Findings

We analysed the methylation status of the DMR0 in BWS, SRS and Wilms tumour patients by conventional bisulphite sequencing and pyrosequencing. We show here that, contrary to previous reports, the IGF2 DMR0 is actually methylated on the active paternal allele in peripheral blood and kidney. This is similar to the IC1 methylation status and is inconsistent with the proposed silencing function of the maternal IGF2 allele. Beckwith-Wiedemann and Silver-Russell patients with IC1 methylation defects have similar methylation defects at the IGF2 DMR0, consistent with IC1 regulating methylation at IGF2 in cis. In Wilms tumour, however, methylation profiles of IC1 and IGF2 DMR0 are indicative of methylation changes occurring on both parental alleles rather than in cis.

Conclusions/Significance

These results support a model in which DMR0 and IC1 have opposite susceptibilities to global hyper and hypomethylation during tumorigenesis independent of the parent of origin imprint. In contrast, during embryogenesis DMR0 is methylated or demethylated according to the germline methylation imprint at the IC1, indicating different mechanisms of imprinting loss in neoplastic and non-neoplastic cells.  相似文献   

4.
To gain insight into parthenogenesis in pigs, we report for the first time that using parthenogenetic somatic cells as nuclear donors (PSCNT), the porcine parthenogenetic fetus can develop to gestational day 39. Weight and morphological analysis revealed that PSCNT fetuses were smaller and developmentally retarded when compared to normally fertilized controls. Quantitative gene expression analysis indicated that in PSCNT fetuses, H19 was over-expressed, whereas Igf2 was significantly reduced (p < 0.05) compared with their controls. In addition, bisulfite-sequencing PCR results demonstrated that H19 differentially DNA methylated regions (DMRs) were hypomethylated in PSCNT fetuses, while Igf2 DMRs were hypermethylated in both PSCNT and control fetuses. Our results suggest that extended development of the porcine parthenogenetic fetus can be accomplished using PSCNT and that abnormal DNA methylation of H19 DMRs might contribute to the critical barrier of parthenogenesis in pigs.  相似文献   

5.
《Epigenetics》2013,8(7):928-936
Folic acid (FA) supplementation before and during pregnancy has been associated with decreased risk of neural tube defects although recent reports suggest it may also increase the risk of other chronic diseases. We evaluated exposure to maternal FA supplementation before and during pregnancy in relation to aberrant DNA methylation at two differentially methylated regions (DMRs) regulating Insulin-like Growth Factor 2 (IGF2) expression in infants. Aberrant methylation at these regions has been associated with IGF2 deregulation and increased susceptibility to several chronic diseases. Using a self-administered questionnaire, we assessed FA intake before and during pregnancy in 438 pregnant women. Pyrosequencing was used to measure methylation at two IGF2 DMRs in umbilical cord blood leukocytes. Mixed models were used to determine relationships between maternal FA supplementation before or during pregnancy and DNA methylation levels at birth. Average methylation at the H19 DMR was 61.2%. Compared to infants born to women reporting no FA intake before or during pregnancy, methylation levels at the H19 DMR decreased with increasing FA intake (2.8%, p=0.03, and 4.9%, p=0.04, for intake before and during pregnancy, respectively). This methylation decrease was most pronounced in male infants (p=0.01). Methylation alterations at the H19 DMR are likely an important mechanism by which FA risks and/or benefits are conferred in utero. Because stable methylation marks at DMRs regulating imprinted genes are acquired before gastrulation, they may serve as archives of early exposures with the potential to improve our understanding of developmental origins of adult disease.  相似文献   

6.
The imprinted Igf2 gene is active only on the paternal allele in most tissues. Its imprinting involves a cis-acting imprinting-control region (ICR) located upstream of the neighboring and maternally expressed H19 gene. It is thought that differential methylation of the parental alleles at the ICR is crucial for parental imprinting of both genes. Differentially methylated regions (DMRs) have also been identified within the Igf2 gene and their differential methylation is thought to be established during early development. To gain further insight into the function of these DMRs, we performed a quantitative analysis of their allelic methylation levels in different tissues during fetal development and the postnatal period in the mouse. Surprisingly, we found that the methylation levels of Igf2 DMRs vary extensively during fetal development, mostly on the expressed paternal allele. In particular, in skeletal muscle, differential allelic methylation in both DMR 1 and DMR 2 occurs only after birth, whereas correct paternal monoallelic expression is always observed, including in the embryonic stages. This suggests that differential methylation in the DMR 1 and DMR 2 of the Igf2 gene is dispensable for its imprinting in skeletal muscle. Furthermore, progressive methylation of the Igf2 paternal allele appears to be correlated with concomitant postnatal down-regulation and silencing of the gene. We discuss possible relations between Igf2 allelic methylation and expression during fetal development.  相似文献   

7.
This study was designed to identify the putative differentially methylated regions (DMRs) of the porcine imprinted genes insulin-like growth factor 2 and H19 (IGF2-H19), and to assess the genomic imprinting status of IGF2-H19 by identifying the methylation patterns of these regions in germ cells, and in tissues from porcine fetuses, an adult pig, as well as cloned offspring produced by somatic cell nuclear transfer (SCNT). Porcine IGF2-H19 DMRs exhibit a normal monoallelic methylation pattern (i.e., either the paternally- or the maternally derived allele is methylated) similar to the pattern observed for the same genes in the human and mice genomes. Examination of the methylation patterns of the IGF2-H19 DMRs revealed that the zinc finger protein binding sites CTCF1 and 2 did not exhibit differential methylation in both control and cloned offspring. In contrast, the CTCF3 and DMR2 loci of the IGF2 gene showed abnormal methylation in cloned offspring, but a normal differential or moderate methylation pattern in tissues from control offspring and an adult pig. Our data thus suggest that regulation of genomic imprinting at the porcine IGF2-H19 loci is conserved among species, and that the abnormal methylation pattern in the regulatory elements of imprinted genes may lead to an alteration in the coordinated expression of genes required for successful reprogramming, which, in consequence, may contribute to the low efficiency of porcine genome reprogramming induced by nuclear transfer.  相似文献   

8.
The mouse Igf2 and H19 genes lie 70-kb apart on chromosome 7 and are reciprocally imprinted. Two regulatory regions are important for their parental allele-specific expression: a differentially methylated region (DMR) upstream of H19 and a set of tissue-specific enhancers downstream of H19. The enhancers specifically activate Igf2 on the paternal chromosome and H19 on the maternal chromosome. The interactions between the enhancers and the genes are regulated by the DMR, which works as a selector by exerting dual functions: a methylated DMR on the paternal chromosome inactivates adjacent H19 and an unmethylated DMR on the maternal chromosome insulates Igf2 from the enhancers. These processes appear to involve methyl-CpG-binding proteins, histone deacetylases and the formation of chromatin insulator complexes. The Igf2/H19 region provides a unique model in which to study the roles of DNA methylation and chromatin structure in the regulation of chromosome domains.  相似文献   

9.
Park CH  Kim HS  Lee SG  Lee CK 《Genomics》2009,93(2):179-186
The aim of this study was to demonstrate how differential methylation imprints are established during porcine preimplantation embryo development. For the methylation analysis, the primers for the three Igf2/H19 DMRs were designed and based upon previously published sequences. The methylation marks of Igf2/H19 DMRs were analysed in sperm and MII oocytes with our results showing that these regions are fully methylated in sperm but remain unmethylated in MII oocytes. In order to identify the methylation pattern at the pronuclear stage, we indirectly compared the methylation profile of Igf2/H19 DMR3 in each zygote derived by in vitro fertilization, parthenogenesis, and androgenesis. Interestingly, this region was found to be differently methylated according to parental origins; DMR3 was hemimethylated in in vitro fertilized zygotes, fully methylated in parthenogenetic zygotes, and demethylated in androgenetic zygotes. These results indicate that the methylation mark of the paternal allele is erased by active demethylation, and that of the maternal one is de novo methylated. We further examined the methylation imprints of Igf2/H19 DMR3 during early embryonic development. The hemimethylated pattern as seen in zygotes fertilized in vitro was observed up to the 4-cell embryo stage. However, this mark was exclusively demethylated at the 8-cell stage and then restored at the morula stage. These results suggest that methylation imprints are established via dynamic changes during early embryonic development in porcine embryos.  相似文献   

10.
IGFII, the peptide encoded by the Igf2 gene, is a broad spectrum mitogen with important roles in prenatal growth as well as cancer progression. Igf2 is transcribed from the paternally inherited allele, whereas the linked H19 is transcribed from the maternal allele. Igf2 imprinting is thought to be maintained by differentially methylated regions (DMRs) located at multiple sites such as upstream of H19 and Igf2 and within Kvlqt1 loci. Biallelic expression (loss of imprinting (LOI)) of Igf2 is frequently observed in cancers, and a subset of Wilms' and intestinal tumors have been shown to exhibit abnormal methylation at H19DMR associated with loss of maternal H19 expression, but it is not known whether such changes are common in other neoplasms. Because cancers consist of diverse cell populations with and without Igf2 LOI, we established four independent monoclonal cell lines with Igf2 LOI from mouse hepatic tumors. We here demonstrate retention of normal differential methylation at H19, Igf2, or Kvlqt1 DMR by all of the cell lines. Furthermore, H19 was found to be expressed exclusively from the maternal allele, and levels of CTCF, a multifunctional nuclear factor that has an important role in the Igf2 imprinting, were comparable with those in normal hepatic tissues with no mutational changes detected. These data indicate that Igf2 LOI in tumor cells is not necessarily linked to abnormal methylation at H19, Igf2, or Kvlqt1 loci.  相似文献   

11.
Expression of imprinted genes is classically associated with differential methylation of specific CpG-rich DNA regions (DMRs). The H19/IGF2 locus is considered a paradigm for epigenetic regulation. In mice, as in humans, the essential H19 DMR--target of the CTCF insulator--is located between the two genes. Here, we performed a pyrosequencing-based quantitative analysis of its CpG methylation in normal human tissues. The quantitative analysis of the methylation level in the H19 DMR revealed three unexpected discrete, individual-specific methylation states. This epigenetic polymorphism was confined to the sixth CTCF binding site while a unique median-methylated profile was found at the third CTCF binding site as well as in the H19 promoter. Monoallelic expression of H19 and IGF2 was maintained independently of the methylation status at the sixth CTCF binding site and the IGF2 DMR2 displayed a median-methylated profile in all individuals and tissues analyzed. Interestingly, the methylation profile was genetically transmitted. Transgenerational inheritance of the H19 methylation profile was compatible with a simple model involving one gene with three alleles. The existence of three individual-specific epigenotypes in the H19 DMR in a non-pathological situation means it is important to reconsider the diagnostic value and functional importance of the sixth CTCF binding site.  相似文献   

12.
Su JM  Yang B  Wang YS  Li YY  Xiong XR  Wang LJ  Guo ZK  Zhang Y 《Theriogenology》2011,75(7):1346-1359
Placental deficiencies are linked with developmental abnormalities in cattle produced by somatic cell nuclear transfer (SCNT). To investigate whether the aberrant expression of imprinted genes in placenta was responsible for fetal overgrowth and placental hypertrophy, quantitative expression analysis of six imprinted genes (H19, XIST, IGF2R, SNRPN, PEG3, and IGF2) was conducted in placentas of: 1) deceased (died during perinatal period) transgenic calves (D group, n = 4); 2) live transgenic calves (L group, n = 15); and 3) conventionally produced (control) female calves (N group, n = 4). In this study, XIST, PEG3 and IGF2 were significantly over-expressed in the D group, whereas expression of H19 and IGF2R was significantly reduced in the D group compared to controls. The DNA methylation patterns in the differentially methylated region (DMR) from H19, XIST, and IGF2R were compared using Bisulfite Sequencing PCR (BSP) and Combined Bisulfite Restriction Analysis (COBRA). In the D group, H19 DMR was significantly hypermethylated, but XIST DMR and IGF2R ICR were significantly hypomethylated compared to controls. In contrast, there were no noticeable differences in the expression and DNA methylation status of imprinted genes (except DNA methylation level of XIST DMR) in the L group compared to controls. In conclusion, altered DNA methylation levels in the DMRs of imprinted genes in placentas of deceased transgenic calves, presumably due to aberrant epigenetic nuclear reprogramming during SCNT, may have been associated with abnormal expression of these genes; perhaps this caused developmental insufficiencies and ultimately death in cloned transgenic calves.  相似文献   

13.
Altered placental function as a consequence of aberrant imprinted gene expression may be one mechanism mediating the association between low birth weight and increased cardiometabolic disease risk. Imprinted gene expression is regulated by epigenetic mechanisms, particularly DNA methylation (5mC) at differentially methylated regions (DMRs). While 5-hydroxymethylcytosine (5hmC) is also present at DMRs, many techniques do not distinguish between 5mC and 5hmC. Using human placental samples, we show that the expression of the imprinted gene CDKN1C associates with birth weight. Using specific techniques to map 5mC and 5hmC at DMRs controlling the expression of CDKN1C and the imprinted gene IGF2, we show that 5mC enrichment at KvDMR and DMR0, and 5hmC enrichment within the H19 gene body, associate positively with birth weight. Importantly, the presence of 5hmC at imprinted DMRs may complicate the interpretation of DNA methylation studies in placenta; future studies should consider using techniques that distinguish between, and permit quantification of, both modifications.  相似文献   

14.
Both the early environment and genetic variation may affect DNA methylation, which is one of the major molecular marks of the epigenome. The combined effect of these factors on a well-defined locus has not been studied to date. We evaluated the association of periconceptional exposure to the Dutch Famine of 1944-45, as an example of an early environmental exposure, and single nucleotide polymorphisms covering the genetic variation (tagging SNPs) with DNA methylation at the imprinted IGF2/H19 region, a model for an epigenetically regulated genomic region. DNA methylation was measured at five differentially methylated regions (DMRs) that regulate the imprinted status of the IGF2/H19 region. Small but consistent differences in DNA methylation were observed comparing 60 individuals with periconceptional famine exposure with unexposed same-sex siblings at all IGF2 DMRs (P(BH)<0.05 after adjustment for multiple testing), but not at the H19 DMR. IGF2 DMR0 methylation was associated with IGF2 SNP rs2239681 (P(BH) = 0.027) and INS promoter methylation with INS SNPs, including rs689, which tags the INS VNTR, suggesting a mechanism for the reported effect of the VNTR on INS expression (P(BH) = 3.4 × 10(-3)). Prenatal famine and genetic variation showed similar associations with IGF2/H19 methylation and their contributions were additive. They were small in absolute terms (<3%), but on average 0.5 standard deviations relative to the variation in the population. Our analyses suggest that environmental and genetic factors could have independent and additive similarly sized effects on DNA methylation at the same regulatory site.  相似文献   

15.
The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. To date, four paternally methylated DMRs have been identified in screens based on conventional approaches. These DMRs are linked to the imprinted genes H19, Gtl2 (IG-DMR), Rasgrf1 and, most recently, Zdbf2 which encodes zinc finger, DBF-type containing 2. In this study, we applied a novel methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method to genomic DNA from mouse parthenogenetic- and androgenetic-derived stem cells and sperm and identified 458 putative DMRs. This included the majority of known DMRs. We further characterized the paternally methylated Zdbf2/ZDBF2 DMR. In mice, this extensive germ line DMR spanned 16 kb and possessed an unusual tripartite structure. Methylation was dependent on DNA methyltransferase 3a (Dnmt3a), similar to H19 DMR and IG-DMR. In both humans and mice, the adjacent gene, Gpr1/GPR1, which encodes a G-protein-coupled receptor 1 protein with transmembrane domain, was also imprinted and paternally expressed. The Gpr1-Zdbf2 domain was most similar to the Rasgrf1 domain as both DNA methylation and the actively expressed allele were in cis on the paternal chromosome. This work demonstrates the effectiveness of meDIP-on-chip as a technique for identifying DMRs.  相似文献   

16.
17.
18.
19.
IGF2 is a paternally expressed imprinted gene with an important role in development and brain function. Allele-specific expression of IGF2 is regulated by DNA methylation at three differentially methylated regions (DMRs) spanning the IGF2/H19 domain on human 11p15.5. We have comprehensively assessed DNA methylation and genotype across the three DMRs and the H19 promoter using tissue from a unique collection of well-characterized and neuropathologically-dissected post-mortem human cerebellum samples (n = 106) and frontal cortex samples (n = 51). We show that DNA methylation, particularly in the vicinity of a key CTCF-binding site (CTCF3) in the imprinting control region (ICR) upstream of H19, is strongly correlated with cerebellum weight. DNA methylation at CTCF3 uniquely explains ∼25% of the variance in cerebellum weight. In addition, we report that genetic variation in this ICR is strongly associated with cerebellum weight in a parental-origin specific manner, with maternally-inherited alleles associated with a 16% increase in cerebellum weight compared with paternally-inherited alleles. Given the link between structural brain abnormalities and neuropsychiatric disease, an understanding of the epigenetic and parent-of-origin specific genetic factors associated with brain morphology provides important clues about the etiology of disorders such as schizophrenia and autism.Key words: epigenetic, DNA methylation, genomic imprinting, cerebellum, IGF2, H19, brain, expression, frontal cortex, genetic, single nucleotide polymorphism  相似文献   

20.
SK Murphy  Z Huang  C Hoyo 《PloS one》2012,7(7):e40924
Epigenetic plasticity in relation to in utero exposures may mechanistically explain observed differences in the likelihood of developing common complex diseases including hypertension, diabetes and cardiovascular disease through the cumulative effects of subtle alterations in gene expression. Imprinted genes are essential mediators of growth and development and are characterized by differentially methylated regulatory regions (DMRs) that carry parental allele-specific methylation profiles. This theoretical 50% level of methylation provides a baseline from which endogenously- or exogenously-induced deviations in methylation can be detected. We quantified DNA methylation at imprinted gene DMRs in a large panel of human conceptal tissues, in matched buccal cell specimens collected at birth and at one year of age, and in the major cell fractions of umbilical cord blood to assess the stability of methylation at these regions. DNA methylation was measured using validated pyrosequencing assays at seven DMRs regulating the IGF2/H19, DLK1/MEG3, MEST, NNAT and SGCE/PEG10 imprinted domains. DMR methylation did not significantly differ for the H19, MEST and SGCE/PEG10 DMRs across all conceptal tissues analyzed (ANOVA p>0.10). Methylation differences at several DMRs were observed in tissues from brain (IGF2 and MEG3-IG DMRs), liver (IGF2 and MEG3 DMRs) and placenta (both DLK1/MEG3 DMRs and NNAT DMR). In most infants, methylation profiles in buccal cells at birth and at one year of age were comparable, as was methylation in the major cell fractions of umbilical cord blood. Several infants showed temporal deviations in methylation at multiple DMRs. Similarity of inter-individual and intra-individual methylation at some, but not all of the DMRs analyzed supports the possibility that methylation of these regions can serve as useful biosensors of exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号