首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we examined the regulation of autophagy by fish oil in rats under ethanol-containing diets. Thirty male Wistar rats (8-week-old) were divided into six groups and fed a control diet or an ethanol-containing diet, which was adjusted with fish oil to replace 25% or 57% of the olive oil. After 8 weeks, rats in the E (ethanol diet) group showed the significantly higher plasma aspartate transaminase (AST) and alanine transaminase (ALT) activities, protein expression of cytochrome P450 2E1 (CYP2E1), and levels of hepatic inflammatory cytokines. However, all of those items had significantly decreased in the EF25 (ethanol with 25% fish oil) and EF57 (ethanol with 57% fish oil) groups. As to autophagic indicators, protein expressions of mammalian target of rapamycin (mTOR), Unc-51-like autophagy activating kinase 1 (ULK1) and p62 were significantly increased in the E group. Conversely, the protein expressions of light chain 3II (LC3II)/LC3I and Beclin1 were significantly decreased in the E group. On the other hand, protein expressions of phosphorylated Akt, mTOR, ULK1, and p62 were down-regulated, protein expressions of LC3II/LC3I and Beclin1 were conversely up-regulated in the EF25 and EF57 groups. Fish oil activated hepatic autophagy via inhibiting the Akt signaling pathway, which exerted protective effects against ethanol-induced liver injury in rats.  相似文献   

2.
Acetylshikonin (ASK) is a natural naphthoquinone derivative of traditional Chinese medicine Lithospermum erythrorhyzon. It has been reported that ASK has bactericidal, anti‐inflammatory and antitumour effects. However, whether ASK induces apoptosis and autophagy in acute myeloid leukaemia (AML) cells and the underlying mechanism are still unclear. Here, we explored the roles of apoptosis and autophagy in ASK‐induced cell death and the potential molecular mechanisms in human AML HL‐60 cells. The results demonstrated that ASK remarkably inhibited the cell proliferation, viability and induced apoptosis in HL‐60 cells through the mitochondrial pathway, and ASK promoted cell cycle arrest in the S‐phase. In addition, the increased formation of autophagosomes, the turnover from light chain 3B (LC3B) I to LC3B II and decrease of P62 suggested the induction of autophagy by ASK. Furthermore, ASK significantly decreased PI3K, phospho‐Akt and p‐p70S6K expression, while enhanced phospho‐AMP‐activated protein kinase (AMPK) and phospho‐liver kinase B1(LKB1) expression. The suppression of ASK‐induced the conversion from LC3B I to LC3B II caused by the application of inhibitors of AMPK (compound C) demonstrated that ASK‐induced autophagy depends on the LKB1/AMPK pathway. These data suggested that the autophagy induced by ASK were dependent on the activation of LKB1/AMPK signalling and suppression of PI3K/Akt/mTOR pathways. The cleavage of the apoptosis‐related markers caspase‐3 and caspase‐9 and the activity of caspase‐3 induced by ASK were markedly reduced by inhibitor of AMPK (compound C), an autophagy inhibitor 3‐methyladenine (3‐MA) and another autophagy inhibitor chloroquine (CQ). Taken together, our data reveal that ASK‐induced HL‐60 cell apoptosis is dependent on the activation of autophagy via the LKB1/AMPK and PI3K/Akt‐regulated mTOR signalling pathways.  相似文献   

3.
We recently reported that Phenethyl caffeate benzoxanthene lignan (PCBL), a semisynthetic compound derived from Caffeic Acid Phenethyl Ester (CAPE), induces DNA damage and apoptosis in tumor cells. In this study, we further investigated whether PCBL induces autophagy in WiDr cells. We also analyzed the pathways regulating autophagy and the role of autophagy in PCBL-induced cell death. Our acridine orange staining and LC3 II expression results suggest that PCBL induces autophagosomes in WiDr cells. The levels of LC3 II expression we observed after co-treatment of PCBL with bafilomycin A1 and the reductions in p62 expression we observed after PCBL treatment in WiDr cells demonstrate increased autophagic flux, a reliable indicator of autophagic induction. The increased Beclin 1 expression in PCBL-treated cells and the incapacity of PCBL to induce LC3 II in 3-methyladenine (3-MA)-treated cells we observed suggests that PCBL-induced autophagy is class III PI3-kinase dependent. PCBL did not alter phosphorylation of the mTOR substrate p70 S6 kinase, indicating that PCBL-induced autophagy was not mTOR regulated. Two autophagy related proteins, Atg5 and Atg12, also remained uninduced during PCBL treatment. The increased caspase activity and expression levels of LC3 II and p62 we observed in response to PCBL treatment in primary glioma cells demonstrates that PCBL-induced apoptosis and autophagy were not cell line specific. Pharmacological inhibition of autophagy did not alter the antitumor efficacy of PCBL in WiDr cells. This attests to the bystander nature of PCBL-induced autophagy (in terms of cell death). In toto, these data suggest that PCBL induces a class III kinase dependent, but mTOR independent, bystander mode of autophagy in WiDr cells.  相似文献   

4.
Autophagy is an intracellular degradation system, by which cytoplasmic contents are degraded in lysosomes. Autophagy is dynamically induced by nutrient depletion to provide necessary amino acids within cells, thus helping them adapt to starvation. Although it has been suggested that mTOR is a major negative regulator of autophagy, how it controls autophagy has not yet been determined. Here, we report a novel mammalian autophagy factor, Atg13, which forms a stable ~3-MDa protein complex with ULK1 and FIP200. Atg13 localizes on the autophagic isolation membrane and is essential for autophagosome formation. In contrast to yeast counterparts, formation of the ULK1–Atg13–FIP200 complex is not altered by nutrient conditions. Importantly, mTORC1 is incorporated into the ULK1–Atg13–FIP200 complex through ULK1 in a nutrient-dependent manner and mTOR phosphorylates ULK1 and Atg13. ULK1 is dephosphorylated by rapamycin treatment or starvation. These data suggest that mTORC1 suppresses autophagy through direct regulation of the ~3-MDa ULK1–Atg13–FIP200 complex.  相似文献   

5.
Malignant neuroblastoma is an extracranial solid tumor that usually occurs in children. Autophagy, which is a survival mechanism in many solid tumors including malignant neuroblastoma, deters the efficacy of conventional chemotherapeutic agents. To mimic starvation, we used 200 nM rapamycin that induced autophagy in human malignant neuroblastoma SK-N-BE2 and IMR-32 cells in cell culture and animal models. Combination of microtubule associated protein light chain 3 short hairpin RNA (LC3 shRNA) plasmid transfection and genistein (GST) treatment was tested for inhibiting rapamycin-induced autophagy and promoting apoptosis. The best synergistic efficacy caused the highest decrease in cell viability due to combination of 50 nM LC3 shRNA plasmid transfection and 25 µM GST treatment in rapamycin-treated SK-N-BE2 cells while combination of 100 nM LC3 shRNA plasmid transfection and 25 µM GST treatment in rapamycin-treated IMR-32 cells. Quantitation of acidic vesicular organelles confirmed that combination of LC3 shRNA plasmid transfection and GST treatment prevented rapamycin-induced autophagy due to down regulation of autophagy promoting marker molecules (LC3 II, Beclin 1, TLR-4, and Myd88) and upregulation of autophagy inhibiting marker molecules (p62 and mTOR) in both cell lines. Apoptosis assays showed that combination therapy most effectively activated mitochondrial pathway of apoptosis in human malignant neuroblastoma in cell culture and animal models. Collectively, our current combination of LC3 shRNA plasmid transfection and GST treatment could serve as a promising therapeutic strategy for inhibiting autophagy and increasing apoptosis in human malignant neuroblastoma in cell culture and animal models.  相似文献   

6.
The local anaesthetics (LAs) are widely used for peripheral nerve blocks, epidural anaesthesia, spinal anaesthesia and pain management. However, exposure to LAs for long duration or at high dosage can provoke potential neuronal damages. Autophagy is an intracellular bulk degradation process for proteins and organelles. However, both the effects of LAs on autophagy in neuronal cells and the effects of autophagy on LAs neurotoxicity are not clear. To answer these questions, both lipid LAs (procaine and tetracaine) and amide LAs (bupivacaine, lidocaine and ropivacaine) were administrated to human neuroblastoma SH‐SY5Y cells. Neurotoxicity was evaluated by MTT assay, morphological alterations and median death dosage. Autophagic flux was estimated by autolysosome formation (dual fluorescence LC3 assay), LC3‐II generation and p62 protein degradation (immunoblotting). Signalling alterations were examined by immunoblotting analysis. Inhibition of autophagy was achieved by transfection with beclin‐1 siRNA. We observed that LAs decreased cell viability in a dose‐dependent manner. The neurotoxicity of LAs was tetracaine > bupivacaine > ropivacaine > procaine > lidocaine. LAs increased autophagic flux, as reflected by increases in autolysosome formation and LC3‐II generation, and decrease in p62 levels. Moreover, LAs inhibited tuberin/mTOR/p70S6K signalling, a negative regulator of autophagy activation. Most importantly, autophagy inhibition by beclin‐1 knockdown exacerbated the LAs‐provoked cell damage. Our data suggest that autophagic flux was up‐regulated by LAs through inhibition of tuberin/mTOR/p70S6K signalling, and autophagy activation served as a protective mechanism against LAs neurotoxicity. Therefore, autophagy manipulation could be an alternative therapeutic intervention to prevent LAs‐induced neuronal damage.  相似文献   

7.
Lipopolysaccharide (LPS), as an important proinflammatory agent, targets the endothelium. However, almost all in vitro experiments of the effect of LPS on vascular endothelial cells (VECs) were performed under an artificially decreased concentration of serum that was not enough to maintain the cell growth for a long time. The mechanism underlying LPS action on VECs cultured in a nutrient‐rich condition is not clear. To address this question and mimic the in vivo condition, we investigated the effect of LPS on VEC autophagy, which is involved in numerous physiological processes. The effect of LPS on microtubule‐associated protein 1 light chain 3 (LC3) distribution, LC3‐II accumulation and p62 degradation showed that LPS effectively induced autophagy in VECs cultured in the presence of 20% serum. To understand the mechanism by which LPS triggers the cell autophagy, we first investigated the effects of LPS on the expression of BIRC2 (cIAP1), a well‐known apoptosis inhibitor, and on the kinase activity of mammalian target of rapamycin (mTOR) and nuclear translocation of p53. LPS increased BIRC2 expression in a dose‐ and time‐dependent manner and elevated the intranuclear level of p53 but had no effect on the mTOR pathway when it triggered VEC autophagy. Furthermore, knockdown of BIRC2 by RNA interference inhibited the autophagy and the translocation of p53 to nuclei induced by LPS. These data suggest a novel role for BIRC2 in LPS‐induced autophagy in VECs. J. Cell. Physiol. 225: 174–179, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson''s disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from αSyn‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human αSyn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2 cre)‐mediated depletion of autophagyrelated gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in αSyn‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.  相似文献   

9.
The antitumor effects and molecular mechanism of NPC-16, a novel naphthalimide–polyamine conjugate, were evaluated in HepG2 cells and Bel-7402 cells. Apoptosis and necrosis were evaluated by Annexin V-FITC detection kit, and autophagy by acridine orange and Lyso-Tracker Red staining. The change of mitochondrial transmembrane potential was measured using rhodamine 123 staining. The protein expression of Beclin 1, LC3 II and mTOR, p70S6 K, 14-3-3, caspase, and Bcl-2 family members was detected by immunofluorescence assays and Western Blot. Here, we elucidated the nature of cellular response of HepG2 cells and Bel-7402 cells to NPC-16 at IC50. NPC-16 induced caspase-dependent apoptosis via the mitochondrial pathway and death receptor pathway in Bel-7402 cells. Differently, NPC-16 triggered HepG2 cells both apoptosis and autophagy, further autophagy facilitated cellular apoptosis. Furthermore, mTOR signal pathway was involved in NPC-16-mediated autophagy in HepG2 cells. Thus, NPC-16 may be useful as a potential template for investigation the molecular mechanism of naphthalimide–polyamine conjugate against hepatocellular carcinoma.  相似文献   

10.

Background

Current chemotherapeutic agents based on apoptosis induction are lacking in desired efficacy. Therefore, there is continuous effort to bring about new dimension in control and gradual eradication of cancer by means of ever evolving therapeutic strategies. Various forms of PCD are being increasingly implicated in anti-cancer therapy and the complex interplay among them is vital for the ultimate fate of proliferating cells. We elaborated and illustrated the underlying mechanism of the most potent Andrographolide analogue (AG–4) mediated action that involved the induction of dual modes of cell death—apoptosis and autophagy in human leukemic U937 cells.

Principal Findings

AG–4 induced cytotoxicity was associated with redox imbalance and apoptosis which involved mitochondrial depolarisation, altered apoptotic protein expressions, activation of the caspase cascade leading to cell cycle arrest. Incubation with caspase inhibitor Z-VAD-fmk or Bax siRNA decreased cytotoxic efficacy of AG–4 emphasising critical roles of caspase and Bax. In addition, AG–4 induced autophagy as evident from LC3-II accumulation, increased Atg protein expressions and autophagosome formation. Pre-treatment with 3-MA or Atg 5 siRNA suppressed the cytotoxic effect of AG–4 implying the pro-death role of autophagy. Furthermore, incubation with Z-VAD-fmk or Bax siRNA subdued AG–4 induced autophagy and pre-treatment with 3-MA or Atg 5 siRNA curbed AG–4 induced apoptosis—implying that apoptosis and autophagy acted as partners in the context of AG–4 mediated action. AG–4 also inhibited PI3K/Akt/mTOR pathway. Inhibition of mTOR or Akt augmented AG–4 induced apoptosis and autophagy signifying its crucial role in its mechanism of action.

Conclusions

Thus, these findings prove the dual ability of AG–4 to induce apoptosis and autophagy which provide a new perspective to it as a potential molecule targeting PCD for future cancer therapeutics.  相似文献   

11.
Bovine herpesvirus type 4 (BoHV‐4), like other herpesviruses, induces a series of alterations in the host cell that modify the intracellular environment in favor of viral replication, survival and spread. This research examined the impact of BoHV‐4 infection on autophagy in BoHV‐4 infected Madin Darby bovine kidney (MDBK) cells. Protein extracts of BoHV‐4 infected and control MDBK cells were subjected to Western blot. The concentrations of the autophagy and apoptosis‐related proteins Beclin 1, p21, PI3 kinase, Akt1/2, mTOR, phospho mTOR, p62 and the light chain three (LC3) were normalized to the actin level and expressed as the densitometric ratio. Western blot analysis of virus‐infected cells revealed that autophagic degradation pathway was induced in the late phase of BoHV‐4 infection. After 48 h post‐infection the protein LC3II, which is essential for autophagy was found to be markedly increased, while infection of MDBK cells with BoHV‐4 resulted in a depletion of p62 levels. Becline 1, PI3 kinase, Akt1/2 and p21 expression increased between 24 and 48 h post‐infection. Surprisingly, mTOR and its phosphorylated form, which are negative regulators of autophagy, also increased after 24 h post‐infection. In conclusion, our findings suggest that BoHV‐4 has developed mechanisms for modulation of autophagy that are probably part of a strategy designed to enhance viral replication and to evade the immune system. Additional studies on the relationship between autophagy and BoHV‐4 replication and survival, in both lytic and latent replication phases, are needed to understand the role of autophagy in BoHV‐4 pathogenesis. J. Cell. Biochem. 114: 1529–1535, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4) and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR), and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3β or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response.  相似文献   

13.
We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy.  相似文献   

14.
Squamous cell carcinoma (SCC) cells refractory to initial chemotherapy frequently develop disease relapse and distant metastasis. We show here that tumor suppressor WW domain-containing oxidoreductase (WWOX) (also named FOR or WOX1) regulates the susceptibility of SCC to methotrexate (MTX) in vitro and cure of SCC in MTX therapy. MTX increased WWOX expression, accompanied by caspase activation and apoptosis, in MTX-sensitive SCC cell lines and tumor biopsies. Suppression by a dominant-negative or small interfering RNA targeting WWOX blocked MTX-mediated cell death in sensitive SCC-15 cells that highly expressed WWOX. In stark contrast, SCC-9 cells expressed minimum amount of WWOX protein and resisted MTX-induced apoptosis. Transiently overexpressed WWOX sensitized SCC-9 cells to apoptosis by MTX. MTX significantly downregulated autophagy-related Beclin-1, Atg12–Atg5 and LC3-II protein expression and autophagosome formation in the sensitive SCC-15, whereas autophagy remained robust in the resistant SCC-9. Mechanistically, WWOX physically interacted with mammalian target of rapamycin (mTOR), which potentiated MTX-increased phosphorylation of mTOR and its downstream substrate p70 S6 kinase, along with dramatic downregulation of the aforementioned proteins in autophagy, in SCC-15. When WWOX was knocked down in SCC-15, MTX-induced mTOR signaling and autophagy inhibition were blocked. Thus, WWOX renders SCC cells susceptible to MTX-induced apoptosis by dampening autophagy, and the failure in inducing WWOX expression leads to chemotherapeutic drug resistance.  相似文献   

15.
Autophagy modulation has been considered as a potential therapeutic strategy for lung diseases. The PI3K-Akt-mTOR pathway may be one of the main targets for regulation of autophagy. We previously reported that a PI3 K/mTOR dual inhibitor PF-04691502 suppressed hepatoma cells growth in vitro. However, it is still unclear whether PF-04691502 induces autophagy and its roles in DNA damage and cell death in human lung cancer cells. In this study, we investigate the effects of PF-04691502 on the autophagy and its correlation with cell apoptosis and DNA damage in non-small-cell lung cancer (NSCLC) cell lines. PF-04691502 efficiently inhibited the phosphorylation of Akt and showed dose-dependent cytotoxicity in A549 and H1299 cells. PF-04691502 also triggered apoptosis and the cleavage of caspase-3 and PARP. Phosphorylated histone H2AX (γ-H2AX), a hallmark of DNA damage response, was dramatically induced by PF-04691502 treatment. By exposure to PF-04691502, A549 cells acquired a senescent-like phenotype with an increase in the level of β-galactosidase. Furthermore, PF-04691502 enhanced the expression of LC3-II in a concentration-dependent manner. More interestingly, effects of PF-04691502 on toxicity and DNA damage were remarkably increased by co-treatment with an autophagy inhibitor, chloroquine (CQ), in human lung cancer cells. These data suggest that a strategy of blocking autophagy to enhance the activity of PI3 K/mTOR inhibitors warrants further attention in treatment of NSCLC cells.  相似文献   

16.
17.
Autophagy is a key degradative pathway coordinated by external cues, including starvation, oxidative stress, or pathogen detection. Rare are the molecules known to contribute mechanistically to the regulation of autophagy and expressed specifically in particular environmental contexts or in distinct cell types. Here, we unravel the role of RUN and FYVE domain–containing protein 4 (RUFY4) as a positive molecular regulator of macroautophagy in primary dendritic cells (DCs). We show that exposure to interleukin-4 (IL-4) during DC differentiation enhances autophagy flux through mTORC1 regulation and RUFY4 induction, which in turn actively promote LC3 degradation, Syntaxin 17–positive autophagosome formation, and lysosome tethering. Enhanced autophagy boosts endogenous antigen presentation by MHC II and allows host control of Brucella abortus replication in IL-4–treated DCs and in RUFY4-expressing cells. RUFY4 is therefore the first molecule characterized to date that promotes autophagy and influences endosome dynamics in a subset of immune cells.  相似文献   

18.
摘要 目的:探讨胱氨酸尿症中高胱氨酸浓度对大鼠肾脏自噬水平的影响。方法:通过液相色谱串联质谱(LC-MS/MS)测定Slc7a9基因敲除大鼠24小时尿液胱氨酸浓度确定高尿胱氨酸;通过IHC(免疫组织化学)染色筛选无结石产生的胱氨酸尿症大鼠、观察肾脏组织结构有无明显变化;通过Western blot测定肾脏组织中的LC3-I、LC3-II、p62和mTOR的蛋白相对表达量,以检测自噬水平的变化,并探索变化原因;通过组织切片Masson染色法检测肾脏髓质纤维化程度。结果:10只无结石胱氨酸尿症大鼠尿液胱氨酸显著高于对照组;未发现有胱氨酸结石的生成与肾脏结构性变化;Masson染色提示胱氨酸尿症大鼠发现轻度肾脏纤维化过程;肾脏组织自噬标记蛋白LC3-I、LC3-II蛋白相对表达量、LC3-II/LC3-I比值以及自噬当量p62相对表达较对照组均显著降低,mTOR相对表达量显著升高。以上差异均有统计学意义(P<0.05)。结论:在胱氨酸尿症大鼠模型上,发现无结石形成情况下的尿高胱氨酸水平可通过mTOR途径抑制大鼠肾脏组织的自噬水平,自我保护作用减弱,由此参与胱氨酸尿症的肾脏损伤过程。  相似文献   

19.
Brain renin‐angiotensin (Ang) system (RAS) is implicated in neuroinflammation, a major characteristic of aging process. Angiotensin (Ang) II, produced by angiotensin‐converting enzyme (ACE), activates immune system via angiotensin type 1 receptor (AT1), whereas Ang(1–7), generated by ACE2, binds with Mas receptor (MasR) to restrain excessive inflammatory response. Therefore, the present study aims to explore the relationship between RAS and neuroinflammation. We found that repeated lipopolysaccharide (LPS) treatment shifted the balance between ACE/Ang II/AT1 and ACE2/Ang(1–7)/MasR axis to the deleterious side and treatment with either MasR agonist, AVE0991 (AVE) or ACE2 activator, diminazene aceturate, exhibited strong neuroprotective actions. Mechanically, activation of ACE2/Ang(1–7)/MasR axis triggered the Forkhead box class O1 (FOXO1)‐autophagy pathway and induced superoxide dismutase (SOD) and catalase (CAT), the FOXO1‐targeted antioxidant enzymes. Meanwhile, knockdown of MasR or FOXO1 in BV2 cells, or using the selective FOXO1 inhibitor, AS1842856, in animals, suppressed FOXO1 translocation and compromised the autophagic process induced by MasR activation. We further used chloroquine (CQ) to block autophagy and showed that suppressing either FOXO1 or autophagy abrogated the anti‐inflammatory action of AVE. Likewise, Ang(1–7) also induced FOXO1 signaling and autophagic flux following LPS treatment in BV2 cells. Cotreatment with AS1842856 or CQ all led to autophagic inhibition and thereby abolished Ang(1–7)‐induced remission on NLRP3 inflammasome activation caused by LPS exposure, shifting the microglial polarization from M1 to M2 phenotype. Collectively, these results firstly illustrated the mechanism of ACE2/Ang(1–7)/MasR axis in neuroinflammation, strongly indicating the involvement of FOXO1‐mediated autophagy in the neuroimmune‐modulating effects triggered by MasR activation.  相似文献   

20.
Statins are used extensively for the clinical treatment of cardiovascular diseases. Recent studies suggest that statins increase the risk of new‐onset diabetes mellitus (NODM). However, the mechanisms of statin‐induced NODM remain unclear. The present study investigated the effects of autophagy on insulin secretion impairment induced by rosuvastatin (RS) in rat insulinoma cells (INS‐1E) cells. INS‐1E cells were cultured and treated with RS at different concentrations (0.2–20 μM) for 24 h. Insulin secretion in INS‐1E cells was detected by enzyme‐linked immunosorbent assay, and the co‐localization of microtubule‐associated protein light chain 3 (LC3) and lysosome‐associated membrane protein 2 (LAMP‐2) was observed by immunofluorescence staining. Western blotting was used to assess the conversion of LC3 and p62. The results showed that the insulin secretion and cell viability decrease induced by RS treatment for 24 h occurred in a dose‐dependent manner in INS‐1E cells. RS significantly inhibited the expression of LC3‐II but increased the protein expression of p62. Simultaneously, RS diminished the co‐localization of LC3‐II and LAMP‐2 fluorescence signals. These results suggested that RS‐inhibited autophagy in INS‐1E cells. Rapamycin, an autophagy agonist, reversed the insulin secretion and cell viability suppression induced by RS in INS‐1E cells. RS also decreased the phosphorylation of the mammalian target of rapamycin (mTOR). The results indicated that RS impairs insulin secretion in INS‐1E cells, which may be partly due to the inhibition of autophagy via an mTOR‐dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号