首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As a consequence of the increase in global average temperature, grapes with the adequate phenolic and aromatic maturity tend to be overripe by the time of harvest, resulting in increased sugar concentrations and imbalanced C/N ratios in fermenting musts. This fact sets obvious additional hurdles in the challenge of obtaining wines with reduced alcohols levels, a new trend in consumer demands. It would therefore be interesting to understand Saccharomyces cerevisiae physiology during the fermentation of must with these altered characteristics. The present study aims to determine the distribution of metabolic fluxes during the yeast exponential growth phase, when both carbon and nitrogen sources are in excess, using continuous cultures. Two different sugar concentrations were studied under two different winemaking temperature conditions. Although consumption and production rates for key metabolites were severely affected by the different experimental conditions studied, the general distribution of fluxes in central carbon metabolism was basically conserved in all cases. It was also observed that temperature and sugar concentration exerted a higher effect on the pentose phosphate pathway and glycerol formation than on glycolysis and ethanol production. Additionally, nitrogen uptake, both quantitatively and qualitatively, was strongly influenced by environmental conditions. This work provides the most complete stoichiometric model used for Metabolic Flux Analysis of S. cerevisiae in wine fermentations employed so far, including the synthesis and release of relevant aroma compounds and could be used in the design of optimal nitrogen supplementation of wine fermentations.  相似文献   

2.
人胚胎干细胞(human embryonic stem cells.hESCs)的培养一直是干细胞研究的重要内容.用本实验室独立建系的两株hESCs,建立3种不同的培养体系:小鼠胚胎成纤维细胞(mouse embryonic fibroblasts,MEFs)做饲养层,永生化人成纤维细胞(immortalized human adult fibroblasts,HAFi)做饲养层,无饲养层条件培养基培养体系(condition medium,CM),观察在3种培养体系中,干细胞的增殖和分化情况.发现3种培养体系中的hESCs都可以表达一致的生物学特性,但也有不同之处,相对于CM干细胞在MEFs和HAFi饲养层体系的分化率低,增殖快;但MEFs来源于鼠类是异源细胞,HAFi虽不舍鼠源性成分却繁殖很慢;无饲养层的体系便于操作,无外源细胞存在.实验所得出的结果可以引导研究人员针对于临床、科研不同的需要,选择最适合的培养体系.  相似文献   

3.
4.
利用人类全基因组Affymetrix芯片检测人胚胎干细胞与其自发分化7d的拟胚体之间的差异表达基因.结果显示:与未分化的人胚胎干细胞相比.在分化7d的拟胚体中表达下调2倍及以上的已知和未知基因共有1100个,表达上调2倍及以上的已知或未知基因共有2283个.利用Gostat对这些差异表达基因进行功能分析,发现它们分别与细胞的生物代谢过程、信号传导通路、系统发育、细胞分化、分子功能及亚细胞组分相关.胚胎干细胞具有自我更新能力,是研究早期胚胎发育理想的细胞模型,因此对差异表达基因的功能研究有助于了解维持人胚胎干细胞自我更新的分子机制以及胚胎发育早期的分子事件.  相似文献   

5.
DPPA2(Developmental Pluripotency-Associated gene2)是近年来发现的在多能性细胞中特异表达的一个基因,它被认为参与维持干细胞的"干性".但目前为止,并没有关于该基因在人类胚胎干细胞(human embryonic stem cells,hESCs)分化过程中的表达情况的报道,其功能也尚不清楚.通过Real-time PCR对DPPA2基因在hESCs分化过程中的表达情况进行分析,此外还对其在异常核型hESCs,人类胚胎癌细胞(human embryonic carcinoma cells,hECCs)NTERA-2以及其它5种癌细胞中的表达情况进行检测.结果表明DPPA2基因在hESCs中特异表达,其表达水平随着hESCs的分化而显著下调.该基因在异常核型hESCs和NTERA-2细胞中也有表达,但在其它肿瘤细胞中未检测到该基因的表达.此外,以EGFP-N1系统为基础的亚细胞信号定位结果表明,DPPA2是一个核蛋白.这些结果提示,DPPA2基因可能在维持hESCs特性的过程中发挥着重要的作用.  相似文献   

6.
Human embryonic stem (hES) cells must be monitored and cared for in order to maintain healthy, undifferentiated cultures. At minimum, the cultures must be fed every day by performing a complete medium change to replenish lost nutrients and to keep the cultures free of unwanted differentiation factors. Although a small amount of differentiation is normal and expected in stem cell cultures, the culture should be routinely cleaned up by manually removing, or "picking" differentiated areas. Identifying and removing excess differentiation from hES cell cultures are essential techniques in the maintenance of a healthy population of cells.Download video file.(109M, mp4)  相似文献   

7.
Because video data are complex and are comprised of many images, mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article, we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments, hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies, recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth, three recipes were created. The first segmented the image into the colony and background, the second enhanced the image to define colonies throughout the video sequence accurately, and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes, the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared, results were virtually identical, indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition, other video bioinformatics recipes can be developed in the future for other cell processes such as migration, apoptosis, and cell adhesion. Download video file.(111M, mp4)  相似文献   

8.
Proliferation and differentiation of neural stem cells (NSCs) have a crucial role to ensure neurogenesis and gliogenesis in the mammalian brain throughout life. As there is growing evidence for the significance of metabolism in regulating cell fate, knowledge on the metabolic programs in NSCs and how they evolve during differentiation into somatic cells may provide novel therapeutic approaches to address brain diseases. In this work, we applied a quantitative analysis to assess how the central carbon metabolism evolves upon differentiation of NSCs into astrocytes. Murine embryonic stem cell (mESC)-derived NSCs and astrocytes were incubated with labelled [1-13C]glucose and the label incorporation into intracellular metabolites was followed by GC-MS. The obtained 13C labelling patterns, together with uptake/secretion rates determined from supernatant analysis, were integrated into an isotopic non-stationary metabolic flux analysis (13C-MFA) model to estimate intracellular flux maps. Significant metabolic differences between NSCs and astrocytes were identified, with a general downregulation of central carbon metabolism during astrocytic differentiation. While glucose uptake was 1.7-fold higher in NSCs (on a per cell basis), a high lactate-secreting phenotype was common to both cell types. Furthermore, NSCs consumed glutamine from the medium; the highly active reductive carboxylation of alpha-ketoglutarate indicates that this was converted to citrate and used for biosynthetic purposes. In astrocytes, pyruvate entered the TCA cycle mostly through pyruvate carboxylase (81%). This pathway supported glutamine and citrate secretion, recapitulating well described metabolic features of these cells in vivo. Overall, this fluxomics study allowed us to quantify the metabolic rewiring accompanying astrocytic lineage specification from NSCs.  相似文献   

9.
人孤雌胚胎干细胞(human parthenogenetic embryonic stem cells,hPESCs)体外培养常需饲养层的支持以保持干细胞特性.通过原代培养获得人包皮成纤维细胞(human foreskin fibroblasts,hFFs)并将其制备成饲养层,使hPESCs在hFFs上进行体外培养及传代.倒置显微镜下观察hPESCs的生长状态,采用碱性磷酸酶(alkalinephosphatase,AKP)检测、核型分析和体内分化实验研究hPESCs的生物学特性及分化潜能,以探索hFFs能否长期支持hPESCs的生长并维持其未分化状态.经原代培养成功获得了hFFs,通过形态学观察和免疫细胞化学染色鉴定符合成纤维细胞的生物学特性;在hFFs上生长的hPESCs克隆形态规则,不易分化;已成功在体外培养20余代,hPESCs仍能够保持基本生物学特性和正常核型,在裸鼠体内可形成含有3个胚层组织成分的畸胎瘤.作为人源性饲养层,hFFs可长期支持hPESCs的生长并维持其未分化状态.  相似文献   

10.
11.
Rabbit embryonic stem (rES) cells can be derived from various sources of embryos. However, understanding of the gene expression profile, which distincts embryonic stem (ES) cells from other cell types, is still extremely limited. In this study, we compared the protein profiles of three independent lines of rabbit cells, i.e., fibroblasts, fertilized embryo-derived stem (f-rES) cells, and parthenote-derived ES (p-rES) cells. Proteomic analyses were performed using two-dimensional gel electrophoresis (2-DE) and mass spectrometry. Collectively, the expression levels of 100 out of 284 protein spots differed significantly among these three cell types (p<0.05). Of those differentially expressed spots, 91% were identified in the protein database and represented 63 distinct proteins. Proteins with known identities are mainly localized in the cytoplasmic compartments (48%), nucleus (14%), and cytoskeletal machineries (13%). These proteins were majorly involved in biological functions of energy and metabolic pathways (25%), cell growth and maintenance (25%), signal transduction (14%), and protein metabolisms (10%). When protein expression levels among cell types were compared, six proteins associated with a variety of cellular activities, including structural constituents of the cytoskeleton (tubulins), structural molecule (KRT8), catalytic molecules (α-enolase), receptor complex scaffold (14-3-3 protein sigma), microfilament motor proteins (Myosin-9), and heat shock protein (HSP60), were found highly expressed in p-rES cells. Two proteins related to HSP activity and structural constituent of cytoskeleton in f-rES cells, and one structural molecule activity protein in fibroblasts showed significantly higher expression levels (p<0.05). Marker protein expressions in f-rES and p-rES cells were further confirmed by Western blotting and immunocytochemical staining. This study demonstrated unique proteomic profiles of the three rabbit cell types and revealed some novel proteins differentially expressed between f-rES and p-rES cells. These analyses provide insights into rES cell biology and would invite more in-depth studies toward rES cell applications.  相似文献   

12.
The derivation of hepatic progenitor cells from human embryonic stem (hES) cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell–derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.  相似文献   

13.
Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain—145 kDa—accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.  相似文献   

14.
心脏毒性是药物研发失败的主要原因之一,也是临床前安全评价研究的难题之一。人胚胎干细胞和诱导型人多能干细胞均具有无限增殖、自我更新和多向分化的特性,为体外心脏毒性筛选实验提供了细胞资源。人胚胎干细胞和诱导型人多能干细胞诱导分化的心肌细胞相似,具有相同的形态结构,且随着培养时间的推移,功能性心、Na^+、Ca^2+通道密度逐渐增加、心肌特异性基因ANF、α—MHC、MLC-2α的表达量增加,具有相似的动作电位时程和收缩性等特点,相当于幼稚型心肌细胞。将它们应用于已知作用药物的心脏毒性筛选,检测心肌细胞离子通道、动作电位、心脏损伤标志物、收缩功能的变化,获得与临床相似的结果。因此,建立人胚胎干细胞和诱导型人多能干细胞诱导分化心肌细胞的体外评价模型,大大减少了药物研发的时间和成本,克服了种属间的差异,推动了心脏毒性体外评价方法的发展。  相似文献   

15.
人胚胎干细胞(human embryonic stem cell,hESCs)是早期胚胎或原始性腺中分离出来的一类细胞,它具有无限增殖、自我更新和全能分化的特性。无论在体内还是体外环境,人胚胎干细胞都能分化为机体几乎所有类型的细胞。基于其全能分化性,胚胎干细胞成为治疗各种退行性疾病的理想细胞来源。然而,在目前培养条件下所建立的胚胎干细胞株,仍然存在动物源性物质潜在污染的问题。因此,更优化的建株及培养条件十分重要。  相似文献   

16.
胚胎干细胞(embryonic stem cells,ESCs)是来源于早期胚胎的全能性细胞,在合适条件下具有分化为任何一类成体细胞的潜力。在小鼠中,根据细胞来源的胚胎发育时间,ESCs可以被分为原始态多能性(na(?)ve pluripotency)和始发态多能性(primed pluripotency)两种状态。这两种状态的细胞在发育上相互联系,具有不同的形态、信号依赖、发育性质、基因表达及表观遗传学性质,并且在特定的条件下可以相互转化。人类胚胎干细胞(human embryonic stem cells,hESCs)的发育潜能曾一度被认为低于小鼠胚胎干细胞(mouse embryonic stem cells,mESCs),直到人类原始态胚胎干细胞的发现证明了hESCs可以表现出与mESCs相似的性质。这对于人类胚胎发育的研究及ESCs在临床治疗上的实际应用都具有重要的意义。  相似文献   

17.
徐兰  李斌 《现代生物医学进展》2012,12(32):6393-6397,6388
人胚胎干细胞(human embryonic stem cell,hESc)在再生医学、药物筛选和发育生物学等领域具有重要的研究和应用价值.本文对人胚胎干细胞建系方法的现状包括胚胎来源、内细胞团分离方法、以及人胚胎干细胞培养体系的改进作了介绍,讨论了与全能性维持和定向分化有关的信号通路的研究进展,以及胚胎干细胞研究中伦理问题的争议.  相似文献   

18.
19.
Adult-derived human liver stem/progenitor cells (ADHLSC) are obtained after primary culture of the liver parenchymal fraction. The cells are of fibroblastic morphology and exhibit a hepato-mesenchymal phenotype. Hepatic stellate cells (HSC) derived from the liver non-parenchymal fraction, present a comparable morphology as ADHLSC. Because both ADHLSC and HSC are described as liver stem/progenitor cells, we strived to extensively compare both cell populations at different levels and to propose tools demonstrating their singularity.ADHLSC and HSC were isolated from the liver of four different donors, expanded in vitro and followed from passage 5 until passage 11. Cell characterization was performed using immunocytochemistry, western blotting, flow cytometry, and gene microarray analyses. The secretion profile of the cells was evaluated using Elisa and multiplex Luminex assays.Both cell types expressed α-smooth muscle actin, vimentin, fibronectin, CD73 and CD90 in accordance with their mesenchymal origin. Microarray analysis revealed significant differences in gene expression profiles. HSC present high expression levels of neuronal markers as well as cytokeratins. Such differences were confirmed using immunocytochemistry and western blotting assays. Furthermore, both cell types displayed distinct secretion profiles as ADHLSC highly secreted cytokines of therapeutic and immuno-modulatory importance, like HGF, interferon-γ and IL-10.Our study demonstrates that ADHLSC and HSC are distinct liver fibroblastic cell populations exhibiting significant different expression and secretion profiles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号