首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response.

Methods

Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury.

Results

LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups.

Conclusions

Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.  相似文献   

2.
BackgroundA sustained inflation (SI) rapidly restores cardiac function in asphyxic, bradycardic newborns but its effects on cerebral haemodynamics and brain injury are unknown. We determined the effect of different SI strategies on carotid blood flow (CaBF) and cerebral vascular integrity in asphyxiated near-term lambs.MethodsLambs were instrumented and delivered at 139 ± 2 d gestation and asphyxia was induced by delaying ventilation onset. Lambs were randomised to receive 5 consecutive 3 s SI (multiple SI; n = 6), a single 30 s SI (single SI; n = 6) or conventional ventilation (no SI; n = 6). Ventilation continued for 30 min in all lambs while CaBF and respiratory function parameters were recorded. Brains were assessed for gross histopathology and vascular leakage.ResultsCaBF increased more rapidly and to a greater extent during a single SI (p = 0.01), which then decreased below both other groups by 10 min, due to a higher cerebral oxygen delivery (p = 0.01). Blood brain barrier disruption was increased in single SI lambs as indicated by increased numbers of blood vessel profiles with plasma protein extravasation (p = 0.001) in the cerebral cortex. There were no differences in CaBF or cerebral oxygen delivery between the multiple SI and no SI lambs.ConclusionsVentilation with an initial single 30 s SI improves circulatory recovery, but is associated with greater disruption of blood brain barrier function, which may exacerbate brain injury suffered by asphyxiated newborns. This injury may occur as a direct result of the initial SI or to the higher tidal volumes delivered during subsequent ventilation.  相似文献   

3.
4.
Current recommendations suggest the use of positive end-expiratory pressures (PEEP) to assist very preterm infants to develop a functional residual capacity (FRC) and establish gas exchange at birth. However, maintaining a consistent PEEP is difficult and so the lungs are exposed to changing distending pressures after birth, which can affect respiratory function. Our aim was to determine how changing PEEP levels alters the distribution of ventilation within the lung. Preterm rabbit pups (28 days gestation) were delivered and mechanically ventilated with one of three strategies, whereby PEEP was changed in sequence; 0-5-10-5-0 cmH2O, 5-10-0-5-0 cmH2O or 10-5-0-10-0 cmH2O. Phase contrast X-ray imaging was used to analyse the distribution of ventilation in the upper left (UL), upper right (UR), lower left (LL) and lower right (LR) quadrants of the lung. Initiating ventilation with 10PEEP resulted in a uniform increase in FRC throughout the lung whereas initiating ventilation with 5PEEP or 0PEEP preferentially aerated the UR than both lower quadrants (p<0.05). Consequently, the relative distribution of incoming VT was preferentially directed into the lower lobes at low PEEP, primarily due to the loss of FRC in those lobes. Following ventilation at 10PEEP, the distribution of air at end-inflation was uniform across all quadrants and remained so regardless of the PEEP level. Uniform distribution of ventilation can be achieved by initiating ventilation with a high PEEP. After the lungs have aerated, small and stepped reductions in PEEP result in more uniform changes in ventilation.  相似文献   

5.
Relapse of adenocarcinoma, the most common non-small cell lung cancer (NSCLC), is a major clinical challenge to improving survival. To gain insight into the early molecular events that contribute to lung adenocarcinoma relapse, and taking into consideration potential cell type specificity, we used stringent criteria for sample selection. We measured miRNA expression only from flash frozen stage I lung adenocarcinomas, excluding other NSCLC subtypes. We compared miRNA expression in lung adenocarcinomas that relapsed within two years to those that did not relapse within three years after surgical resection prior to adjuvant therapy. The most significant differences in mRNA expression for recurrent tumors compared to non-recurrent tumors were decreases in miR-106b*, -187, -205, -449b, -774* and increases in miR-151-3p, let-7b, miR-215, -520b, and -512-3p. A unique comparison between adjacent normal lung tissue from relapse and non-relapse groups revealed dramatically different miRNA expression, suggesting dysregulation of miRNA in the environment around the tumor. To assess patient-to-patient variability, miRNA levels in the tumors were normalized to levels in matched adjacent normal lung tissue. This analysis revealed a different set of significantly altered miRNA in tumors that recurred compared to tumors that did not. Together our analyses elucidated miRNA not previously linked to lung adenocarcinoma that likely have important roles in its development and progression. Our results also highlight the differences in miRNA expression in normal lung tissue in adenocarcinomas that do and do not recur. Most notably, our data identified those miRNA that distinguish early stage tumors likely to relapse prior to treatment and miRNA that could be further studied for use as biomarkers for prognosis, patient monitoring, and/or treatment decisions.  相似文献   

6.
ObjectiveIt has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS), but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS.MethodsEighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB) and abdominal muscle paralysis group (BIPAPAP). All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35–60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV) and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL)-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment.ResultsFor the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml) and oxygenation index (293±36 vs. 226±31 mmHg), lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml) and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml) in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7) and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9) in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1).ConclusionAbdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.  相似文献   

7.
The bacterial endotoxin, lipopolysaccharide (LPS) has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 μg/ml) for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases.  相似文献   

8.
9.
目的建立大潮气量致急性肺损伤(ALI)犬呼吸机相关性肺损伤(VILI)模型。方法健康雄性杂种犬12只用油酸静脉注射法制备犬ALI模型,造模成功后进行支持通气15min过渡,然后随机分为VILI组及对照组行机械通气6 h,每组6只。VILI组潮气量(Vt)=20 mL/kg,对照组Vt=6 mL/kg,两组呼气末正压(PEEP)均为10 cmH2O。动态观察各组血气交换指标变化。通气6 h后取支气管肺泡灌洗液(BALF)作白蛋白浓度检查,取肺组织作病理切片肺损伤评分。结果各组在油酸静脉注射后(2.50±0.80)h达到ALI标准。VILI组在犬机械通气6 h后PaO2、SaO2及氧合指数(OI)较对照组略下降(P〈0.05),而PaCO2波动不大,且心率、血压波动也较对照组小(P〈0.05)。VILI组BALF中蛋白浓度和肺组织损伤评分均较对照组显著升高(分别P〈0.05,P〈0.01)。结论本实验成功建立了大潮气量致ALI犬VILI模型。  相似文献   

10.

Background

Imaging studies have demonstrated that ventilation during bronchoconstriction in subjects with asthma is patchy with large ventilation defective areas (Vdefs). Based on a theoretical model, we postulated that during bronchoconstriction, as smooth muscle force activation increases, a patchy distribution of ventilation should emerge, even in the presence of minimal heterogeneity the lung. We therefore theorized that in normal lungs, Vdefs should also emerge in regions of the lung with reduced expansion.

Objective

We studied 12 healthy subjects to evaluate whether Vdefs formed during bronchoconstriction, and compared their Vdefs with those observed in 9 subjects with mild asthma.

Methods

Spirometry, low frequency (0.15 Hz) lung elastance and resistance, and regional ventilation by intravenous 13NN-saline positron emission tomography were measured before and after a challenge with nebulized methacholine. Vdefs were defined as regions with elevated residual 13NN after a period of washout. The average location, ventilation, volume, and fractional gas content of the Vdefs, relative to those of the rest of the lung, were calculated for both groups.

Results

Consistent with the predictions of the theoretical model, both healthy subjects and those with asthma developed Vdefs. These Vdefs tended to form in regions that, at baseline, had a lower degree of lung inflation and, in healthy subjects, tended to occur in more dependent locations than in subjects with asthma.

Conclusion

The formation of Vdefs is determined by the state of inflation prior to bronchoconstriction.  相似文献   

11.
Murine models are extensively used to investigate acute injuries of different organs systems (1-34). Acute lung injury (ALI), which occurs with prolonged mechanical ventilation, contributes to morbidity and mortality of critical illness, and studies on novel genetic or pharmacological targets are areas of intense investigation (1-3, 5, 8, 26, 30, 33-36). ALI is defined by the acute onset of the disease, which leads to non-cardiac pulmonary edema and subsequent impairment of pulmonary gas exchange (36). We have developed a murine model of ALI by using a pressure-controlled ventilation to induce ventilator-induced lung injury (2). For this purpose, C57BL/6 mice are anesthetized and a tracheotomy is performed followed by induction of ALI via mechanical ventilation. Mice are ventilated in a pressure-controlled setting with an inspiratory peak pressure of 45 mbar over 1 - 3 hours. As outcome parameters, pulmonary edema (wet-to-dry ratio), bronchoalveolar fluid albumin content, bronchoalveolar fluid and pulmonary tissue myeloperoxidase content and pulmonary gas exchange are assessed (2). Using this technique we could show that it sufficiently induces acute lung inflammation and can distinguish between different treatment groups or genotypes (1-3, 5). Therefore this technique may be helpful for researchers who pursue molecular mechanisms involved in ALI using a genetic approach in mice with gene-targeted deletion.  相似文献   

12.
In the subtropical finch, spotted munia (Lonchura punctulata) circannual rhythms (of gonads, fattening, feeding) have been demonstrated in an information-free environment of continuous illumination (LL), rendering it an ideal model for research on the physiology of the circannual clock. In an attempt to understand the involvement, if any, of the circadian system in the genesis of circannual rhythms, we studied the effect of pinealectomy (LL 15 lux) and strong continuous illumination (LL 300 lux), both known to abolish circadian rhythms, on the circadian perch-hopping rhythm and on the circannual rhythm of reproduction and fattening in the same birds. While both pinealectomy and LL 300 lux treatments abolished the circadian rhythm of motor activity, they had no effect on the circannual rhythms of gonadal size and fattening. If the endogenous circadian rhythm in perch-hopping can be taken to reflect the circadian clock mechanism associated with gonadal functioning, present results suggest that circannual rhythm of reproduction in spotted munia is independent of circadian events.  相似文献   

13.
In the subtropical finch, spotted munia (Lonchura punctulata) circannual rhythms (of gonads, fattening, feeding) have been demonstrated in an information-free environment of continuous illumination (LL), rendering it an ideal model for research on the physiology of the circannual clock. In an attempt to understand the involvement, if any, of the circadian system in the genesis of circannual rhythms, we studied the effect of pinealectomy (LL 15 lux) and strong continuous illumination (LL 300 lux), both known to abolish circadian rhythms, on the circadian perch-hopping rhythm and on the circannual rhythm of reproduction and fattening in the same birds. While both pinealectomy and LL 300 lux treatments abolished the circadian rhythm of motor activity, they had no effect on the circannual rhythms of gonadal size and fattening. If the endogenous circadian rhythm in perch-hopping can be taken to reflect the circadian clock mechanism associated with gonadal functioning, present results suggest that circannual rhythm of reproduction in spotted munia is independent of circadian events.  相似文献   

14.

Aim

To assess the endoscopic activity and Clinical activity after a one-year period of infliximab therapy and to evaluate the association between mucosal healing and need for retreatment after stopping infliximab in patients with Inflammatory bowel disease (IBD).

Methods

The data from 109 patients with Crohn’s disease (CD) and 107 patients with Ulcerative colitis (UC) received one-year infliximab were assessed. The primary endpoint of the study was the proportion of clinical remission, mucosal healing and full remission in IBD after the one-year period of maintenance infliximab therapy. The secondary endpoint was the frequency of relapses in the next year.

Results

A total of 84.4% (92/109) CD patients and 81.3% (87/107) UC patients achieved clinical remission, 71.56% (78/109) of CD patients and 69.16% (74/107) of UC patients achieved mucosal healing, 56.88% (62/109) of CD patients and 54.21% (58/107) of UC patients achieved full remission at the end of the year of infliximab therapy. Infliximab therapy was restarted in the 10.19% (22/216) patients (13 CD, 9 UC) who achieved mucosal healing, and 13.89% (30/216) patients (18 CD, 12 UC) who achieved clinical remission and 6.48% (14/216) patients (8 CD, 6 UC) who achieved full remission had to be retreated within the next year. Neither clinical remission nor mucosal healing was associated with the time to restarting Infliximab therapy in IBD.

Conclusion

Mucosal healing did not predict sustained clinical remission in patients with IBD in whom the infliximab therapies had been stopped. And stopping or continuing infliximab therapy may be determined by assessing the IBD patient’s general condition and the clinical activity.  相似文献   

15.
Lung diseases are a major cause of global morbidity and mortality that are treated with limited efficacy. Recently stem cell therapies have been shown to effectively treat animal models of lung disease. However, there are limitations to the translation of these cell therapies to clinical disease. Studies have shown that delayed treatment of animal models does not improve outcomes and that the models do not reflect the repeated injury that is present in most lung diseases. We tested the efficacy of amnion mesenchymal stem cells (AM-MSC), bone marrow MSC (BM-MSC) and human amniotic epithelial cells (hAEC) in C57BL/6 mice using a repeat dose bleomycin-induced model of lung injury that better reflects the repeat injury seen in lung diseases. The dual bleomycin dose led to significantly higher levels of inflammation and fibrosis in the mouse lung compared to a single bleomycin dose. Intravenously infused stem cells were present in the lung in similar numbers at days 7 and 21 post cell injection. In addition, stem cell injection resulted in a significant decrease in inflammatory cell infiltrate and a reduction in IL-1 (AM-MSC), IL-6 (AM-MSC, BM-MSC, hAEC) and TNF-α (AM-MSC). The only trophic factor tested that increased following stem cell injection was IL-1RA (AM-MSC). IL-1RA levels may be modulated by GM-CSF produced by AM-MSC. Furthermore, only AM-MSC reduced collagen deposition and increased MMP-9 activity in the lung although there was a reduction of the pro-fibrogenic cytokine TGF-β following BM-MSC, AM-MSC and hAEC treatment. Therefore, AM-MSC may be more effective in reducing injury following delayed injection in the setting of repeated lung injury.  相似文献   

16.

Background

If infants fail to initiate spontaneous breathing, resuscitation guidelines recommend respiratory support with positive pressure ventilation (PPV). The purpose of PPV is to establish functional residual capacity and deliver an adequate tidal volume (VT) to achieve gas exchange.

Objective

The aim of our pilot study was to measure changes in exhaled carbon dioxide (ECO2), VT, and rate of carbon dioxide elimination (VCO2) to assess lung aeration in preterm infants requiring respiratory support immediately after birth.

Method

A prospective observational study was performed between March and July 2013. Infants born at <37 weeks gestational age who received continuous positive airway pressure (CPAP) or PPV immediately after birth had VT delivery and ECO2 continuously recorded using a sensor attached to the facemask.

Results

Fifty-one preterm infants (mean (SD) gestational age 29 (3) weeks and birth weight 1425 (592 g)) receiving respiratory support in the delivery room were included. Infants in the CPAP group (n = 31) had higher ECO2 values during the first 10 min after birth compared to infants receiving PPV (n = 20) (ranging between 18–30 vs. 13–18 mmHg, p<0.05, respectively). At 10 min no significant difference in ECO2 values was observed. VT was lower in the CPAP group compared to the PPV group over the first 10 min ranging between 5.2–6.6 vs. and 7.2–11.3 mL/kg (p<0.05), respectively.

Conclusions

Immediately after birth, spontaneously breathing preterm infants supported via CPAP achieved better lung aeration compared to infants requiring PPV. PPV guided by VT and ECO2 potentially optimize lung aeration without excessive VT administered.  相似文献   

17.

Background

Permissive hypercapnia has been shown to reduce lung injury in subjects with surfactant deficiency. Experimental studies suggest that hypercapnic acidosis by itself rather than decreased tidal volume may be a key protective factor.

Objectives

To study the differential effects of a lung protective ventilatory strategy or hypercapnic acidosis on gas exchange, hemodynamics and lung injury in an animal model of surfactant deficiency.

Methods

30 anesthetized, surfactant-depleted rabbits were mechanically ventilated (FiO2 = 0.8, PEEP = 7cmH2O) and randomized into three groups: Normoventilation-Normocapnia (NN)-group: tidal volume (Vt) = 7.5 ml/kg, target PaCO2 = 40 mmHg; Normoventilation-Hypercapnia (NH)-group: Vt = 7.5 ml/kg, target PaCO2 = 80 mmHg by increasing FiCO2; and a Hypoventilation-Hypercapnia (HH)-group: Vt = 4.5 ml/kg, target PaCO2 = 80 mmHg. Plasma lactate and interleukin (IL)-8 were measured every 2 h. Animals were sacrificed after 6 h to perform bronchoalveolar lavage (BAL), to measure lung wet-to-dry weight, lung tissue IL-8, and to obtain lung histology.

Results

PaO2 was significantly higher in the HH-group compared to the NN-group (p<0.05), with values of the NH-group between the HH- and NN-groups. Other markers of lung injury (wet-dry-weight, BAL-Protein, histology-score, plasma-IL-8 and lung tissue IL-8) resulted in significantly lower values for the HH-group compared to the NN-group and trends for the NH-group towards lower values compared to the NN-group. Lactate was significantly lower in both hypercapnia groups compared to the NN-group.

Conclusion

Whereas hypercapnic acidosis may have some beneficial effects, a significant effect on lung injury and systemic inflammatory response is dependent upon a lower tidal volume rather than resultant arterial CO2 tensions and pH alone.  相似文献   

18.
This study evaluated the effects of bone marrow-derived mesenchymal stem cells (BMSCs) or their conditioned medium (CM) on the repair and prevention of Acute Kidney Injury (AKI) induced by gentamicin (G). Animals received daily injections of G up to 20 days. On the 10(th) day, injections of BMSCs, CM, CM+trypsin, CM+RNase or exosome-like microvesicles extracted from the CM were administered. In the prevention groups, the animals received the BMSCs 24 h before or on the 5(th) day of G treatment. Creatinine (Cr), urea (U), FENa and cytokines were quantified. The kidneys were evaluated using hematoxylin/eosin staining and immunohystochemistry. The levels of Cr, U and FENa increased during all the periods of G treatment. The BMSC transplantation, its CM or exosome injections inhibited the increase in Cr, U, FENa, necrosis, apoptosis and also increased cell proliferation. The pro-inflammatory cytokines decreased while the anti-inflammatory cytokines increased compared to G. When the CM or its exosomes were incubated with RNase (but not trypsin), these effects were blunted. The Y chromosome was not observed in the 24-h prevention group, but it persisted in the kidney for all of the periods analyzed, suggesting that the injury is necessary for the docking and maintenance of BMSCs in the kidney. In conclusion, the BMSCs and CM minimized the G-induced renal damage through paracrine effects, most likely through the RNA carried by the exosome-like microvesicles. The use of the CM from BMSCs can be a potential therapeutic tool for this type of nephrotoxicity, allowing for the avoidance of cell transplantations.  相似文献   

19.

Background

Helium is a noble gas with a low density, allowing for lower driving pressures and increased carbon dioxide (CO2) diffusion. Since application of protective ventilation can be limited by the development of hypoxemia or acidosis, we hypothesized that therefore heliox facilitates ventilation in an animal model of ventilator–induced lung injury.

Methods

Sprague-Dawley rats (N=8 per group) were mechanically ventilated with heliox (50% oxygen; 50% helium). Controls received a standard gas mixture (50% oxygen; 50% air). VILI was induced by application of tidal volumes of 15 mL kg-1; lung protective ventilated animals were ventilated with 6 mL kg-1. Respiratory parameters were monitored with a pneumotach system. Respiratory rate was adjusted to maintain arterial pCO2 within 4.5-5.5 kPa, according to hourly drawn arterial blood gases. After 4 hours, bronchoalveolar lavage fluid (BALF) was obtained. Data are mean (SD).

Results

VILI resulted in an increase in BALF protein compared to low tidal ventilation (629 (324) vs. 290 (181) μg mL-1; p<0.05) and IL-6 levels (640 (8.7) vs. 206 (8.7) pg mL-1; p<0.05), whereas cell counts did not differ between groups after this short course of mechanical ventilation. Ventilation with heliox resulted in a decrease in mean respiratory minute volume ventilation compared to control (123±0.6 vs. 146±8.9 mL min-1, P<0.001), due to a decrease in respiratory rate (22 (0.4) vs. 25 (2.1) breaths per minute; p<0.05), while pCO2 levels and tidal volumes remained unchanged, according to protocol. There was no effect of heliox on inspiratory pressure, while compliance was reduced. In this mild lung injury model, heliox did not exert anti-inflammatory effects.

Conclusions

Heliox allowed for a reduction in respiratory rate and respiratory minute volume during VILI, while maintaining normal acid-base balance. Use of heliox may be a useful approach when protective tidal volume ventilation is limited by the development of severe acidosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号