首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
Nicotiana species carry cellular T‐DNA sequences (cT‐DNAs), acquired by Agrobacterium‐mediated transformation. We characterized the cT‐DNA sequences of the ancestral Nicotiana tabacum species Nicotiana tomentosiformis by deep sequencing. N. tomentosiformis contains four cT‐DNA inserts derived from different Agrobacterium strains. Each has an incomplete inverted‐repeat structure. TA is similar to part of the Agrobacterium rhizogenes 1724 mikimopine‐type T‐DNA, but has unusual orf14 and mis genes. TB carries a 1724 mikimopine‐type orf14‐mis fragment and a mannopine‐agropine synthesis region (mas2‐mas1‐ags). The mas2′ gene codes for an active enzyme. TC is similar to the left part of the A. rhizogenes A4 T‐DNA, but also carries octopine synthase‐like (ocl) and c‐like genes normally found in A. tumefaciens. TD shows a complex rearrangement of T‐DNA fragments similar to the right end of the A4 TL‐DNA, and including an orf14‐like gene and a gene with unknown function, orf511. The TA, TB, TC and TD insertion sites were identified by alignment with N. tabacum and Nicotiana sylvestris sequences. The divergence values for the TA, TB, TC and TD repeats provide an estimate for their relative introduction times. A large deletion has occurred in the central part of the N. tabacum cv. Basma/Xanthi TA region, and another deletion removed the complete TC region in N. tabacum. Nicotiana otophora lacks TA, TB and TD, but contains TC and another cT‐DNA, TE. This analysis, together with that of Nicotiana glauca and other Nicotiana species, indicates multiple sequential insertions of cT‐DNAs during the evolution of the genus Nicotiana.  相似文献   

2.
Tezuka T  Marubashi W 《PloS one》2012,7(4):e36204

Background

Many species of Nicotiana section Suaveolentes produce inviable F1 hybrids after crossing with Nicotiana tabacum (genome constitution SSTT), a phenomenon that is often called hybrid lethality. Through crosses with monosomic lines of N. tabacum lacking a Q chromosome, we previously determined that hybrid lethality is caused by interaction between gene(s) on the Q chromosome belonging to the S subgenome of N. tabacum and gene(s) in Suaveolentes species. Here, we examined if hybrid seedlings from the cross N. occidentalis (section SuaveolentesN. tabacum are inviable despite a lack of the Q chromosome.

Methodology/Principal Findings

Hybrid lethality in the cross of N. occidentalis×N. tabacum was characterized by shoots with fading color. This symptom differed from what has been previously observed in lethal crosses between many species in section Suaveolentes and N. tabacum. In crosses of monosomic N. tabacum plants lacking the Q chromosome with N. occidentalis, hybrid lethality was observed in hybrid seedlings either lacking or possessing the Q chromosome. N. occidentalis was then crossed with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT), to reveal which subgenome of N. tabacum contains gene(s) responsible for hybrid lethality. Hybrid seedlings from the crosses N. occidentalis×N. tomentosiformis and N. occidentalis×N. sylvestris were inviable.

Conclusions/Significance

Although the specific symptoms of hybrid lethality in the cross N. occidentalis×N. tabacum were similar to those appearing in hybrids from the cross N. occidentalis×N. tomentosiformis, genes in both the S and T subgenomes of N. tabacum appear responsible for hybrid lethality in crosses with N. occidentalis.  相似文献   

3.
The tobacco cultivar Nicotiana tabacum is a natural amphidiploid that is thought to be derived from ancestors of Nicotiana sylvestris and Nicotiana tomentosiformis. To compare these chloroplast genomes, DNA was prepared from isolated chloroplasts from green leaves of N. sylvestris and N. tomentosiformis, and subjected to whole-genome shotgun sequencing. The N. sylvestris chloroplast genome comprises of 155,941 bp and shows identical gene organization with that of N. tabacum, except one ORF. Detailed comparison revealed only seven different sites between N. tabacum and N. sylvestris; three in introns, two in spacer regions and two in coding regions. The chloroplast DNA of N. tomentosiformis is 155,745 bp long and possesses also identical gene organization with that of N. tabacum, except four ORFs and one pseudogene. However, 1,194 sites differ between these two species. Compared with N. tabacum, the nucleotide substitution in the inverted repeat was much lower than that in the single-copy region. The present work confirms that the chloroplast genome from N. tabacum was derived from an ancestor of N. sylvestris, and suggests that the rate of nucleotide substitution of the chloroplast genomes from N. tabacum and N. sylvestris is very low. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

4.
5.
Polymorphism of a photosystem I subunit caused by alloploidy in Nicotiana   总被引:3,自引:2,他引:1  
The photosystem I complex from Nicotiana tabacum, which has an alloploid genome, contains subunits of 17.5 and 18.5 kilodaltons whose N-terminal amino acid sequences are highly homologous. Comparative analysis of photosystem I subunits among N. tabacum and its ancestral plants, N. tomentosiformis and N. sylvestris, revealed that the 17.5 kilodalton subunit of N. tabacum derives from N. sylvestris, and the 18.5 kilodalton subunit from N. tomentosiformis.  相似文献   

6.
Hybrid lethality is expressed at 28°C in the cross Nicotiana nudicaulis×N. tabacum. The S subgenome of N. tabacum has been identified as controlling this hybrid lethality. To clarify the responsible genomic factor(s) of N. nudicaulis, we crossed N. trigonophylla (paternal progenitor of N. nudicaulis) with N. tabacum, because hybrids between N. sylvestris (maternal progenitor of N. nudicaulis) and N. tabacum are viable when grown in a greenhouse. In the cross N. trigonophylla×N. tabacum, approximately 50% of hybrids were vitrified, 20% were viable, and 20% were nonviable at 28°C. To reveal which subgenome of N. tabacum was responsible for these phenotypes, we crossed N. trigonophylla with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT). In the cross N. sylvestris×N. trigonophylla, we confirmed that over half of hybrids of N. sylvestris×N. trigonophylla were vitrified, and none of the hybrids of N. trigonophylla×N. tomentosiformis were. The results imply that the S subgenome, encoding a gene or genes inducing hybrid lethality in the cross between N. nudicaulis and N. tabacum, has one or more genomic factors that induce vitrification. Furthermore, in vitrified hybrids of N. trigonophylla×N. tabacum and N. sylvestris×N. trigonophylla, we found that nuclear fragmentation, which progresses during expression of hybrid lethality, was accompanied by vitrification. This observation suggests that vitrification has a relationship to hybrid lethality. Based on these results, we speculate that when N. nudicaulis was formed approximately 5 million years ago, several causative genomic factors determining phenotypes of hybrid seedlings were inherited from N. trigonophylla. Subsequently, genome downsizing and various recombination-based processes took place. Some of the causative genomic factors were lost and some became genomic factor(s) controlling hybrid lethality in extant N. nudicaulis.  相似文献   

7.
In order to investigate possible interactions between parental genomes in the composite genome of Nicotiana tabacum we have analyzed the organization of telomeric (TTTAGGG)n and ribosomal gene (rDNA) repeats in the progenitor genomes Nicotiana sylvestris and Nicotiana tomentosiformis or Nicotiana otophora. Telomeric arrays in the Nicotiana species tested are heterogeneous in length ranging from 20 to 200 kb in N. sylvestris, from 20 to 50 kb in N. tomentosiformis, from 15 to 100kb in N. otophora, and from 40 to 160kb in N. tabacum. The patterns of rDNA repeats (18S, 5.8S, 25S RNA) appeared to be highly homogeneous and speciesspecific; no parental rDNA units corresponding to N. sylvestris, N. tomentosiformis or N. otophora were found in the genome of N. tabacum by Southern hybridization. The results provide evidence for a species-specific evolution of telomeric and ribosomal repeats in the tobacco composite genome.  相似文献   

8.
9.
Summary Mitochondrial DNAs from Nicotiana tabacum, an amphiploid, and its putative progenitor species, N. sylvestris and N. tomentosiformis were compared in structure and organization. By using DNA transfer techniques and cloned fragments of known genes from maize and N. sylvestris as labeled probes, the positions of homologous sequences in restriction digests of the Nicotiana species were analyzed. Results indicate that the mitochondrial DNA of N. tabacum was inherited from N. sylvestris. Conservation in organization and sequence homology between mtDNAs of N. tabacum and the maternal progenitor, N. sylvestris, provide evidence that the mitochondrial genome in these species is evolutionarily stable. Approximately one-third of the probed restriction fragments of N. tomentosiformis mtDNA showed conservation of position with the other two species. Pattern variations indicate that extensive rearrangement of mtDNA has occurred in the evolution of these Nicotiana species.  相似文献   

10.
Tezuka T  Kuboyama T  Matsuda T  Marubashi W 《Planta》2007,226(3):753-764
Hybrid seedlings from the cross between Nicotiana tabacum, an allotetraploid composed of S and T subgenomes, and N. debneyi die at the cotyledonary stage. This lethality involves programmed cell death (PCD). We carried out reciprocal crosses between the two progenitors of N. tabacum, N. sylvestris and N. tomentosiformis, and N. debneyi to reveal whether only the S subgenome in N. tabacum is related to hybrid lethality. Hybrid seedlings from reciprocal crosses between N. sylvestris and N. debneyi showed lethal characteristics identical to those from the cross between N. tabacum and N. debneyi. Conversely, hybrid seedlings from reciprocal crosses between N. tomentosiformis and N. debneyi were viable. Furthermore, hallmarks of PCD were observed in hybrid seedlings from the cross N. debneyi × N. sylvestris, but not in hybrid seedlings from the cross N. debneyi × N. tomentosiformis. We also carried out crosses between monosomic lines of N. tabacum lacking the Q chromosome and N. debneyi. Using Q-chromosome-specific DNA markers, hybrid seedlings were divided into two groups, hybrids possessing the Q chromosome and hybrids lacking the Q chromosome. Hybrids possessing the Q chromosome died with characteristics of PCD. However, hybrids lacking the Q chromosome were viable and PCD did not occur. From these results, we concluded that the Q chromosome belonging to the S subgenome of N. tabacum encodes gene(s) leading to hybrid lethality in the cross N. tabacum × N. debneyi.  相似文献   

11.
Horizontal gene transfer has been occasionally mentioned in eukaryotic genomes, but such events appear much less numerous than in prokaryotes, where they play important functional and evolutionary roles. In yeasts, few independent cases have been described, some of which corresponding to major metabolic functions, but no systematic screening of horizontally transferred genes has been attempted so far. Taking advantage of the synteny conservation among five newly sequenced and annotated genomes of Saccharomycetaceae, we carried out a systematic search for HGT candidates amidst genes present in only one species within conserved synteny blocks. Out of 255 species-specific genes, we discovered 11 candidates for HGT, based on their similarity with bacterial proteins and on reconstructed phylogenies. This corresponds to a minimum of six transfer events because some horizontally acquired genes appear to rapidly duplicate in yeast genomes (e.g. YwqG genes in Kluyveromyces thermotolerans and serine recombinase genes of the IS607 family in Saccharomyces kluyveri). We show that the resulting copies are submitted to a strong functional selective pressure. The mechanisms of DNA transfer and integration are discussed, in relation with the generally small size of HGT candidates. Our results on a limited set of species expand by 50% the number of previously published HGT cases in hemiascomycetous yeasts, suggesting that this type of event is more frequent than usually thought. Our restrictive method does not exclude the possibility that additional HGT events exist. Actually, ancestral events common to several yeast species must have been overlooked, and the absence of homologs in present databases leaves open the question of the origin of the 244 remaining species-specific genes inserted within conserved synteny blocks.  相似文献   

12.

Background

Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum.

Results

We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina.

Conclusions

Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-16-2) contains supplementary material, which is available to authorized users.  相似文献   

13.
Tobacco (Nicotiana tabacum) serve as the top leading commercial, non-food, and model crop worldwide. Cyclic nucleotide-gated channels (CNGCs) are ligand-gated, calcium-permeable, divalent, cation-selective channels, involved in important biological functions. Here, we systematically characterized thirty-five CNGC genes in the genome of Nicotiana tabacum, and classified into four phylogenetic groups. Evolutionary analysis showed that NtabCNGC family of N. tabacum originated from the parental genome of N. sylvestris and N. tomentosiformis, and further expanded via tandem and segmental duplication events. Tissue-specific expression analysis showed that twenty-three NtabCNGC genes are involved in the development of various tobacco tissues. Subsequent RT-qPCR analyses indicated that these genes are sensitive towards external abiotic and biotic stresses. Notable performances were exhibited by group-I and IV CNGC genes against black shank, Cucumber mosaic virus, Potato virus Y, cold, drought, and cadmium stresses. Our analyses also suggested that NtabCNGCs can be regulated by phosphorylation and miRNAs, and multiple light, temperature, and pathogen-responsive cis-acting regulatory elements present in promotors. These results will be useful for elaborating the biological roles of NtabCNGCs in tobacco growth and development.  相似文献   

14.
Phylogenetic schemes based on changing DNA sequence have made a major impact on our understanding of evolutionary relationships and significantly built on knowledge gained by morphological and anatomical studies. Here we present another approach to phylogeny, using fluorescent in situ hybridisation. The phylogenetic scheme presented is likely to be robust since it is derived from the chromosomal distribution of ten repetitive sequences with different functions and evolutionary constraints [GRS, HRS60, NTRS, the Arabidopsis-type telomere repeat (TTTAGGG)n, 18S-5.8S-26S ribosomal DNA (rDNA), 5S rDNA, and four classes of geminiviral-related DNA (GRD)]. The basic karyotypes of all the plant species investigated Nicotiana tomentosiformis, N. kawakamii, N. tomentosa, N. otophora, N. setchellii, N. glutinosa (all section Tomentosae), and N. tabacum (tobacco, section Genuinae) are similar (x=12) but the distribution of genic and non-genic repeats is quite variable, making the karyotypes distinct. We found sequence dispersal, and locus gain, amplification and loss, all within the regular framework of the basic genomic structure. We predict that the GRD classes of sequence integrated into an ancestral genome only once in the evolution of section Tomentosae and thereafter spread by vertical transmission and speciation into four species. Since GRD is similar to a transgenic construct that was inserted into the N. tabacum genome, its fate over evolutionary time is interesting in the context of the debate on genetically modified organisms and the escape of genes into the wild. Nicotiana tabacum is thought to be an allotetraploid between presumed progenitors of N. sylvestris (maternal, S-genome donor) and a member of section Tomentosae (T-genome donor). Of section Tomentosae, N. tomentosiformis has the most similar genome to the T genome of tobacco and is therefore the most likely paternal genome donor. It is known for N. tabacum that gene conversion has converted most 18S-5.8S-26S rDNA units of N. sylvestris origin into units of an N. tomentosiformis type. Clearly if such a phenomenon were widespread across the genome, genomic in situ hybridisation (GISH) to distinguish the S and T genomes would probably not work since conversion would tend to homogenise the genomes. The fact that GISH does work suggests a limited role for gene conversion in the evolution of N. tabacum. Received: 8 November 1999; in revised form: 23 February 2000 / Accepted: 1 March 2000  相似文献   

15.
Nicotiana tabacum (2n=48) is a natural amphidiploid with component genomes S and T. We used non-radioactive in situ hybridization to provide physical chromosome markers for N. tabacum, and to determine the extant species most similar to the S and T genomes. Chromosomes of the S genome hybridized strongly to biotinylated total DNA from N. sylvestris, and showed the same physical localization of a tandemly repeated DNA sequence, HRS 60.1, confirming the close relationship between the S genome and N. sylvesfris. Results of dot blot and in situ hybridizations of N. tabacum DNA to biotinylated total genomic DNA from N. tomentosiformis and N. otophora suggested that the T genome may derive from an introgressive hybrid between these two species. Moreover, a comparison of nucleolus-organizing chromosomes revealed that the nucleolus organizer region (NOR) most strongly expressed in N. tabacum had a very similar counterpart in N. otophora. Three different N. tabacum genotypes each had up to 9 homozygous translocations between chromosomes of the S and T genomes. Such translocations, which were either unilateral or reciprocal, demonstrate that intergenomic transfer of DNA has occurred in the amphidiploid, possibly accounting for some results of previous genetic and molecular analyses. Molecular cytogenetics of N. tabacum has identified new chromosome markers, providing a basis for physical gene mapping and showing that the amphidiploid genome has diverged structurally from its ancestral components.  相似文献   

16.
We examined the structure, intranuclear distribution and activity of ribosomal DNA (rDNA) in Nico-tiana sylvestris (2n=2x=24) and N. tomentosiformis (2n=2x=24) and compared these with patterns in N. tabacum (tobacco, 2n=4x=48). We also examined a long-established N. tabacum culture, TBY-2. Nicotiana tabacum is an allotetraploid thought to be derived from ancestors of N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). Nicotiana sylvestris has three rDNA loci, one locus each on chromosomes 10, 11, and 12. In root-tip meristematic interphase cells, the site on chromosome 12 remains condensed and inactive, while the sites on chromosomes 10 and 11 show activity at the proximal end of the locus only. Nicotiana tomentosiformis has one major locus on chromosome 3 showing activity and a minor, inactive locus on chromosome 11. In N. tabacum cv. 095-55, there are four rDNA loci on T3, S10, S11/t and S12 (S11/t carries a small T-genome translocation). The locus on S12 remains condensed and inactive in root-tip meristematic cells while the others show activity, including decondensation at interphase and secondary constrictions at metaphase. Nicotiana tabacum DNA digested with methylcytosine-sensitive enzymes revealed a hybridisation pattern for rDNA that resembled that of N. tomentosiformis and not N. sylvestris. The data indicate that active, undermethylated genes are of the N. tomentosiformis type. Since S-genome chromosomes of N. tabacum show rDNA expression, the result indicates rDNA gene conversion of the active rDNA units on these chromosomes. Gene conversion in N. tabacum is consistent with the results of previous work. However, using primers specific for the S-genome rDNA intergenic sequences (IGS) in the polymerase chain reaction (PCR) show that rDNA gene conversion has not gone to completion in N. tabacum. Furthermore, using methylation-insensitive restriction enzymes we demonstrate that about 8% of the rDNA units remain of the N. sylvestris type (from ca. 75% based on the sum of the rDNA copy numbers in the parents). Since the active genes are likely to be of an N. tomentosiformis type, the N. sylvestris type units are presumably contained within inactive loci (i.e. on chromosome S12). Nicotiana sylvestris has approximately three times as much rDNA as the other two species, resulting in much condensed rDNA at interphase. This species also has three classes of IGS, indicating gene conversion has not homogenised repeat length in this species. The results suggest that methylation and/or DNA condensation has reduced or prevented gene conversion from occurring at inactive genes at rDNA loci. Alternatively, active undermethylated units may be vulnerable to gene conversion, perhaps because they are decondensed and located in close proximity within the nucleolus at interphase. In TBY-2, restriction enzymes showed hybridisation patterns that were similar to, but different from, those of N. tabacum. In addition, TBY-2 has elevated rDNA copy number and variable numbers of rDNA loci, all indicating rDNA evolution in culture. Received: 17 November 1999; in revised form: 3 February 2000 / Accepted: 3 February 2000  相似文献   

17.
The aim of this work was to assess the responses of seedlings of five species of Nicotiana genus to red and far red radiation. N. acuminata exhibits positive photoblastic behaviour and germination was completely inhibited under far red and darkness. In N. glauca germination was reduced under far red and darkness, but the other species showed neutral behaviour. The hypocotyl elongation was inhibited in N. glauca and N. tabacum under white and far red radiation. In N. langsdorffii and N. debneyi hypocotyl was elongated under far red radiation. Only in N. acuminata red radiation promote greater hypocotyl elongation than dark condition. On the phylogenetic tree obtained from restriction analysis N. glauca and N. acuminata are grouped in one branch, while the other species, N. langsdorffii, N. debneyi and N. tabacum, are grouped in the other branch cluster. Moreover, the N. debneyi behaviours under different radiation treatments were similar to those of N. tabacum. These two species are allopolyploid members of the genus Nicotiana, as also was confirmed by this study. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Horizontal gene transfer (HGT) is important for microbial evolution, but how evolutionary forces shape the frequencies of horizontally transferred genetic variants in the absence of strong selection remains an open question. In this study, we evolve laboratory populations of Acinetobacter baylyi (ADP1) with HGT from two clinically relevant strains of multidrug-resistant Acinetobacter baumannii (AB5075 and A9844). We find that DNA can cross the species barrier, even without strong selection, and despite substantial DNA sequence divergence between the two species. Our results confirm previous findings that HGT can drive the spread of antibiotic resistance genes (ARGs) without selection for that antibiotic, but not for all of the resistance genes present in the donor genome. We quantify the costs and benefits of horizontally transferred variants and use whole population sequencing to track the spread of ARGs from HGT donors into antibiotic-sensitive recipients. We find that even though most ARGs are taken up by populations of A. baylyi, the long-term fate of an individual gene depends both on its fitness cost and on the type of genetic element that carries the gene. Interestingly, we also found that an integron, but not its host plasmid, is able to spread in A. baylyi populations despite its strong deleterious effect. Altogether, our results show how HGT provides an evolutionary advantage to evolving populations by facilitating the spread of non-selected genetic variation including costly ARGs.  相似文献   

19.
Summary We compared the single-copy DNA sequences of the tetraploid tobacco plant, Nicotiana tabacum, with those of its diploid progenitors N. sylvestris and N. tomentosiformis. We observed that 65% of N. sylvestris and N. tomentosiformis single-copy DNA fragments reacted with each other using moderately stringent hybridization conditions (60° C, 0.18 M Na+). An additional 10% sequence homology was detected when the hybridization temperature was reduced by 10° C. The thermal stability of interspecific single-copy DNA duplexes indicated that they were approximately 6% more mispaired than homologous single-copy DNA duplexes. In contrast, we observed almost no single-copy DNA divergence between N. tabacum and its diploid progenitors. Greater than 99% of N. sylvestris and N. tomentosiformis single-copy DNAs reacted with N. tabacum DNA using moderately stringent hybridization conditions. The thermal stability of these duplexes indicated that they contained no more sequence mismatch than homologous single-copy duplexes. Together, our results show that significant single-copy DNA sequence divergence has occurred between the diploid N. sylvestris and N. tomentosiformis genomes. However, by applying our experimental criteria these single-copy DNAs are indistinguishable from their counterparts in the hybrid N. tabacum nucleus.  相似文献   

20.
There are significant differences in nuclear DNA amount between both diploid and amphidiploid species of Nicotiana. Owing to the higher DNA density in the interphase nuclei of the amphidiploids DNA amounts tend to be underestimated by microdensitometry. After applying necessary corrections to amphidiploid readings it was found that: (1) The nuclear DNA amount in the tetraploid N. rustica is not significantly different from the sum of nuclear DNA amounts in reputed diploid parents, N. undulata and N. paniculata. (2) It is well established that N. sylvestris is one of the diploid progenitors of N. tabacum. The sum of the nuclear DNA amounts in N. sylvestris and N. tomentosiformis is not significantly different from that of the amphidiploid N. tabacum. In contrast the sum of the DNA amounts in N. sylvestris and N. otophora is significantly higher than that in N. tabacum. Observations and measurements of the amount and distribution of heterochromatin in interphase nuclei of the diploid and tetraploid species give further support to the conclusion that N. tomentosiformis rather than N. otophora is the second diploid progenitor of N. tabacum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号