首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enterotoxigenic anaerobic Bacteroides fragilis is a significant source of inflammatory diarrheal disease and a risk factor for colorectal cancer. Two distinct metalloproteinase types (the homologous 1, 2, and 3 isoforms of fragilysin (FRA1, FRA2, and FRA3, respectively) and metalloproteinase II (MPII)) are encoded by the B. fragilis pathogenicity island. FRA was demonstrated to be important to pathogenesis, whereas MPII, also a potential virulence protein, remained completely uncharacterized. Here, we, for the first time, extensively characterized MPII in comparison with FRA3, a representative of the FRA isoforms. We employed a series of multiplexed peptide cleavage assays to determine substrate specificity and proteolytic characteristics of MPII and FRA. These results enabled implementation of an efficient assay of MPII activity using a fluorescence-quenched peptide and contributed to structural evidence for the distinct substrate cleavage preferences of MPII and FRA. Our data imply that MPII specificity mimics the dibasic Arg↓Arg cleavage motif of furin-like proprotein convertases, whereas the cleavage motif of FRA (Pro-X-X-Leu-(Arg/Ala/Leu)↓) resembles that of human matrix metalloproteinases. To the best of our knowledge, MPII is the first zinc metalloproteinase with the dibasic cleavage preferences, suggesting a high level of versatility of metalloproteinase proteolysis. Based on these data, we now suggest that the combined (rather than individual) activity of MPII and FRA is required for the overall B. fragilis virulence in vivo.  相似文献   

2.
The related genetic elements flanking the Bacteroides fragilis pathogenicity island (PAI) in enterotoxigenic B. fragilis (ETBF) 86-5443-2-2 and also present in pattern III nontoxigenic B. fragilis (NTBF) NCTC 9343 were defined as putative conjugative transposons (CTns), designated CTn86 and CTn9343, respectively (A. A. Franco, J. Bacteriol. 181:6623-6633, 2004). CTn86 and CTn9343 have the same basic structures except that their encoded transposases have low similarity and CTn9343 lacks the B. fragilis PAI and contains an extra 7-kb region not present in CTn86. In this study, using DNA hybridization and PCR analysis, we characterized the genetic element flanking the PAI in a collection of ETBF strains and the related genetic elements in a collection of NTBF pattern III strains. We found that in all 123 ETBF strains, the PAI is contained in a genetic element similar to CTn86. Of 73 pattern III strains, 26 (36%) present a genetic element similar to CTn9343, 38 (52%) present a genetic element similar to CTn9343 but lack the 7-kb region that is also absent in CTn86 (CTn9343-like element), and 9 (12%) present a genetic element similar to CTn86 but lacking the PAI (CTn86-like element). In addition to containing CTn86, ETBF strains can also contain CTn9343, CTn9343-like, or CTn86-like elements. CTn86, CTn9343, CTn86-like, and CTn9343-like elements were found exclusively in B. fragilis strains and predominantly in division I, cepA-positive strains.  相似文献   

3.
《Anaerobe》2002,8(1):17-22
Bacteroides fragilis strains isolated from faeces of diarrhoeic and healthy children were studied by polymerase chain reaction (PCR), in order to characterise them as enterotoxigenic B. fragilis -ETBF—if they have one of the three bft gene alleles (pattern I) or as non-toxigenic B. fragilis—NTBF—if there was an absence of bft gene alleles and specific sites (flanking region of B. fragilis Pathogenicity Island—BfPAI) (pattern II NTBF) or absence of alleles, but the presence of this specific sites (pattern III NTBF). All strains were previously screened for cytotoxic activity. ETBF was detected in 1.5% (1/66) of the samples, in which we could verify, concomitantly, the presence of Escherichia coli enteroaggregative (EAEC). Due to these data, ETBF could not be associated with diarrhoea. A large number of pattern III NTBF strains were observed, which could suggest future changes in the phenotype of enterovirulence of B. fragilis species in our country. These populations were also analysed by using AP-PCR and a great heterogeneity could be observed. We were not able to make a correlation between enterovirulence patterns and genetic types.  相似文献   

4.
A total of 874 fecal specimens (446 diarrheal cases and 428 controls) from diarrheal children admitted in the Infectious Diseases Hospital, Kolkata and age and sex matched asymptomatic subjects from an urban community were assessed for the prevalence of enterotoxigenic Bacteroides fragilis (ETBF). Isolates of B. fragilis were tested for the presence of enterotoxin gene (bft) by PCR. The detection rate of ETBF was 7.2% (63 of 874 specimens) that prevailed equally in diarrheal cases and controls (7.2% each; 32 of 446 cases and 31 of 428 controls). Male children up to one year age group was significantly (p<0.05) associated with ETBF infection as compared to children > 2 years of age in cases and controls. In 25 ETBF isolates, the bft gene was genotyped using PCR-RFLP and only two alleles were identified with prevalence rate of 40% and 60% for bft-1 and bft-3, respectively. All the ETBF isolates were susceptible for chloramphenicol and imipenem but resistant to clindamycin (48%), moxifloxacin (44%) and metronidazole (32%). Resistance of ETBF to moxifloxacin (44%) and metronidazole is an emerging trend. Pulsed-field gel electrophoresis (PFGE) revealed that majority of the ETBF isolates are genetically diverse. In the dendrogram analysis, two clusters were identified, one with ETBF resistant to 5–8 antimicrobials and the other cluster with metronidazole and moxifloxacin susceptible isolates from diarrheal cases. To our knowledge, this is the first detailed report on ETBF from India indicating its clinical importance and molecular characteristics.  相似文献   

5.
《Anaerobe》1999,5(3-4):217-219
Fifty faecal samples of patients suspected of having diarrhoea associated with Clostridium difficile were studied. Toxins of C. difficile were tested in vivo directly from the faecal sample using Toxin Detection Kits (Oxoid) to detect toxin A and primers for detection genes of Toxin A and B in a PCR test. The same samples were tested for B. fragilis enterotoxin gene directly from the faecal sample using special primers and a PCR test. Samples were inoculated onto selective media for C. difficile (CCCA) and B. fragilis (BBE) for isolation of bacteria.In vitro Toxin A of C. difficile in culture was tested using a C. difficile toxin A immunoassay (Oxoid, U.K. test and Toxin B of C. difficile was tested by using the McCoy cell line. C. difficile toxin A and B genes were determined in DNA of isolated strains using special primers and a PCR reaction. The enterotoxin production in B. fragilis strains was tested on the human carcinoma cell line HT29/C1. The presence of fragilysin gene was detected using a special pair of primers and a PCR reaction. Toxinogenic strains of C. difficile and enterotoxigenic Bacteroides fragilis (ETBF) strains were isolated from the same samples.  相似文献   

6.
《Anaerobe》2001,7(5):277-281
Members of the Bacteroides fragilis group are indigenous to the human and animal intestinal microbiota and they are responsible for several endogenous infections. Enterotoxigenic B. fragilis (ETBF) has been associated with acute diarrhea in children and farm animals. Immunodeficient patients are more predisposed to different opportunistic infections, including anaerobic infections. In this study, 130 stool samples were analysed from 56 immunodeficient and 74 healthy children. Enterotoxin production was detected by cytotoxicity assay on HT-29 cells and by PCR. B. fragilis sensu strictu was prevalent in both groups and ETBF species was detected from a single stool sample belonged to an immunodeficient child with AIDS.  相似文献   

7.
Enterotoxigenic Bacteroides fragilis (ETBF) strains produce a metalloprotease toxin (BFT) related to diarrheal disease in animals, young children, and adults. Three different isoforms of the enterotoxin, designated BFT-1, BFT-2, and BFT-3, have been identified and sequenced. In the present study, the pathogenicity of the ETBF strains carrying bft-1 or bft-2 was evaluated. Each toxin gene subtype of ETBF (bft-1 or bft-2) was intragastrically monoassociated to germ-free mice during 10 days and histopathological data from intestines and liver compared with those from mice monoassociated to a non-enterotoxigenic B. fragilis. Histopathological alterations were observed in all groups of animals related to ETBF. These alterations were characterized mainly by ulceration, edema, and inflammatory infiltration in intestine. However, these lesions were slightly more severe in mice monoassociated with bft-2 subtype. No alteration or lesion was observed in animals associated with the non-enterotoxigenic B. fragilis. In conclusion, strains harboring bft-1 or bft-2 gene subtypes were able to induce histopathological alterations in intestine of a gnotobiotic mice model and it could explain the effect produced for the enterotoxin.  相似文献   

8.
The aim of this study was to determine the prevalence of enterotoxigenic Bacteroides fragilis (ETBF) in the patients with diarrhea in our region and to assess the association between diarrhea and bft gene subtypes. The presence of ETBF and bft gene subtypes were investigated in 200 stool samples from patients with diarrhea, diagnosed as gastroenteritis, which were sent to Clinical Microbiology Laboratory at Zonguldak Karaelmas University, Training and Research Hospital and in 200 stool samples from age-matched healthy subjects between April 14, 2009 and October 28, 2009. Nested – polymerase chain reaction was used to detect the presence of bft gene directly from stool samples. The bft gene subtypes were determined by PCR in case of ETBF detection. The presence of bft gene was detected in 29 (15%) of patients and 27 (14%) of control group. bft-1 and bft-2 were found in 24 and five stool samples from 29 diarrheic patients with ETBF, respectively. Among 27 control patients with ETBF, bft-1 and bft-2 were found in 24 and three samples, respectively. No bft-3 subtypes were identified in our study. ETBF was found as a single pathogen in 9% of the patients with diarrhea, while there was an accompanying pathogen in 6% of the patients. The proportion of coinfection with another pathogen among ETBF positive patients was 38%. Cooccurance with ETBF was present in nine of 18 patients with Rotavirus and two of five patients with Entamoeba histolytica. In conclusion; there was no statistically significant difference between the prevalence of ETBF in diarrheal patients and that of the control group. When the patients and controls were compared for each age group, no statistically significant difference in ETBF rates was found. There was no significant difference between groups with respect to bft subtypes; bft-1 was identified as the most common subtype. The rate of coinfection of ETBF and Rotavirus was high.  相似文献   

9.
E-cadherin participates in homophilic cell-to-cell adhesion and is localized to intercellular junctions of the adherens type. In the present study, we investigated the localization of adherens junction components in cells expressing mutant E-cadherin derivatives which had been previously cloned from diffuse-type gastric carcinoma. The mutations are in frame deletions of exons 8 or 9 and a point mutation in exon 8 and affect the extracellular domain of E-cadherin. Our findings indicate that E-cadherin mutated in exon 8 causes β-catenin staining at lateral cell-to-cell contact sites and, in addition, abnormally located β-catenin in the perinuclear region. Moreover, the various mutant E-cadherin derivatives increased the steady-state levels of α- and β-catenin and were found in association with these catenins even after induction of tyrosine phosphorylation by pervanadate. Sustained pervanadate treatment led, however, to rounding-up of cells and induction of filopodia, changes which were first detectable in cells expressing E-cadherin mutated in exon 8. The deterioration of the cell contact was not accompanied with disassembly of the E-cadherincatenin complex. Based on these observations, we propose a model whereby in the presence of mutant E-cadherin tyrosine phoshorylation of components of the cell adhesion complex triggers loss of cell-to-cell contact and actin cytoskeletal changes which are not caused by the disruption of the E-cadherin-catenin complex per se, but instead might be due to phosphorylation of other signaling molecules or activation of proteins involved in the regulation of the actin cytoskeleton.  相似文献   

10.
《Biophysical journal》2022,121(6):991-1012
Cadherin-based adherens junctions and desmosomes help stabilize cell-cell contacts with additional function in mechano-signaling, while clustered protocadherin junctions are responsible for directing neuronal circuits assembly. Structural models for adherens junctions formed by epithelial cadherin (CDH1) proteins indicate that their long, curved ectodomains arrange to form a periodic, two-dimensional lattice stabilized by tip-to-tip trans interactions (across junction) and lateral cis contacts. Less is known about the exact architecture of desmosomes, but desmoglein (DSG) and desmocollin (DSC) cadherin proteins are also thought to form ordered junctions. In contrast, clustered protocadherin (PCDH)-based cell-cell contacts in neuronal tissues are thought to be responsible for self-recognition and avoidance, and structural models for clustered PCDH junctions show a linear arrangement in which their long and straight ectodomains form antiparallel overlapped trans complexes. Here, we report all-atom molecular dynamics simulations testing the mechanics of minimalistic adhesive junctions formed by CDH1, DSG2 coupled to DSC1, and PCDHγB4, with systems encompassing up to 3.7 million atoms. Simulations generally predict a favored shearing pathway for the adherens junction model and a two-phased elastic response to tensile forces for the adhesive adherens junction and the desmosome models. Complexes within these junctions first unbend at low tensile force and then become stiff to unbind without unfolding. However, cis interactions in both the CDH1 and DSG2-DSC1 systems dictate varied mechanical responses of individual dimers within the junctions. Conversely, the clustered protocadherin PCDHγB4 junction lacks a distinct two-phased elastic response. Instead, applied tensile force strains trans interactions directly, as there is little unbending of monomers within the junction. Transient intermediates, influenced by new cis interactions, are observed after the main rupture event. We suggest that these collective, complex mechanical responses mediated by cis contacts facilitate distinct functions in robust cell-cell adhesion for classical cadherins and in self-avoidance signaling for clustered PCDHs.  相似文献   

11.
Remodeling of cell–cell contacts through the internalization of adherens junction proteins is an important event during both normal development and the process of tumor cell metastasis. Here we show that the integrity of tumor cell–cell contacts is disrupted after epidermal growth factor (EGF) stimulation through caveolae-mediated endocytosis of the adherens junction protein E-cadherin. Caveolin-1 and E-cadherin closely associated at cell borders and in internalized structures upon stimulation with EGF. Furthermore, preventing caveolae assembly through reduction of caveolin-1 protein or expression of a caveolin-1 tyrosine phospho-mutant resulted in the accumulation of E-cadherin at cell borders and the formation of tightly adherent cells. Most striking was the fact that exogenous expression of caveolin-1 in tumor cells that contain tight, well-defined, borders resulted in a dramatic dispersal of these cells. Together, these findings provide new insights into how cells might disassemble cell–cell contacts to help mediate the remodeling of adherens junctions, and tumor cell metastasis and invasion.  相似文献   

12.
The RapGEF PDZ-GEF2 is required for maturation of cell-cell junctions   总被引:1,自引:0,他引:1  
The small G-protein Rap1 is a critical regulator of cell-cell contacts and is activated by the remodeling of adherens junctions. Here we identify the Rap1 guanine nucleotide exchange factor PDZ-GEF2 as an upstream activator of Rap1 required for the maturation of adherens junctions in the lung carcinoma cells A549. Knockdown of PDZ-GEF2 results in the persistence of adhesion zippers at cell-cell contacts. Activation of Rap1A rescues junction maturation in absence of PDZ-GEF2, demonstrating that Rap1A is downstream of PDZ-GEF2 in this process. Moreover, depletion of Rap1A, but not Rap1B, impairs adherens junction maturation. siRNA for PDZ-GEF2 also lowers the levels of E-cadherin, an effect that can be mimicked by Rap1B, but not Rap1A siRNA. Since junctions in Rap1B depleted cells have a mature appearance, these data suggest that PDZ-GEF2 activates Rap1A and Rap1B to perform different functions. Our results present the first direct evidence that PDZ-GEF2 plays a critical role in the maturation of adherens junctions.  相似文献   

13.
The first step of invasion and metastasis is the detachment of cancer cells in the primary tumor, which is mainly controlled by the function in the adherens junction, consisting of E-cadherin associated proteins (E-cadherin, α- and β-catenins, vinculin, α-actinin, and actin). The cell-to-cell aggregation activity and the expressions of E-cadherin, and α- and β-catenin mRNAs in Ishikawa cells of well-differentiated endometrial cancer were significantly suppressed by estrogen. These suppressions were reversed by progesterone, medroxyprogesterone acetate (MPA) and danazol. Proteins in the adherens junction appeared to be expressed intact and to be functional in Ishikawa cells. Persistent estrogen predominant milieu might contribute to the detachment of well-differentiated endometrial cancer cells, leading to spreading of those cells, while progestins and danazol protect estrogen-induced spreading of those cells.  相似文献   

14.
The genetic element flanking the Bacteroides fragilis pathogenicity island (BfPAI) in enterotoxigenic B. fragilis (ETBF) strain 86-5443-2-2 and a related genetic element in NCTC 9343 were characterized. The results suggested that these genetic elements are members of a new family of conjugative transposons (CTns) not described previously. These putative CTns, designated CTn86 and CTn9343 for ETBF 86-5443-2-2 and NCTC 9343, respectively, differ from previously described Bacteroides species CTns in a number of ways. These new transposons do not carry tetQ, and the excision from the chromosome to form a circular intermediate is not regulated by tetracycline; they are predicted to differ in their mechanism of transposition; and their sequences have very limited similarity with CTnDOT or other described CTns. CTn9343 is 64,229 bp in length, contains 61 potential open reading frames, and both ends contain IS21 transposases. Colony blot hybridization, PCR, and sequence analysis indicated that CTn86 has the same structure as CTn9343 except that CTn86 lacks a approximately 7-kb region containing truncated integrase (int2) and rteA genes and it contains the BfPAI integrated between the mob region and the bfmC gene. If these putative CTns were to be demonstrated to be transmissible, this would suggest that the bft gene can be transferred from ETBF to nontoxigenic B. fragilis strains by a mechanism similar to that for the spread of antibiotic resistance genes.  相似文献   

15.
In epithelial MDCK cells, the Na,K-ATPase is co-localized with adherens junctions in all stages of monolayer formation starting from initiation of cell–cell contact. The Na,K-ATPase and adherens junction proteins stay partially co-localized even after internalization due to disruption of intercellular contacts by Ca2+ deprivation. Similar to adherens junction proteins, the Na,K-ATPase is resistant to extraction with non-ionic detergent, suggesting pump association with the cytoskeleton. In contrast, the heterodimer formed by expressed unglycosylated Na,K-ATPase β1 subunit and the endogenous α1 subunit is easily dissociated from the adherens junctions and cytoskeleton by detergent extraction. The MDCK cells in which half of the endogenous β1 subunits in the lateral membrane are substituted by unglycosylated β1 subunits display a slower rate of cell-to-cell contact formation and decreased ability to both spread over the surface and migrate. The lack of N-glycans in the Na,K-ATPase β1 subunit results in an impairment of mature cell–cell junctions as detected by an increase in the paracellular permeability of the MDCK cell monolayers and by a decrease in resistance of adherens junction proteins to extraction by a non-ionic detergent. Therefore the N-glycans of the Na,K-ATPase β1 subunit are important for retention of the pump at the sites of cell–cell contact. Moreover, they are important for the integrity and stability of cell–cell junctions in mature epithelia. In addition, N-glycans contribute to the formation of cell–cell contacts between surface-attached dispersed cells by mediating lamellipodia formation and stabilizing the newly formed adherens junctions.  相似文献   

16.
Squamous epithelial cells have both adherens junctions and desmosomes. The ability of these cells to organize the desmosomal proteins into a functional structure depends upon their ability first to organize an adherens junction. Since the adherens junction and the desmosome are separate structures with different molecular make up, it is not immediately obvious why formation of an adherens junction is a prerequisite for the formation of a desmosome. The adherens junction is composed of a transmembrane classical cadherin (E-cadherin and/or P-cadherin in squamous epithelial cells) linked to either β-catenin or plakoglobin, which is linked to α-catenin, which is linked to the actin cytoskeleton. The desmosome is composed of transmembrane proteins of the broad cadherin family (desmogleins and desmocollins) that are linked to the intermediate filament cytoskeleton, presumably through plakoglobin and desmoplakin. To begin to study the role of adherens junctions in the assembly of desmosomes, we produced an epithelial cell line that does not express classical cadherins and hence is unable to organize desmosomes, even though it retains the requisite desmosomal components. Transfection of E-cadherin and/or P-cadherin into this cell line did not restore the ability to organize desmosomes; however, overexpression of plakoglobin, along with E-cadherin, did permit desmosome organization. These data suggest that plakoglobin, which is the only known common component to both adherens junctions and desmosomes, must be linked to E-cadherin in the adherens junction before the cell can begin to assemble desmosomal components at regions of cell–cell contact. Although adherens junctions can form in the absence of plakoglobin, making use only of β-catenin, such junctions cannot support the formation of desmosomes. Thus, we speculate that plakoglobin plays a signaling role in desmosome organization.Squamous epithelial cells typically contain two prominent types of cell–cell junctions: the adherens junction and the desmosome. The adherens junction is an intercellular adhesion complex that is composed of a transmembrane protein (a classical cadherin) and numerous cytoplasmic proteins (α-catenin, β-catenin and plakoglobin, vinculin and α-actinin; for reviews see Takeichi, 1990; Geiger and Ayalon, 1992). The cadherins are directly responsible for adhesive interactions via a Ca2+-dependent, homotypic mechanism, i.e., in the presence of sufficient Ca2+, cadherin on one cell binds to an identical molecule on an adjacent cell. The desmosome, also an intercellular adhesion complex, is composed of at least two different transmembrane proteins (desmoglein and desmocollin) as well as several cytoplasmic proteins, including desmoplakins and plakoglobin (Koch and Franke, 1994). The transmembrane components of the desmosome are members of the broadly defined cadherin family and also require Ca2+ for adhesive activity. However, decisive experimental evidence for homophilic or heterophilic interactions between desmosomal cadherins via their extracellular domains has not yet been presented (Koch and Franke, 1994; Kowalczyk et al., 1996). While members of the cadherin family constitute the transmembrane portion of both adherens junctions and desmosomes, the different classes of cadherins are linked to different cytoskeletal elements by the cytoplasmic components of each junction. Specifically, the classical cadherins are linked to actin filaments and the desmosomal cadherins to intermediate filaments.The organization of the proteins within the adherens junction is well understood (for reviews see Kemler, 1993; Cowin, 1994; Wheelock et al., 1996). Specifically, the intracellular domain of cadherin interacts directly with either plakoglobin or β-catenin, which in turns binds to α-catenin (Jou et al., 1995; Sacco et al., 1995). α-Catenin interacts with α-actinin and actin filaments, thereby linking the cadherin/ catenin complex to the cytoskeleton (Knudsen et al., 1995; Rimm et al., 1995). Cadherin/catenin complexes include either plakoglobin or β-catenin but not both (Näthke et al., 1994). The importance of the classical cadherins to the formation of adherens junctions and desmosomes has been demonstrated. Keratinocytes maintained in medium with low Ca2+ (i.e., 30 μM) grow as a monolayer and do not exhibit adherens junctions or desmosomes; however, elevation of Ca2+ concentration induces the rapid formation of adherens junctions followed by the formation of desmosomes (Hennings et al., 1980; Tsao et al., 1982; Boyce and Ham, 1983; Hennings and Holbrook, 1983; O''Keefe et al., 1987; Wheelock and Jensen, 1992; Hodivala and Watt, 1994; Lewis et al., 1994). Simultaneous blocking with functionperturbing antibodies against the two classical cadherins (E- and P-cadherin) found in keratinocytes inhibits not only Ca2+-induced adherens junction formation but also severely limits desmosome formation (Lewis et al., 1994; Jensen et al., 1996). Consistent with these findings, expression of a dominant-negative cadherin by keratinocytes results in decreased E-cadherin expression and delayed assembly of desmosomes (Fujimori and Takeicki, 1993; Amagai, et al., 1995). These data suggest some form of cross-talk between the proteins of the adherens junction and those of the desmosome. One candidate protein that might mediate such cross-talk is plakoglobin, since it is the only known common component of both junctions.Plakoglobin is found to be associated with the cytoplasmic domains of both the classical cadherins and the desmosomal cadherins. Despite the high degree of identity between plakoglobin and β-catenin (65% at the amino acid level; Fouquet et al., 1992), β-catenin only associates with the classical cadherins and not with the desmosomal cadherins. In the adherens junction, plakoglobin and β-catenin have at least one common function, i.e., the linking of cadherin to α-catenin and thus to actin. However, there is emerging evidence that other functions of these two proteins are not identical. For example, in a study by Navarro et al. (1993), E-cadherin transfected into a spindle cell carcinoma was shown to associate with α- and β-catenin, but not with the low levels of endogenous plakoglobin. The transfected cells did not revert to a more epithelial morphology in spite of the presence of functional E-cadherin, and the authors suggested that the lack of plakoglobin may have prevented such morphological reversion.In the present study, we have tested the hypothesis that plakoglobin, through its interaction with E- or P-cadherin, serves as a regulatory molecule for desmosome organization. Even though plakoglobin is not an essential structural component of the adherens junction (Sacco et al., 1995), our data indicate that plakoglobin can function as a regulator of desmosome formation only when it is associated with a classical cadherin. Thus, we propose that plakoglobin has at least two functions: (a) as a structural component of the adherens junction and the desmosome and (b) as a signaling molecule that regulates communication between the adherens junction and the desmosome.  相似文献   

17.
E-cadherin participates in homophilic cell-to-cell adhesion and is localized to intercellular junctions of the adherens type. In the present study, we investigated the localization of adherens junction components in cells expressing mutant E-cadherin derivatives which had been previously cloned from diffuse-type gastric carcinoma. The mutations are in frame deletions of exons 8 or 9 and a point mutation in exon 8 and affect the extracellular domain of E-cadherin. Our findings indicate that E-cadherin mutated in exon 8 causes beta-catenin staining at lateral cell-to-cell contact sites and, in addition, abnormally located beta-catenin in the perinuclear region. Moreover, the various mutant E-cadherin derivatives increased the steady-state levels of alpha- and beta-catenin and were found in association with these catenins even after induction of tyrosine phosphorylation by pervanadate. Sustained pervanadate treatment led, however, to rounding-up of cells and induction of filopodia, changes which were first detectable in cells expressing E-cadherin mutated in exon 8. The deterioration of the cell contact was not accompanied with disassembly of the E-cadherin-catenin complex. Based on these observations, we propose a model whereby in the presence of mutant E-cadherin tyrosine phoshorylation of components of the cell adhesion complex triggers loss of cell-to-cell contact and actin cytoskeletal changes which are not caused by the disruption of the E-cadherin-catenin complex per se, but instead might be due to phosphorylation of other signaling molecules or activation of proteins involved in the regulation of the actin cytoskeleton.  相似文献   

18.
《Anaerobe》2002,8(4):192-199
The genetic relatedness of 71 Bacteroides fragilis strains isolated from different sources (human intestinal and non-intestinal infections and animal intestinal infections, human and animal intestinal microflora and polluted aquatic environment) was evaluated by arbitrarily primed-polymerase chain reaction (AP-PCR) and pulsed-field gel electrophoresis (PFGE). The presence of the enterotoxin gene (bft) and β-lactamase genes (cep A, cfi A) was also determined by PCR. The amplification with the arbitrary primer AP12h produced electrophoretic profiles and the use of a biostatistical program (NTSYS) provided a dendrogram that revealed nine amplitypes, clustered in two groups, AI and AII, at a genetic distance of 0.30. Eight strains harbouring cfi A gene presented homogeneous profiles and could be clustered (amplitype A8) as well as 82.4% of the strains isolated from non-intestinal infections (amplitype A4). EnterotoxigenicB. fragilis strains (ETBF) were clustered in group AI as well as non-enterotoxigenic B. fragilis strains (NTBF). PFGE was used to analyse strains representative of each ampli-type formed. DNA restriction with Not I generated 25 PFGE profiles and only two pairs of strains presented more than 90% of similarity when Dice's coefficient and UPGMA clustering were applied. Although our data suggest a relevant relatedness among cfi A positive strains and among strains isolated from non-intestinal infections using AP-PCR, the use of a method with a greater discriminatory power revealed the wide diversity. These data reinforce the idea of infinite heterogeneity among B. fragilis strains.  相似文献   

19.
Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs) are attached to niche component cells (i.e., the hub) via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells.  相似文献   

20.
肠道微生物群落与结直肠癌(Colorectal Cancer,CRC)有着十分密切的关系。肠道微生物的群落变化可能会伴随着CRC的发生,而一些有害菌的出现可能是导致CRC的直接原因。其中,具核梭杆菌(Fusobacterium nucleatum)、产肠毒素脆弱拟杆菌(Enterotoxigenic Bacteroides fragilis,ETBF)和pks阳性大肠杆菌(pks+Escherichiacoli)与CRC的发生最密切。本综述着重介绍了pks+E.coli及Colibactin的致病原因、对肠道微生物组成的影响、Colibactin的合成及怎样抑制或促进pks+E. coli。同时也对ETBF和F. nucleatum可能的致癌原因、对肠道微生物组成的影响及对二者的促进或抑制做出了介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号