首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Intercellular communication is critical for the survival of unicellular organisms as well as for the development and function of multicellular tissues. Cell-to-cell signaling is also required to develop the interconnected mycelial network characteristic of filamentous fungi and is a prerequisite for symbiotic and pathogenic host colonization achieved by molds. Somatic cell–cell communication and subsequent cell fusion is governed by the MAK-2 mitogen activated protein kinase (MAPK) cascade in the filamentous ascomycete model Neurospora crassa, yet the composition and mode of regulation of the MAK-2 pathway are currently unclear. In order to identify additional components involved in MAK-2 signaling we performed affinity purification experiments coupled to mass spectrometry with strains expressing functional GFP-fusion proteins of the MAPK cascade. This approach identified STE-50 as a regulatory subunit of the Ste11p homolog NRC-1 and HAM-5 as cell-communication-specific scaffold protein of the MAPK cascade. Moreover, we defined a network of proteins consisting of two Ste20-related kinases, the small GTPase RAS-2 and the adenylate cyclase capping protein CAP-1 that function upstream of the MAK-2 pathway and whose signals converge on the NRC-1/STE-50 MAP3K complex and the HAM-5 scaffold. Finally, our data suggest an involvement of the striatin interacting phosphatase and kinase (STRIPAK) complex, the casein kinase 2 heterodimer, the phospholipid flippase modulators YPK-1 and NRC-2 and motor protein-dependent vesicle trafficking in the regulation of MAK-2 pathway activity and function. Taken together, these data will have significant implications for our mechanistic understanding of MAPK signaling and for homotypic cell–cell communication in fungi and higher eukaryotes.  相似文献   

3.
Mitogen-activated protein (MAP) kinase signaling pathways are ubiquitous and evolutionarily conserved in eukaryotic organisms. MAP kinase pathways are composed of a MAP kinase, a MAP kinase kinase, and a MAP kinase kinase kinase; activation is regulated by sequential phosphorylation. Components of three MAP kinase pathways have been identified by genome sequence analysis in the filamentous fungus Neurospora crassa. One of the predicted MAP kinases in N. crassa, MAK-2, shows similarity to Fus3p and Kss1p of Saccharomyces cerevisiae, which are involved in sexual reproduction and filamentation, respectively. In this study, we show that an N. crassa mutant disrupted in mak-2 exhibits a pleiotropic phenotype: derepressed conidiation, shortened aerial hyphae, lack of vegetative hyphal fusion, female sterility, and autonomous ascospore lethality. We assessed the phosphorylation of MAK-2 during conidial germination and early colony development. Peak levels of MAK-2 phosphorylation were most closely associated with germ tube elongation, branching, and hyphal fusion events between conidial germlings. A MAP kinase kinase kinase (NRC-1) is the predicted product of N. crassa nrc-1 locus and is a homologue of STE11 in S. cerevisiae. An nrc-1 mutant shares many of the same phenotypic traits as the mak-2 mutant and, in particular, is a hyphal fusion mutant. We show that MAK-2 phosphorylation during early colony development is dependent upon the presence of NRC-1 and postulate that phosphorylation of MAK-2 is required for hyphal fusion events that occur during conidial germination.  相似文献   

4.
A Maddi  A Dettman  C Fu  S Seiler  SJ Free 《PloS one》2012,7(8):e42374
A large number of cell wall proteins are encoded in the Neurospora crassa genome. Strains carrying gene deletions of 65 predicted cell wall proteins were characterized. Deletion mutations in two of these genes (wsc-1 and ham-7) have easily identified morphological and inhibitor-based defects. Their phenotypic characterization indicates that HAM-7 and WSC-1 function during cell-to-cell hyphal fusion and in cell wall integrity maintenance, respectively. wsc-1 encodes a transmembrane protein with extensive homology to the yeast Wsc family of sensor proteins. In N. crassa, WSC-1 (and its homolog WSC-2) activates the cell wall integrity MAK-1 MAP kinase pathway. The GPI-anchored cell wall protein HAM-7 is required for cell-to-cell fusion and the sexual stages of the N. crassa life cycle. Like WSC-1, HAM-7 is required for activating MAK-1. A Δwsc-1;Δham-7 double mutant fully phenocopies mutants lacking components of the MAK-1 MAP kinase cascade. The data identify WSC-1 and HAM-7 as the major cell wall sensors that regulate two distinct MAK-1-dependent cellular activities, cell wall integrity and hyphal anastomosis, respectively.  相似文献   

5.
Cell biology of conidial anastomosis tubes in Neurospora crassa   总被引:1,自引:0,他引:1       下载免费PDF全文
Although hyphal fusion has been well documented in mature colonies of filamentous fungi, it has been little studied during colony establishment. Here we show that specialized hyphae, called conidial anastomosis tubes (CATs), are produced by all types of conidia and by conidial germ tubes of Neurospora crassa. The CAT is shown to be a cellular element that is morphologically and physiologically distinct from a germ tube and under separate genetic control. In contrast to germ tubes, CATs are thinner, shorter, lack branches, exhibit determinate growth, and home toward each other. Evidence for an extracellular CAT inducer derived from conidia was obtained because CAT formation was reduced at low conidial concentrations. A cr-1 mutant lacking cyclic AMP (cAMP) produced CATs, indicating that the inducer is not cAMP. Evidence that the transduction of the CAT inducer signal involves a putative transmembrane protein (HAM-2) and the MAK-2 and NRC-1 proteins of a mitogen-activated protein kinase signaling pathway was obtained because ham-2, mak-2, and nrc-1 mutants lacked CATs. Optical tweezers were used in a novel experimental assay to micromanipulate whole conidia and germlings to analyze chemoattraction between CATs during homing. Strains of the same and opposite mating type were shown to home toward each other. The cr-1 mutant also underwent normal homing, indicating that cAMP is not the chemoattractant. ham-2, mak-2, and nrc-1 macroconidia did not attract CATs of the wild type. Fusion between CATs of opposite mating types was partially inhibited, providing evidence of non-self-recognition prior to fusion. Microtubules and nuclei passed through fused CATs.  相似文献   

6.
In Caenorhabditis elegans, twitchin is a giant polypeptide located in muscle A-bands. The protein kinase of twitchin is autoinhibited by 45 residues upstream (NL) and 60 residues downstream (CRD) of the kinase catalytic core. Molecular dynamics simulation on a twitchin fragment revealed that the NL is released by pulling force. However, it is unclear how the CRD is removed. To identify proteins that may remove the CRD, we performed a yeast two-hybrid screen using twitchin kinase as bait. One interactor is MAK-1, C. elegans orthologue of MAPKAP kinase 2. MAPKAP kinase 2 is phosphorylated and activated by p38 MAP kinase. We demonstrate that the CRD of twitchin is important for binding to MAK-1. mak-1 is expressed in nematode body wall muscle, and antibodies to MAK-1 localize between and around Z-disk analogues and to the edge of A-bands. Whereas unc-22 mutants are completely resistant, mak-1 mutants are partially resistant to nicotine. MAK-1 can phosphorylate twitchin NL-Kin-CRD in vitro. Genetic data suggest the involvement of two other mak-1 paralogues and two orthologues of p38 MAP kinase. These results suggest that MAK-1 is an activator of twitchin kinase and that the p38 MAP kinase pathway may be involved in the regulation of twitchin.  相似文献   

7.
Intercellular communication of vegetative cells and their subsequent cell fusion is vital for different aspects of growth, fitness, and differentiation of filamentous fungi. Cell fusion between germinating spores is important for early colony establishment, while hyphal fusion in the mature colony facilitates the movement of resources and organelles throughout an established colony. Approximately 50 proteins have been shown to be important for somatic cell-cell communication and fusion in the model filamentous fungus Neurospora crassa. Genetic, biochemical, and microscopic techniques were used to characterize the functions of seven previously poorly characterized cell fusion proteins. HAM-6, HAM-7 and HAM-8 share functional characteristics and are proposed to function in the same signaling network. Our data suggest that these proteins may form a sensor complex at the cell wall/plasma membrane for the MAK-1 cell wall integrity mitogen-activated protein kinase (MAPK) pathway. We also demonstrate that HAM-9, HAM-10, AMPH-1 and WHI-2 have more general functions and are required for normal growth and development. The activation status of the MAK-1 and MAK-2 MAPK pathways are altered in mutants lacking these proteins. We propose that these proteins may function to coordinate the activities of the two MAPK modules with other signaling pathways during cell fusion.  相似文献   

8.
Park G  Pan S  Borkovich KA 《Eukaryotic cell》2008,7(12):2113-2122
Mitogen-activated protein kinase (MAPK) signaling cascades are composed of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In this study, we characterize components of a MAPK cascade in Neurospora crassa (mik-1, MAPKKK; mek-1, MAPKK; and mak-1, MAPK) homologous to that controlling cell wall integrity in Saccharomyces cerevisiae. Growth of basal hyphae is significantly reduced in mik-1, mek-1, and mak-1 deletion mutants on solid medium. All three mutants formed short aerial hyphae and the formation of asexual macroconidia was reduced in Deltamik-1 mutants and almost abolished in Deltamek-1 and Deltamak-1 strains. In contrast, the normally rare asexual spores, arthroconidia, were abundant in cultures of the three mutants. Deltamik-1, Deltamek-1, and Deltamak-1 mutants were unable to form protoperithecia or perithecia when used as females in a sexual cross. The MAK-1 MAPK was not phosphorylated in Deltamik-1 and Deltamek-1 mutants, consistent with the involvement of MIK-1, MEK-1, and MAK-1 in the same signaling cascade. Interestingly, we observed increased levels of mRNA and protein for tyrosinase in the mutants under nitrogen starvation, a condition favoring sexual differentiation. Tyrosinase is an enzyme that catalyzes production of the secondary metabolite l-DOPA melanin. These results implicate the MAK-1 pathway in regulation of development and secondary metabolism in filamentous fungi.  相似文献   

9.
10.
Understanding how genomes encode complex cellular and organismal behaviors has become the outstanding challenge of modern genetics. Unlike classical screening methods, analysis of genetic variation that occurs naturally in wild populations can enable rapid, genome-scale mapping of genotype to phenotype with a medium-throughput experimental design. Here we describe the results of the first genome-wide association study (GWAS) used to identify novel loci underlying trait variation in a microbial eukaryote, harnessing wild isolates of the filamentous fungus Neurospora crassa. We genotyped each of a population of wild Louisiana strains at 1 million genetic loci genome-wide, and we used these genotypes to map genetic determinants of microbial communication. In N. crassa, germinated asexual spores (germlings) sense the presence of other germlings, grow toward them in a coordinated fashion, and fuse. We evaluated germlings of each strain for their ability to chemically sense, chemotropically seek, and undergo cell fusion, and we subjected these trait measurements to GWAS. This analysis identified one gene, NCU04379 (cse-1, encoding a homolog of a neuronal calcium sensor), at which inheritance was strongly associated with the efficiency of germling communication. Deletion of cse-1 significantly impaired germling communication and fusion, and two genes encoding predicted interaction partners of CSE1 were also required for the communication trait. Additionally, mining our association results for signaling and secretion genes with a potential role in germling communication, we validated six more previously unknown molecular players, including a secreted protease and two other genes whose deletion conferred a novel phenotype of increased communication and multi-germling fusion. Our results establish protein secretion as a linchpin of germling communication in N. crassa and shed light on the regulation of communication molecules in this fungus. Our study demonstrates the power of population-genetic analyses for the rapid identification of genes contributing to complex traits in microbial species.  相似文献   

11.
12.
Hyphal tip-growing organisms often rely upon an internal hydrostatic pressure (turgor) to drive localized expansion of the cell. Regulation of the turgor in response to osmotic shock is mediated primarily by an osmotic MAP kinase cascade which activates osmolyte synthesis and ion uptake to effect turgor recovery. We characterized a Neurospora crassa homolog (PTK2) of ser/thr kinase regulators of ion transport in yeast to determine its role in turgor regulation in a filamentous fungi. The ptk2 mutant is osmosensitive, and has lower turgor poise than wildtype. The cause appears to be lower activity of the plasma membrane H+-ATPase. Its role in osmoadaptation is unrelated to the activity of the osmotic MAP kinase cascade. Instead, it acts in an alternative pathway that, like the osmotic MAP kinase cascade, also involves ion transport mediated osmoadaptation.  相似文献   

13.
14.
15.
In fungal hyphae multiple protein complexes assemble at sites of apical growth to maintain cell polarity and promote nucleation of actin. Polarity allows the directional traffic of vesicles to the Spitzenkörper (Spk) prior to fusing with the plasma membrane to provide precursors and enzymes required for cell extension and nutrition. One of these complexes is the polarisome, which in Saccharomyces cerevisiae contains Spa2p, Pea2p, Bud6p/Aip3p and Bni1p. To investigate the localization and role of the polarisome during Spk establishment in Neurospora crassa we tagged SPA-2 with the green fluorescent protein (GFP) and examined growing cells by laser scanning confocal microscopy in elongating germ tubes and mature hyphae. SPA-2-GFP accumulated gradually at the apex of germ tubes, when a FM4-64 stained Spk was not still detectable. When the germlings reached about 40 μm in length, a FM4-64 stained Spk started to be apparent and from this point on SPA-2-GFP was observed in the apical region of both germ tubes and mature hyphae, as a hand fan shape with a brighter spot at the base. Fusion of the N. crassa SPA-2-GFP strain with a N. crassa strain expressing chitin synthase 1 (CHS-1) labeled with mCherryFP indicated only partial colocalization of the polarisome and the Spk core. N. crassa SPA-2-GFP was also found at the apex of forming branches but not in septa, suggesting that it participates only in areas of tip growth. A Δspa-2 strain displayed hyphae with uneven constrictions, apices with an unstable Spk, reduced growth rate and higher number of branches than the wild type strain, indicating that SPA-2 is required for the stability, behavior and morphology of the Spk and maintenance of regular apical growth in hyphae of N. crassa, although not for polarity or Spk establishment.  相似文献   

16.
17.
《Experimental mycology》1993,17(4):241-252
Terhune, B. T., and Hoch, A. C. 1993. Substrate hydrophobicity and adhesion of Uromyces urediospores and germlings. Experimental Mycology 17, 241-252. Adhesions of urediospores and urediospore germlings of Uromyces appendiculatus, the bean rust pathogen, to various substrata was evaluated with regard to surface wettability. A range of surface wettabilities, or conversely hydrophobicities, was obtained by coating glass or quartz substrates with various organosilanes. Adhesion of urediospores or germlings was evaluated after the spore or germling laden-silanized surfaces were washed. Both urediospores and germlings adhered most tenaciously to surfaces with wettability ratings less than 30. Such surfaces were polystyrene and glass treated with dimethyldichlorosilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichorosilane, and diphenyldichlorosilane. The degree of germling contact to the various surfaces correlated closely with hydrophobicity and with the adhesion of germlings. Induction of appressoria on quartz substrates bearing inductive topographies (0.5-μm-deep grooves) was also closely associated with the degree of hydrophobicity.  相似文献   

18.
Mass collection of germlings and growth of fouling algae are two main constraints for the seedling production of Sargassum thunbergii. In this study, 65% and 40% of reproductive output (allocation of biomass to sexual reproductive tissue) for farmed and natural populations respectively, were recorded during peak reproduction. In terms of germlings per kilogram wet weight of plants, the farmed population gave a higher yield than the natural population (3.2?×?105 and 1.2?×?105 germlings kg-1, respectively). These results indicate that farmed populations could be used as parental plants for germling collection in seedling production. During the experiment, fouling was controlled by jet washing and high-density seeding. A germling detachment of less than 10% was observed when, after 48?h of attachment, collectors were jet-washed with an intensity of 1?kg cm-2. High-density seeding had adverse effects on length mean, size equality, and occurrence of branches of germlings. However, 30–50 individuals cm-2 are thought to be usable in the seedling production of S. thunbergii because of less density effects. Seedlings of?>?0.5?cm length could be achieved after 1?month of tank culture.  相似文献   

19.
Exposure of yeast cells to increases in extracellular osmolarity activates the HOG1 mitogen-activated protein (MAP) kinase cascade, which is composed of three tiers of protein kinases: (i) the SSK2, SSK22, and STE11 MAP kinase kinase kinases (MAPKKKs), (ii) the PBS2 MAPKK, and (iii) the HOG1 MAP kinase. Activation of the MAP kinase cascade is mediated by two upstream mechanisms. The SLN1-YPD1-SSK1 two-component osmosensor activates the SSK2 and SSK22 MAPKKKs by direct interaction of the SSK1 response regulator with these MAPKKKs. The second mechanism of HOG1 MAP kinase activation is independent of the two-component osmosensor and involves the SHO1 transmembrane protein and the STE11 MAPKKK. Only PBS2 and HOG1 are common to the two mechanisms. We conducted an exhaustive mutant screening to identify additional elements required for activation of STE11 by osmotic stress. We found that strains with mutations in the STE50 gene, in combination with ssk2Δ ssk22Δ mutations, were unable to induce HOG1 phosphorylation after osmotic stress. Both two-hybrid analyses and coprecipitation assays demonstrated that the N-terminal domain of STE50 binds strongly to the N-terminal domain of STE11. The binding of STE50 to STE11 is constitutive and is not affected by osmotic stress. Furthermore, the two proteins relocalize similarly after osmotic shock. It was concluded that STE50 fulfills an essential role in the activation of the high-osmolarity glycerol response pathway by acting as an integral subunit of the STE11 MAPKKK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号